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S1 Forward Modeling Scheme 

In the following, we describe the employed forward modelling scheme to determine the extracellular electric 

potential from the transmembrane currents and the extracellular magnetic field from the intracellular axial 

currents, i.e. the current flow parallel to the cell membrane. For a cylindrical nerve structure embedded in a 

large extracellular medium (Fig. S1), the extracellular volume Ve can be approximated as an infinite 

homogeneous conductor. Hence, the cell membrane is the only boundary, denoted by S. In that case, the 

electric potential in the extracellular region can be written as (starting from Eqs. 26 and 27 in 1) 
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where the operator ∇′ acts on 𝐫𝐫′. Since there are no current sources in the extracellular medium (i.e., 

∇ 𝐉𝐉source= 0 in the extracellular space), the first term on the right hand side disappears. The extracellular 

potential is much smaller than the intracellular potential 2 (i. e. ,σiϕi ≫ σeϕe) and hence Eq. (S1) can be 

approximated as:  

 ϕe(𝐫𝐫) = 1
4πσe

∫ σiϕi∇′
1

|𝐫𝐫−𝐫𝐫′|
 𝐧𝐧 dS′S . (S2) 

Therefore, the extracellular potential is approximately independent of the external current distribution. If 

the nerve structure has a small cross-section A, we can assume that 𝜙𝜙𝑖𝑖 is only changing along the structure 

(this direction is parameterized using the longitudinal coordinate l) and the surface integral can be written in 

terms of a volume integral2:  

 ϕe(𝐫𝐫) = 1
4πσe

∫ �∫  σi
∂2ϕi
∂l2
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The numerical simulations of the neuron are based on core-conductor equations, which assume a constant 

current density across the cross-section of the cell,   
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 ∂2ϕi
∂l2

= riim, 
(S4) 

where ri =  1/σiA is the intracellular resistance per unit length and im is the membrane current per unit 

length. Eq. (S4) allows us to write the extracellular potential in dependence on the membrane currents: 

ϕe(𝐫𝐫) = 1
4πσe

∫ im
1

|𝐫𝐫−𝐫𝐫′|
dl∞

−∞ .                                                              (S5) 

The core-conductor model provides a good approximation as we are only interested in the transmembrane 

potential of the cell model3. Representing the nerve geometry by a series of N cylindrical compartments of 

length Δsn allows discretizing Eq. (S5) as 

ϕe(𝐫𝐫, t) =  1
4 πσ𝑒𝑒

∑ ∫ Imn (t)dl
Δsn|𝐫𝐫−𝐫𝐫n|Ln

N
n=1   ,                                                        (S6) 

where  Imn   is the membrane current for compartment n, Δsnis its length, and a is its radius: 

Imn =  imΔsn = ImΔsn
2πa

 .                                                             (S7) 

Integrating Eq. (S6) along the center line of each compartment finally yields 

ϕe(𝐫𝐫, t) =  1
4πσ𝑒𝑒

∑ Imn (t)
Δsn

N
n=1 log �

�hn2+ ρn2−hn

�ln2+ ρn2−ln
�,                                                    (S8) 

where ρn  is the distance perpendicular to the center line of the compartment, hn is the longitudinal distance 

from the end of the compartment, and ln = hn + Δsn denotes the longitudinal distance from the start of the 

compartment4,5. 
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Figure S1: Model of a cylindrical neural process. The left side shows the volume-conductor model and the 
right side the equivalent core-conductor model. The volume conductor model distinguishes between the 
intracellular, membrane and extracellular regions. In the core-conductor model, the intracellular and 
extracellular regions are represented by axial resistances and they are connected by a membrane 
network6. 

A similar solution can be derived for the extracellular magnetic field (starting from Eqs. 20 and 22 in 1) : 

 𝐁𝐁(𝐫𝐫) = µ0
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The domain is divided into the intracellular, membrane and extracellular volumes, and the integral equations 

run over the complete domain. Since the extracellular and intracellular volumes are source free ohmic 

regions, the first integral is nonzero only at the membrane. We thus define 𝐉𝐉source = 𝐉𝐉𝐦𝐦 as the biochemical 

current sources in the membrane. The contribution of the secondary currents in the second integral of Eq. 

(S9) can be written for the intracellular and extracellular regions by considering the vector identities: 
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(S10) 

For piecewise homogeneous regions, the volume integral on the right hand side is zero. Therefore, the second 

volume integral of Eq. (S9) can be converted into a surface integral and the magnetic field can be expressed 

as a sum of volume and surface integrals over the membrane 7: 
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The current densities are symmetric along the nerve structure and can be written in terms of their radial 

components Jr and longitudinal components Jl    

 𝐉𝐉(r, l) = Jr(r, l)𝐫𝐫� + Jl(r, l) 𝐥̂𝐥 (S12) 

with 𝐫𝐫� and 𝐥̂𝐥 being radial and axial unit vectors, respectively. The membrane conductivity is extremely small 

with respect to the conductivities of the inner and outer regions. We therefore can assume that the 

membrane currents 𝐉𝐉𝐦𝐦 have only a radial component7. As the membrane is very thin, the contribution of the 

membrane source to the magnetic field can be safely neglected and the volume integral in Eq. (S11) can be 

skipped. 

At the inner and outer surfaces of the membrane, the radial components of the extracellular and intracellular 

current densities cannot contribute to the surface integrals since they are orthogonal to the surface normal n� . 

Therefore, the total magnetic field is determined by the longitudinal (axial) components of currents Je and Ji 

at the outer and inner surfaces, which are defined as: 

 Je,i =   σe,i  
∂Φe,i 

∂l
 (S13) 

It can be further assumed that the external current flow Je is distributed in a large volume, such that its 

longitudinal component at the outer membrane surface is small. In contrast, the internal current flow Ji is 

confined to a small volume and its longitudinal component is strong and dominates Eq. (S11). Thus, Eq. (S11) 

can be approximated as: 
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Discretizing the neuron into N compartments results in:  

𝐁𝐁(𝐫𝐫, t) =  
µ0
4π
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N

n=1

, (S15) 

where Iaxialn  is the intracellular axial current for compartment n. Iaxialn  is determined by the potential 

difference Vmn − Vmn−1 between the membrane nodes which enclose the compartment: 
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 Iaxialn =  Ji,l′πa2 =  Vm
n −Vmn−1

Δsnri
n  .  (S16) 

Integration of Eq. (S15) along the center line of each compartment finally gives 

𝐁𝐁(𝐫𝐫, t) =  µ0
4π
∑ 𝐈𝐈axial

n (t)×ρ�n
ρn

N
n=1 � hn

�hn2  +ρn2
− ln

�ln +ρn2
�,  (S17) 

where ρn the distance perpendicular to the line compartment, hn is the longitudinal distance from the end 

of the compartment, and ln = hn − Δsn the longitudinal distance from the start of the compartment. 

 

S2 Comparison with the Numerical Solution for a Long Straight Axon 

In the following, we validate equation (S17) by comparing the magnetic field obtained for a long straight axon 

with the fields calculated with the Finite-Element Method (FEM). For completeness, we also present the 

results obtained with two different analytical approaches, as described in 8. The total extracellular magnetic 

field results from two different sources, namely the extracellular and intracellular currents. As discussed 

above, the magnetic field component due to the membrane currents Jm can be safely neglected. As first step, 

the distributions of the electric potential in the intra- and extracellular spaces are calculated. The potential 

has to satisfy Laplace’s equation in the volume conductor 

∇. �𝜎𝜎𝑒𝑒,𝑖𝑖∇ϕe,i� = 0,                                                                               (S18) 

whereby we set Neumann boundary conditions at the outer and inner boundaries of the cell membrane: 

𝐧𝐧. (𝜎𝜎𝑒𝑒∇ϕe) = −Jn, and                                                                    (S19) 

𝐧𝐧. (𝜎𝜎𝑖𝑖∇ϕi) = Jn.                                                                                (S20) 

Vector n denotes an outwards pointing unit vector normal to the boundary.  Jn represents the current density 

at the boundaries. For the extracellular potential, we additionally set Jn = 0 at the outer domain boundary. 

For the cell membrane, Jn is identical to the (dominant) radial component of the membrane current density 

 𝐉𝐉𝐦𝐦. For the core-conductor model, Jn can thus be determined from the membrane current per compartment 

 Jn = Imn

Δsn2πa
,                                                                                  (S21) 

with Δsn being the length and a the radius of compartment n. After determining ϕe and ϕi, the current 

densities are calculated using Ohm’s law  𝐉𝐉 = 𝜎𝜎𝑒𝑒,𝑖𝑖∇ϕe,i, and the Biot-Savart law is used to determine the 

contributions of the external and internal current flows to the total extracellular magnetic field. 
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The modelled geometry is depicted in Fig. S2A&B. The membrane potential and membrane currents were 

simulated using NEURON, and the results fed into the FEM calculations based on COMSOL Multiphysics 

(v5.3). We made use of the axisymmetric geometry around the Y axis to set up a 2D triangle mesh with a 

symmetry constraint at z=0 in order to describe the geometry in a computationally efficient way. The 

geometry corresponds to a cylinder of 40 mm height (in Y direction) and 60 mm diameter (corresponding to 

30 mm in Z direction), with the nerve being placed in its center. The triangle density in the region close to 

the nerve membrane was strongly increased to account for the thin diameter of the axon. Quadratic finite 

elements were employed, and the relative tolerance for the conjugate gradient solver were required to be 

<10−3. 

The axon has active Hodgkin-Huxley channel dynamics and a length of 3.2 mm. It is discretized in 

compartments with lengths smaller than the electrotonic space constant. Its diameter was chosen small (5 

µm) in order to be in the range seen for hippocampus cells. The following parameters were used: 

radius a thickness  tm internal conductivity σi membrane conductivity σm 

2.5 µm 13.7 nm 1 Ω−1m−1 10−5 Ω−1m−1 

length L velocity u external conductivity  σe membrane permittivity  ϵm 

3.2 mm 2 ms−1 0.3 Ω−1m−1 6.195 × 10−12C2N−1m2 

The results were evaluated at an (arbitrarily chosen) time point when AP had traveled 2/3 of the length of 

the axon. Fig. S2C shows the transmembrane potential along the axon. The magnetic field determined by our 

forward modelling scheme (Eq. (S17); abbr. BS – black curve in Fig. S2D) was compared with the total 

magnetic field obtained via the FEM simulations (abbr. FEM – blue curve in Fig. S2D), showing a very good 

agreement. From this, we can conclude that our forward modeling scheme based on Eq. (S17) is accurate 

when the assumption of a large homogeneous extracellular volume is valid. 

In addition, the results obtained with two different analytical approaches, as described in 8, are shown. Those 

approaches allow calculating the magnetic field from the simulated membrane potential, based on the 

representation of the axon as an infinite cylinder of radius a embedded in an isotropic unbounded outer 

region. The first analytical method, based on Ampere’s law (B Ampere – purple curve in Fig. S2D), strongly 

overestimates the magnetic field caused by the internal current flow when the distance to the nerve is large, 

which is in accordance to the known limitations of this approach  8. The second method that evaluates the 

Biot-Savart law in the spatial frequency domain (BS kspace – red dashed curve in Fig. S2D) performs better, 

but systematically underestimates the field strength at all distances. This effects only occurs for thin axon 

radii as tested here, while it is accurate for thicker axons as simulated in the original study 8. 
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Figure S2: (A) Schematic image of the simulated straight axon, modelled in 2D as axisymmetric geometry 
around the Y axis (for better visibility, the length of the axon is not drawn to scale).  (B) Visualization of the 
triangular mesh used to represent the geometry. The triangular density is increased close to the nerve in 
order to ensure an accurate solution.  (C) Transmembrane potential along the axon, plotted at an arbitrarily 
chosen time point when the AP had traveled 2/3 of the length of the axon.  (D) Comparison of analytically 
calculated and numerically simulated magnetic fields of the straight axon. Plotted are peak-to-peak 
amplitudes of the magnetic field strength determined at y = 1.8 mm, corresponding to the strongest slope of 
the membrane depolarization and thus the peak position of the magnetic field, in dependence on the 
distance to the nerve. The four modelling schemes are: Finite element method (FEM), accounting for the 
total magnetic field of the internal and external current flow; Core-conductor model of the axon combined 
with the Biot-Savart law to estimate the magnetic field of the internal current flow (BS); Analytical solution 
for the magnetic field caused by the internal currents flow in an infinite straight axon, based on the Biot-
Savart law in the spatial frequency domain (BS kspace); Analytical solution for the magnetic field caused by 
the internal current flow in an infinite straight axon, based on Ampere’s law (B Ampere).  

 

S3 Correction for the effects of tissue anisotropy and boundaries  

The forward modeling scheme so far assumed that the extracellular volume Ve can be well approximated as 

an infinite homogeneous conductor. However, the brain slice will be embedded in a saline bath, resulting in 

a conductivity boundary between brain and saline. In addition, an anisotropic electrical conductivity has been 

reported, e.g. for the guinea-pig hippocampus 9. Finally, also the boundaries between the slice/saline and the 



 
 

 
8/23 

 

surrounding non-conductive air, plastic and diamond affects the extracellular current pathways. The effect 

of conductivity discontinuities on electric potential recording was explored for Multielectrode array in detail 
10. In the following, we investigate the impact of these conductivity discontinuities on the magnetic field 

created by a straight nerve fiber. For this, we employ numerical simulations based on the finite element 

method (FEM) to determine the magnetic field contribution by the extracellular currents (Eqs. S18 to S21), 

while determining the contribution of the internal currents directly from Eq. (S17). This allows us to derive 

multiplicative factors that can be applied to the results of the forward modeling scheme to approximately 

correct for the impact of the finite extracellular volume. We apply these factors to rescale the magnetic fields 

of the pyramidal neurons investigated in the main part of the study in dependence of their distance to the 

diamond surface. While the large number and the histological complexity of the simulated pyramidal neurons 

prevents a direct assessment of their extracellular currents via FEM, our strategy allows us to account for the 

major effects caused by the extracellular volume. 

 

Figure S3: (A) Schematic image of the simulated straight axon embedded in brain tissue and surrounded by 
saline.  (B) Visualization of the tetrahedral mesh used to represent the geometry. The tetrahedral density is 
increased close to the nerve in order to ensure an accurate solution. 

The modelled geometry is depicted in Fig. S3A. The hippocampus slice has a volume of 1x4x0.4 mm3, and the 

outer dimensions of the saline layer are 2x6x2 mm3. A single nerve with 5 µm diameter and 3.2 mm length is 

placed centrally within the hippocampus slice at a distance d from the diamond surface. The following four 

scenarios were simulated: 1) Isotropic extracellular space with a conductivity of 𝜎𝜎𝑒𝑒 = 0.3 S/m, without 

distinction between saline and hippocampal tissue (scenario NS). 2) Saline with a conductivity of 𝜎𝜎𝑆𝑆 =

1.5 S/m and isotropic tissue with a conductivity of 𝜎𝜎𝑇𝑇 = 0.3 S/m (scenario S) 11. 3) Saline with anisotropic 

hippocampal tissue (scenario S+A). The tissue conductivity along the nerve cell was set to 𝜎𝜎𝑇𝑇𝑇𝑇 = 0.45 S/m, 

while the conductivity normal to the nerve was kept at 𝜎𝜎𝑇𝑇 = 0.3 S/m. 4) Saline with anisotropic hippocampal 

tissue and an additional leakage layer of 20 µm height between the tissue sample and the diamond, filled 

with saline (scenario S+A+L). In order to test how the magnetic field caused by the extracellular current flow 

depends on the distance of the nerve to the diamond, the latter was varied from 50 to 300 µm in 50 µm 

steps. The membrane currents were calculated in NEURON, employing the same cell dynamics as in the 
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previous paragraph. FEM calculations based on COMSOL Multiphysics (v5.3) were then used to determine 

the extracellular current density and the resulting magnetic field. The extracellular region was modelled as 

tetrahedral mesh, with an increased tetrahedral density close to the nerve fiber. Quadratic finite elements 

were employed, and the relative tolerance for the conjugate gradient solver were required to be <10−3. 

Since the nerve is aligned along the Y direction, only the BX and BZ components of the magnetic field are 

strong at the diamond surface and are analyzed further. Figure S4 shows snapshots of the BX component 

caused by the external current flow at the surface, sampled along a line in Y direction underneath the axon 

at an (arbitrarily chosen) time point at which the AP had traveled 2/3 of the length of the axon. All four 

scenarios show similar results, indicating that the outer boundaries of the volume conductor have the 

strongest impact, while the other modelled features play only a minor role (please compare to the results for 

the infinite extracellular volume shown in Fig. S2C). Figure S5 shows the parts of the BX component caused 

by the internal and external current flow for the A+S scenario, revealing that the impact of the external 

currents is increased by around three orders of magnitude compared to an infinite extracellular volume. The 

nerve is far closer to the diamond surface than to the upper boundary of the saline bath, so that the major 

contribution comes from the diamond surface, which causes an increased current density in the extracellular 

space between the nerve cell and diamond. Interestingly, this effect gets stronger with increasing distance 

between the nerve and the surface, as this increases the overall amount of current in the space between the 

nerve cell and diamond. Figure S6 shows the corresponding snapshots for the BZ component at the surface, 

sampled along a line in X direction. While the part of the field caused by the external current flow is still 

increased compared to the case of an infinite extracellular volume, this effect is far weaker compared to the 

BX component and can be ignored in first approximation. 
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Figure S4: Impact of inhomogeneous and anisotropic conductivities of the finite extracellular volume 
conductor shown in Fig. S3 on the magnetic field. Shown is the BX component caused by the external current 
flow, sampled at the diamond surface along a line in Y direction underneath the axon. The successive plots 
show the results for increasing distance of the nerve to the diamond. The four scenarios give similar results. 

 

 

Figure S5: BX components of the magnetic field caused by the internal and external current flow (denoted as 
BX,I and BX,E) for the S+A scenario. The field was sampled at the diamond surface along a line in Y direction 
underneath the axon. The successive plots show the results for increasing distance of the nerve to the 
diamond. 
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Figure S6: BZ components of the magnetic field caused by the internal and external current flow (denoted as 
BZ,I and BZ,E) for the S+A scenario. The field was sampled at the diamond surface along a line in X direction 
underneath the axon. The Y coordinate of the line was chosen according to the peak of BZ. 

We were further interested how the spatial distribution of BX and BZ at the diamond surface is affected by 

the finite extracellular volume conductor. Figure S7 exemplarily shows the results for a nerve placed at a 

distance of 150 µm from sensor plane for the S+A scenario. As expected, the spatial distribution of BZ is hardly 

affected by the external current flow. In contrast, BX gets “narrower” in X direction, while mostly keeping its 

shape in Y direction. 

 

Figure S7: Spatial distribution of BX and BZ on the diamond surface for a nerve at a distance of 150 µm (S+A 
scenario). Shown are the parts caused by the internal (left column) and external (middle column) current 
flow, and the total field (right column). 

Finally, we determined distance-dependent scale factors to correct the results obtained with the simplified 

forward modeling scheme used for the pyramidal neurons in the main part of the paper (Fig. S8A). The scale 

factors are the ratio between the total field component and the part due to the internal current flow, 

calculated at the position where the field component peaks. While BZ requires hardly any rescaling, BX is 

reduced by up to 60%. For Bx, an analytical expression for the scale factor is derived for use in the sensitivity 

analysis. For that, a rational polynomial is fitted to the data in dependence of the distance d (in µm), resulting 

in s(d) = 0.25 + 42.6
d+52

. For BZ, the coefficient of determination between the magnetic field distributions of 

the internal and total current flow are close to 1 for all simulated distances between nerve and diamond 

surface (Fig. S8B). The impact of the finite extracellular volume conductor is larger for the spatial distribution 

of BX, with the coefficient of determination varying between 0.83 and 0.94. As visible in Fig. S7, this is mainly 

due to a narrowing of BX in the direction normal to the nerve fiber. This effect is neglected in the results 

shown for the pyramidal cells in the main part of the paper, which were only corrected using the scale factors. 

As a consequence, the magnetic fields will be spatially slightly more confined than shown there, and also the 

achievable spatial resolution will be slightly underestimated. 
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Figure S8: Effect of the finite extracellular volume conductor (S+A scenario) on the strength and spatial 
distribution of BX and BZ.  (A) Scale factors (ratios between the total field component and the part caused by 
the internal current flow, i.e. BX,T/BX,I and BZ,T/BZ,I) in dependence of the distance to the diamond surface. The 
factors were determined at the peak positions of BX and BZ, respectively, on the diamond surface. The blue 

line (BX_fit) depicts the polynomial s(d) = 0.25 + 42.6
d+52

 fitted to BX.  (B) Coefficient of determination between 

the spatial distributions of the total field components (BX,T and BZ,T) and the parts caused by the internal 
current flow (BX,I and BZ,I) on the diamond surface. The results were determined in dependence of the 
distance to the surface. 

For comparison, we also tested the impact of the finite extracellular volume conductor on the electric 

potential at the diamond surface (Fig. S9). Interestingly, the electric potential depends more strongly on the 

volume conductor properties than the magnetic field. The tendency is that stronger electric potentials occur 

at the surface compared to the infinite homogenous volume conductor (denoted NB in Fig. S9A). However, 

this effect disappears when a thin saline “leakage” layer between the tissue compartment and the surface is 

introduced (scenario S+A+L). The relatively well conductive saline layer strongly reduces the potential 

differences at the surface. A similar result is seen for the spatial distribution of the electric potential at the 

surface (Fig. S9B), with the NB and S+A+L scenarios giving very similar results. Considering this similarity, we 

decided against applying correction factors for the electric potential in the main part of the study. 
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Figure S9: Effect of the finite extracellular volume conductor on the strength and spatial distribution of the 
electric potential at the diamond surface.   (A) Electric potential at the diamond surface, sampled along a line 
in Y direction underneath the axon, for three different distances between the axon and the surface. The same 
four scenarios were tested as for the magnetic field. In addition, the results for an infinite homogeneous 
extracellular volume conductor are shown for comparison (termed NB - no boundaries).  (B) Spatial 
distribution of the electric potential for a nerve placed at 200 µm distance from the diamond surface. When 
a thin saline “leakage” layer is introduced between the tissue and the diamond surface (scenario S+A+L), the 
field is almost identical to that obtained for an infinite homogeneous extracellular volume conductor. 

 

S4 Comparison with Existing Studies: Single Axon case 

We modeled a single axon to compare it with previously reported magnetometry measurements of axonal 

action potentials 12. In that study, NV magnetometry measurements were performed for excised giant axons 

of two species, namely Myxicola infundibulum (worm) and Loligo pealeii (squid). In addition, recordings from 

axonal activity in intact worms were performed. Here, we compare our simulations based on the forward 

modeling scheme (Eq. S17) with their results for the excised worm axon and the intact worm. In their first 

experiment, the giant axon of the worm was excised and measured at a temperature of 21°C and a standoff 

distance of 0.3 mm to the nerve center. In their second experiment, the worm was kept at 10 °C and the 

measurements were taken at a distance 1.2 mm from the nerve center. To compare our numerical methods 

with the reported measurement results, we modeled single axons with σi = 1.5/Ωm and diameters ranging 

between 200 µm and 400 µm in NEURON and estimated the resulting magnetic field based on the forward 

modeling scheme outlined above. The assumed temperatures were either 21°C (excised axon) or 10°C (axon 

of living worm). In the excised axon (Fig. S10A), the simulated peak magnetic field strength increases from 

around 1 to 3.5 nT with increasing diameter, which overlaps well with the measured field strengths. For the 

axonal activity of the living worm (Fig. S10B), the peak magnetic field strength decreases to one fourth of the 

one observed for the excised axon due to the increased distance. In addition, its duration is longer due to the 

lower ambient temperature that slows down the action potential. Our simulation results are in good 

agreement with the previously presented measurements 12, which show that the peak field strength was 

around 0.4 nT for a diameter of 300 µm. It should be noted that we did not correct for the magnetic field of 

currents in the extracellular space, as the correction factors derived above are specific for the geometry of 

the envisioned recordings from the hippocampus slices. 
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Figure S10: Single point measurement and simulations of the magnetic field.  (A) Excised single giant axon at 
21°C. Left: Measured magnetic field at distance of 300 µm from the center of the nerve (reproduced from 
12). Middle: Simulated action potential for different axon diameter. Right: Calculated total magnetic field at a 
distance of 300 µm.  (B) Axonal activity of a living worm at 10 °C. Left: Measured magnetic field at distance 
of 1.2 mm from center of nerve (reproduced from 12). Middle: Simulated action potential for different axon 
diameters. Right: Calculated total magnetic field at distance of 1.2 mm. 

 

S5 Neural cell dynamics of the CA1 pyramidal cells 

The CA1 pyramidal cells of the third scenario are modelled using previously reported morphology and 

biophysical properties 13. The model files are publically available under the ModelDB section of the Senselab 

database (http://senselab.med.yale.edu). The passive elements of the model comprise the cell membrane 

with a capacitance of  Cm = 1 µF/cm and a resistance of Rm = 28 kΩcm2, and the intracellular space with 

a resistance of Ra = 150 Ωcm. The active model elements comprise voltage-gated sodium channels and 

different potassium membrane currents (A-type and delayed rectifiers), with further details outlined next. 

Electrical stimulation of the Schaffer collaterals results in a temporally synchronous synaptic excitation of the 

CA1 pyramidal cells that are targeted by the collaterals. Here, this is simulated by excitation of the AMPA 

synapses of the pyramidal cells, which are situated on the apical dendrites (the stratum radiatum, S.R.) and 

the basal dendrites (the stratum oriens, S.O.). The synaptic events are modelled by time-dependent changes 

of the conductance of the synapses. These conductance changes are described by a double-exponential 

function  gsyn =  gsynA−1�e−t/τrise −  e−t/τdecay�, with constant τrise = 1.5 ms controlling the rise time, 

constant τdecay = 2.5 ms controlling the decay time and gsyn denoting the peak conductance14. Constant A 

http://senselab.med.yale.edu/
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is used for normalization to set the maximum value of gsyn to be gsyn. These synaptic events inject currents 

of  Isyn = gsyn(Vm − Vrev) at the membrane positions of the synapses (a reverse potential of Vrev = 0 mV 

is used). The simulations of the neural dynamics are conducted in NEURON, using the backward-Euler 

integration method to solve the cable equation with a fixed time step of 25 μs. For that, each section of a 

CA1 pyramidal cell (such as a dendritic branch) is subdivided into multiple cylindrical compartments to 

achieve compartment lengths smaller than the electrotonic space constant λ. Furthermore, each section is 

forced to have at least three compartments to be able to calculate axial currents from the membrane voltages 

as input to the above forward modelling scheme. The resulting models of CA1 pyramidal cells consist of 1427 

compartments. 

The stimulation of a CA1 pyramidal cell via the Schaffer collaterals is mimicked by synaptic events, which are 

generated at 40 randomly selected locations at the s. oriens and 40 random positions at the s. radiatum15. 

The time points of the synaptic events are modelled by truncated random functions with a normal 

distribution as follows: 

1. Generate an excitation time  Texc   

Texc =   �
Tstart + Tstop

2
� +  �

Tstop − Tstart
4

�𝒩𝒩(0,𝜎𝜎) 

2. If   Tstart ≤ Texc ≤ Tstop, assign Texc as time point of the synaptic event, otherwise regenerate Texc 

until it remains in the desired time window. 

𝒩𝒩(0,𝜎𝜎) is a normal distribution with zero mean and standard deviation 𝜎𝜎  (σ = 0.25,  unless indicated 

differently; corresponding to a standard deviation of 1.56 expressed in ms), and represents the time jitter in 

the excitatory inputs. The first wave of synaptic events is generated using Tstart = 0 and Tstop = 25 ms, and 

a second wave is generated using  Tstart = 25 and   Tstop = 50 ms in order to mimic repeated electric 

stimulation at 40 Hz. The synaptic strength is controlled by setting the peak conductance gsyn. In order to 

evaluate an upper limit for the magnetic field strengths that can occur merely due to EPSPs without inducing 

action potentials, a value of 0.3 nS was chosen. Consistent spiking activity could be created by selecting a 

strength of 0.6 nS (or higher, if indicated). It is worth noting that the number of modelled excitatory synaptic 

inputs is far lower than occurring for real neurons. In order to reduce the computational complexity of the 

simulations, the effects of a high number of excitatory synapses is mimicked by increasing the synaptic 

strengths instead. 
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S6 Comparison with Existing Studies: Recordings from the hippocampus CA1 

subfield with µ-SQUIDs 

We modeled a hippocampus slice to compare it with previously reported magnetometry measurements from 

the hippocampus CA1 subfield of the guinea-pig based on a µ-SQUIDs and small pickup coils 16. In that study, 

a longitudinal hippocampus slice with 5 x 2 x 0.4 mm was used. The component of the magnetic field normal 

to the slice surface was recorded using µ-SQUIDs connected to coils with 4 mm diameter. The coils had a 

distance of 2 mm to the upper surface of the slice. Given the size of the pickup coils and the distance to the 

slice, their achievable spatial resolution is far lower than that of our envisioned approach. However, in our 

context, their measurement data is useful to further validate our modeling approach. For that, we simulated 

the topography of the neural magnetic fields and compared the simulation results with the recorded 

topographies reported in  16. We modeled a longitudinal CA1 slice with 5 x 2 x 0.4 mm. Electrical stimulation 

of the Schaffer collaterals was simulated by activation of the AMPA synapses to generate spiking events 

across the complete slice. The component of the neural magnetic field normal to the slice was calculated, 

and its topography was determined in an area of 20 mm x 12 mm centered above the slice at a distance of 4 

mm. The area was divided into 15 regions, and the average of the normal field component was determined 

in each of the regions. The experimental study reported peak fields of 15 pT for population spikes, which is 

in the same order of magnitude but lower (Fig.S11). There are several possible reasons for the remaining 

differences: First, the number of activated cells could have been less in the experimental study, or the 

simulated cell density could have been different to the density in the measured guinea-pig brain slices. 

Second, the neural event types causing activation are different. Consistent with the main scenario modeled 

in our study, we simulated neural excitation via the stimulation of Schaffer collaterals, resulting in highly 

coherent activation of the pyramidal cells. In contrast, the experimental study used direct electrical 

stimulation of the CA1 cells with 6 electrodes distributed across the CA1 subarea. For the latter case, a lower 

synchrony between the activated pyramidal neurons could have reduced the magnetic field peak of the 

population spike. Finally, we did not account for the finite extracellular volume conductor in our simulations. 

However, we do not expect a too strong influence in this case, as the magnetic field component normal to 

the boundary between conductive tissue and non-conductive material (the diamond and dewar, respectively) 

is hardly affected (see results for BZ in Fig. S8). 
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Figure S11: Topography of the simulated neural magnetic fields due to activation of a longitudinal CA1 slice, 
recorded by µ-SQUIDs. The centers of the pickup coils were placed on a regular grid with a 4 mm spacing (as 
indicated by the black dots). The brain slice is indicated by the rectangle. Shown is the magnetic field 
component normal to the slice. The field topography (strong directly neighboring the slice, with opposite 
signs for left and right positions; weak directly above the slice) shows that the magnetic fields are generated 
by longitudinal currents flowing along the cell bodies. 

 

S7 Computation of the True Volume Current Density 

During the computations of the neural magnetic fields, the segments of neurons are modelled as current-

carrying wires. However, during the reconstruction of the current density from the simulated magnetic field 

measurements, the currents are assumed to be volume currents. In the following, we therefore derive a 

mapping between the axial currents and the corresponding volume current densities for comparison with 

the reconstructed current densities, y. In our modeling, we computed the total current within a voxel by 

integrating the axial current over the neuron segments in this voxel. The volume current density is then 

estimated by dividing by the volume of voxel  

𝐉𝐉i  =  1
Vi
� Iaxialn 𝐋𝐋infor n inside i

,  (S22) 

where Vi is the volume of voxel and Lin is the xy projection of segment vector n to voxel i.  

For the CA1 slice, the volume current density was computed at 64x64 points with a total area of 1 mm2 and 

an assumed thickness of 0.3 mm. For the planar cell, the voxel dimension was chosen to be 4x4x2 µm3 for a 

total area of 0.09 mm2. To test the validity of our estimation, the magnetic fields of both the CA1 slice and 

the planar cell were determined from the volume current densities using the frequency domain approach 

described in 8 and compared with the magnetic field determined from the axial currents (Fig. S12). The 
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simulation parameters were kept same as for Fig. 2 and Fig. 3 of the main text. The volume currents, 

projected onto the measurement plane of the sensor, give consistent results compared to the actual axial 

sources, except small discrepancies that originate from discretization errors. Moreover, in the planar cell 

model, a thickness of 2 µm is chosen based on the mean radius of segments, resulting in higher fields around 

the thicker soma layer. 

 

Figure S12: Simulated magnetic field of the CA1 slice and the planar cell. (A) The magnetic field of the CA1 

subarea, determined from the axial currents (left) vs projected volume currents (right). (B) The magnetic 

field of the planar cell computed from the axial currents vs projected volume currents. 

 

  



 
 

 
19/23 

 

Additional Supplementary Figures 

 

 

Figure S13: Simulation results showing the spatial distribution and the temporal shape of the extracellular 
fields for the CA1 subarea for the case that synaptic activity only occurs at the S.R.  (A) Local field potential 
(LFP) for the spiking case.  (B) BX component of the magnetic field (spiking case).  (C) BZ component of the 
magnetic field (spiking case). The insets depict the temporal shapes of the magnetic field components, 
extracted from the indicated positions (a time window of 50 ms is shown). The initial phases before the action 
potentials reflect the accumulation of excitatory postsynaptic potentials (EPSPs).  (D) LFP for the non-spiking 
case.  (E) BX component of the magnetic field (non-spiking case).  (F) BZ component of the magnetic field (non-
spiking case). The temporal shapes depicted in the insets reflects the accumulation of EPSPs. 
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Figure S14: Recording from the CA1 subarea. This figure complements Fig. 7 in the main paper. Here, the 
neural source has a height of 50 µm (instead of 300 µm) in Z direction, starting at a distance of 50 µm from 
the diamond surface. Correspondingly, the total current induced by the source in Y direction is 1/6 of the 
current for the source in Fig. 7.   A) Shown is the achievable system resolution (characterized by the full width 
at half maximum – FWHM – of the reconstructed neural axial current density) in dependence on the in-plane 
resolution of the sensor. The achieved system resolution is almost constant for higher in-plane resolutions, 
but drops off quickly for too low in-plane resolutions.  (B) Peak signal-to-noise ratio (pSNR) for recordings 
from the CA1 subarea as a function of the in-plane resolution of the sensor (pixel size) and the signal-to-noise 
power of the source, η. As long as the in-plane resolution is chosen high enough to keep the best possible 
system resolution, also the pSNR of the reconstructed axial current densities remains constant. 
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Figure S15: Reconstructed neural axial current densities at varying noise levels.  (A) Recording from the 

CA1 subarea for SR&SO excitation, as mentioned in Fig.3. The true current density is determined as the 

total current within a voxel, divided by its volume. The in-plane resolution of the sensor is set to 15.6 µm 
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(64x64 pixels in 1mm2). The BX component of the measured magnetic field is shown for three different 

levels of the signal-to-noise power of the recorded magnetic field. (B) The normalized axial current 

densities reconstructed from the corresponding magnetic fields shown in A. Each plot is normalized to the 

maximum of its noiseless reconstruction with the same spatial filter settings.  (C) Recording from the CA1 

subarea for SR excitation, as mentioned in Fig. S13. The in-plane resolution of the sensor is set to 15.6 µm 

(64x64 pixels in 1mm2). (D) The normalized axial current densities reconstructed from the corresponding 

magnetic fields shown in C. Each plot is normalized to the maximum of its noiseless reconstruction with 

the same spatial filter settings.  (E) Recording of a planar cell, as simulated in Fig. 2. The cell thickness is 

assumed to be 2 µm. The BX component of the measured magnetic field is shown for three different levels 

of the signal-to-noise power. The in-plane resolution of the sensor is set to 4 µm (75x75 pixels in 0.09mm2).  

(F) The normalized axial current densities reconstructed from the corresponding magnetic fields in E. Each 

plot is normalized to the maximum of its noiseless reconstruction with the same spatial filter settings. 
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