

Supplementary Fig. S1. Evaluation of vitamin B1 content in leaves over a 24 h period.

Leaf samples from 7-month-old greenhouse-grown cassava accessions (BRA 132, cv. 60444 and ARG 13) were collected every 4 h as well as 1 h before the end of the light periods (artificial and sunlight) and 1 h before the end of the dark period. Vitamin B_1 was measured using a yeast bioassay. Average ± S.D. of 4 biological replicates. Tukey's multiple comparison test (p < 0.05).

Vitamin B₁ content in storage roots plotted against vitamin B₁ content in leaves. Vitamin B₁ quantification was performed in 41 cassava accessions (**A**) and repeated in 18 selected accessions independently grown (**B**) using a yeast bioassay. (**A**) Average \pm S.D. of 3 biological replicates except TMS 30572 (n=2) for leaves and TMS 30572 (n=2), MEX 95 (n=2), PSE XXX-1 (n=2) for storage roots. T200 is not depicted, as it did not produce storage roots. (**B**) Average \pm S.D. of 4 biological replicates except CM2177-2 (n=1), TST-XXX-18 (n=3) for leaves and CM2177-2 (n=1), TST XXX-18 (n=1), MEX 95 (n=3) for storage roots.

Supplementary Fig. S3. Correlation between plant phenotype and vitamin B₁ content in leaves or storage roots. Vitamin B₁ content in leaves plotted against plant above-ground fresh weight evaluated in 41 cassava accessions (A) and repeated in 18 selected accessions grown independently (C). Vitamin B₁ content in storage roots plotted against plant underground fresh weight evaluated in 41 cassava accessions (B) and repeated in 18 selected accessions independently grown (D). Vitamin B₁ content was quantified using a yeast bioassay. (A) Average \pm S.D. of 3 biological replicates except TMS 30572 (n=2). (B) Average \pm S.D. of 3 biological replicates except TMS 30572 (n=2). T200 is not depicted as it did not produce storage roots. (C) Average \pm S.D. of 4 biological replicates except CM2177-2 (n=1) and TST-XXX-18 (n=3). (D) Average \pm S.D. of 4 biological replicates except CM2177-2 (n=1) and MEX 95 (n=3).

Α

AM560-2_Phytozome cv. 60444_JGI TMe-3 JGI TMe-7_JGI SC8_JGI COL 22 JGI AM560-2_Phytozome cv. 60444_JGI TMe-3_JGI TMe-7_JGI SC8 JGI COL 22_JGI AM560-2_Phytozome cv. 60444_JGI TMe-3 JGI TMe-7_JGI SC8_JGI COL 22 JGI AM560-2_Phytozome cv. 60444_JGI TMe-3_JGI TMe-7_JGI SC8_JGI COL 22_JGI AM560-2_Phytozome cv. 60444_JGI TMe-3_JGI TMe-7_JGI SC8 JGI COL 22_JGI AM560-2_Phytozome cv. 60444_JGI TMe-3_JGI TMe-7_JGI SC8 JGI COL 22_JGI AM560-2_Phytozome cv. 60444_JGI TMe-3_JGI TMe-7 JGI SC8 JGI COL 22_JGI AM560-2_Phytozome cv. 60444_JGI TMe-3_JGI TMe-7_JGI SC8_JGI COL 22_JGI AM560-2_Phytozome cv. 60444_JGI TMe-3_JGI TMe-7 JGI SC8_JGI COL 22 JGI AM560-2_Phytozome cv. 60444_JGI TMe-3_JGI TMe-7_JGI SC8 JGI

TTTGATTCCTCCGCCTTCTGTGGCACCCCTTGGCTGCACCCTCCCCTTCGCATGCAACCC TTTGATTCCTCCGCCTTCTGTGGCACTCCCTTGGCTGCACCCCTTCGCATGCAACCC ACGAAAGCTAGCTCTGGTGTATCTGTTTCTATGTCAGCATCTACTCCGCCGCCTTATGAT ACGAAAGCTAGCTCTGGTGTATCTGTTTCTATGTCAGCATCTACTCCGCCGCCTTATGAT ACGAAAGCTAGCTCTGGTGTATCTGTTTCTATGTCAGCATCTACTCCGCCGCCTTATGAT ACGAAAGCTAGCTCTGGTGTATCTGTTTCTATGTCAGCATCTACTCCGCCGCCTTATGAT ACGAAAGCTAGCTCTGGTGTATCTGTTTCTATGTCAGCATCTACTCCGCCGCCTTATGAT ACGAAAGCTAGCTCTGGTGTATCTGTTTCTATGTCAGCATCTACTCCGCCGCCTTATGAT ${\tt CTGAGTGCTTTCAAGTTTAACCCCATCAAGGAATCCATTGTGGCCCGTGAGATGACGCGC}$ CTGAGTGCTTTCAAGTTTAACCCCATCAAGGAATCCATTGTGGCCCGTGAGATGACGCGC CTGAGTGCTTTCAAGTTTAACCCCATCAAGGAATCCATTGTGGCCCGTGAGATGACGCGC CTGAGTGCTTTCAAGTTTAACCCCCATCAAGGAATCCATTGTGGCCCGTGAGATGACGCGC CTGAGTGCTTTCAAGTTTAACCCCATCAAGGAATCCATTGTGGCCCGTGAGATGACGCGC ${\tt CTGAGTGCTTTCAAGTTTAACCCCATCAAGGAATCCATTGTGGCCCGTGAGATGACGCGC}$ AGGTACATGACGGACATGGTTACGCATGCAGATACTGATGTGGTGATTGTGGGTGCTGGC AGGTACATGACGGACATGGTTACGCATGCAGATACTGATGTGGTGATTGTGGGTGCTGGC AGGTACATGACGGACATGGTTACGCATGCAGATACTGATGTGGTGATTGTGGGTGCTGGC AGGTACATGACGGACATGGTTACGCATGCAGATACTGATGTGGTGATTGTGGGTGCTGGC AGGTACATGACGGACATGGTTACGCATGCAGATACTGATGTGGTGATTGTGGGTGCTGGC TCTGCTGGCCTCTCTTGTGCTTATGAGCTTAGCAAGAACCCATCTGTGAAGGTTGCCATT TCTGCTGGCCTCTCTTGTGCTTATGAGCTTAGCAAGAACCCATCTGTGAAGGTTGCCATT TCTGCTGGCCTCTCTTGTGCCTTATGAGCTTAGCAAGAACCCATCTGTGAAGGTTGCCATT TCTGCTGGCCTCTCTTGTGCTTATGAGCTTAGCAAGAACCCATCTGTGAAGGTTGCCATT TCTGCTGGCCTCTCTTGTGCTTATGAGCTTAGCAAGAACCCATCTGTGAAGGTTGCCATT TCTGCTGGCCTCTCTTGTGCTTATGAGCTTAGCAAGAACCCATCTGT-----*********** GTTGAGCAATCTGTTAGCCCTGGTGGTGGTGGTGGCTCGGTGGCCAGCTCTTCTCTGCC GTTGAGCAATCTGTTAGCCCTGGTGGTGGTGGTGGTGGCCGGTGGCCAGCTCTTCTCTGCC GTTGAGCAATCTGTTAGCCCTGGTGGTGGTGGTGGTGGCTCGGTGGCCAGCTCTTCTCTGCC GTTGAGCAATCTGTTAGCCCTGGTGGTGGTGGTGGTCGGTGGCCAGCTCTTCTCTGCC GTTGAGCAATCTGTTAGCCCTGGTGGTGGTGGTGGCTCGGTGGCCAGCTCTTCTCTGCC _____ **** АТС-----ATGGTAATCAAAATCCCTTTTTGCAGAGCAGAATCTAAATATTTGTTTCTTTAAAACTGA ATGGTAATCAAAATCCCTTTTTGCAGAGCAGAATCTAAATATTTGTTTCTTTAAAACTGA ATGGTAATCAAAATCCCTTTTTGCAGAGCAGAATCTAAATATTTGTTTCTTTAAAACTGA ATGGTAATCAAAATCCCTTTTTGCAGAGCAGAATCTAAATATTTGTTTCTTTAAAACTGA -----GTGGTTCGCAAACCTGCTCAACTCTTCCTTGA TCTTTCGTATATATGTTTTGTTGGTCAGGTGGTTCGCAAACCTGCTCAACTCTTCCTTGA TCTTTCGTATATATGTTTGTTGGTCAGGTGGTTCGCAAACCTGCTCAACTCTTCCTTGA TCTTTCGTATATATGTTTGTTGGTCAGGTGGTTCGCAAACCTGCTCAACTCTTCCTTGA TCTTTCGTATATATGTTTGTTGGTCAGGTGGTTCGCAAACCTGCTCAACTCTTCCTTGA ******* TGAGCTAGGCATCGAGTACGATGAAGCAGACAACTATGTAGTAATCAAGCATGCTGCCCT TGAGCTAGGCATCGAGTACGATGAAGCAGACAACTATGTAGTAATCAAGCATGCTGCCCT TGAGCTAGGCATCGAGTACGATGAAGCAGACAACTATGTAGTAATCAAGCATGCTGCCCT

TGAGCTAGGCATCGAGTACGATGAAGCAGACAACTATGTAGTAATCAAGCATGCTGCCCT

TGAGCTAGGCATCGAGTACGATGAAGCAGACAACTATGTAGTAATCAAGCATGCTGCCCT

COL 22 JGI	

AM560-2_Phytozome	GTTCACATCCACAATTATGAGCAAACTCCTAGCCCGCCCCAATGTTAAGCTTTTCAACGC
cv. 60444 JGI	GTTCACATCCACAATTATGAGCAAACTCCTAGCCCGCCCCAATGTTAAGCTTTTCAACGC
$TM_{O} = 2$ TCT	
IME 5_00I	
TMe-7_JGI	GTTCACATCCACAATTATGAGCAAACTCCTAGCCCGCCCCAATGTTAAGCTTTTCAACGC
SC8_JGI	GTTCACATCCACAATTATGAGCAAACTCCTAGCCCGCCCCAATGTTAAGCTTTTCAACGC
22_001	*******
AM560-2 Phytozome	AGTGGCTGCCGAGGACCTGATAGTGAAGAATGGAAGAGTGGGTGG
av 60444 JGT	<u>λ</u> CTCCCTCCCCACCACCATCATACTCAACAACAACAACACCCTCCCCCC
CV. 00444_001	
TMe-3_JGI	AGTGGCTGCCGAGGACCTGATAGTGAAGAATGGAAGAGTGGGTGG
TMe-7_JGI	AGTGGCTGCCGAGGACCTGATAGTGAAGAATGGAAGAGTGGGTGG
SC8 JGT	AGTGGCTGCCGAGGACCTGATAGTGAAGAATGGAAGAGTGGGTGG
001 11_001	*****************
AM560-2 Phytozome	GGCTCTTGTGTCAATGAACCACGACACAGTCTTGCATGGACCCCAATGTAATGGAGGC
CV. 60444_0G1	GGCICIIGIGICAAIGAACCACGACACACAGICIIGCAIGGACCCCCAAIGIAAIGGAGGC
TMe-3_JGI	GGCTCTTGTGTCAATGAACCACGACACACAGTCTTGCATGGACCCCCAATGTAATGGAGGC
TMe-7 JGI	GGCTCTTGTGTCAATGAACCACGACACACAGTCTTGCATGGACCCCCAATGTAATGGAGGC
SC8 JGT	CCCTCTTCTCTCTCTCTCTCTCTCTCTCCTTCCTTCCT
CON 22_0GT	***************************************
AM560-2 Phytozome	CAAAGTAGTCGTAAGCTCTTGTGGCCATGATGGACCCTTTGGTGCCACTGGAGTCAAAAG
CV. 60444_0G1	CAAAGIAGICGIAAGCICIIGIGGCCAIGAIGGACCCIIIGGIGCCACIGGAGICAAAAG
TMe-3_JGI	CAAAGTAGTCGTAAGCTCTTGTGGCCATGATGGACCCTTTGGTGCCACTGGAGTCAAAAG
TMe-7 JGI	CAAAGTAGTCGTAAGCTCTTGTGGCCATGATGGACCCTTTGGTGCCACTGGAGTCAAAAG
SC8 JGT	C λ λ λ C T T C T C T C T C T C C T T C C T T C T
500_001	
COL 22_JGI	

AM560-2_Phytozome	GCTGAAGAGCATTGGCATGATTGAGAATGTCCCAGGGATGAAAGCTCTGGACATGAACAC
cv. 60444_JGI	GCTGAAGAGCATTGGCATGATTGAGAATGTCCCAGGGATGAAAGCTCTGGACATGAACAC
TMP-3 JIGT	GCTGAAGACCATTGCCATGACAATGCCCCCAGGCATGAAAGCTCTGGACATGAACAC
THE 5_001	
IMe-/_JGI	GCTGAAGAGCATTGGCATGATTGAGAATGTCCCAGGGATGAAAGCTCTGGACATGAACAC
SC8_JGI	GCT <mark>A</mark> AAGAGCATTGGCATGATTGAGAATGTCCCAGGGATGAAAGCTCTGGACATGAACAC
COL 22_JGI	GCTGAAGAGCATTGGCATGATTGAGAATGTCCCAGGGATGAAAGCTCTGGACATGAACAC
	*** ***********************************
AM560-2_Phytozome	TGCTGAAGATGCCATTGTTAGGCTTACCAGAGAGATTGTGCCAGGAATGATTGTCACGGG
cv. 60444_JGI	TGCTGAAGATGCCATTGTTAGGCTTACCAGAGAGATTGTGCCAGGAATGATTGTCACGGG
TMe-3 JGI	ТССТСААСАТСССАТТСТТАСССТТАССАСАСАСАТТСТСССАССА
THE 5_001	
IMe-/_JGI	IGCIGAAGAIGCCAIIGIIAGGCIIACCAGAGAGAIIGIGCCAGGAAIGAIIGICACGGG
SC8_JGI	TGCTGAAGATGCCATTGTTAGGCTTACCAGAGAGATTGTGCCAGGAATGATTGTCACGGG
COL 22 JGI	CGCTGAAGATGCCATTGTTAGGCTTACCAGAGAGATTGTGCCAGGAATGATTGTCACTGG
—	***************************************
AM560-2_Phytozome	CATGGAAGTTGCAGAGATTGATGGCGCTCCAAGAATGGTAGACTTCAATTTCCCTCTTTG
cv. 60444 JGI	CATGGAAGTTGCAGAGATTGATGGCGCTCCAAGAATGGTAGACTTCAATTTCCCTCTTTG
TMo 2 TCT	
IME-3_0GI	CAIGGAAGIIGCAGAGAIIGAIGGCGCICCAAGAAIGGIAGACIICAAIIICCCICIIIG
TMe-7_JGI	CATGGAAGTTGCAGAGATTGATGGCGCTCCAAGAATG <mark>GTAGACTTCAATTTCCCTCTTTG</mark>
SC8 JGI	CATGGAAGTTGCAGAGATTGATGGCGCTCCAAGAATGGTAGACTTCAATTTCCCTCTTTG
	ᠿᢧᡎ᠋ᢓ ᠿᢧᡆᢗᢓ᠔ᠿᢧᡎᠧᢙ᠔ᠿ᠔ᡎᡎᢓ᠔ᡎᢗᢓᢕᢓᢕᠧᢕ᠔᠔ᠿ᠔ ᢧᡎᢓ
22_001	***************************************
AM560-2_Phytozome	A
cv. 60444 JGI	ATGATTAAATTGAACAACTCTAGTGTTTGTAACTGATGAATCCATGCGTGTACTCTGTTG
TMA-3 JIGT	ϪͲϤϪͲͲϿϪϪͲͲϤϪϪϤϪϪϤͲϤͲϪϤϤϤͲͲϤϤϤϪϤϤϤϤϤϤϤϤϤ
TMo 7 TOT	
TMG-_OGT	ATGATTAAATTGAACAACTCTAGTGTTTGTAACTGATGAATCCATGCGTGTACTCTGTTG
SC8_JGI	ATGATTAAATTGAACAACTCTAGTGTTTGTAACTGATGAATCCATGCGTGTACTCTGTTG
COL 22_JGI	ATGATTAAATTGAACAACTCTAGTGTTTGTAACTGATGAATCCATGCGTGTACTCTGTTG

AM560-2_Phytozome	
cv. 60444_JGI	CAGGGACCAACATTTGGAGCCATGATGATATCAGGGCAGAAGGCGGCTCATCTTGCCTTG
IME-/_JGT	CAGGGACCAACATTTGGAGCCATGATGATATCAGGGCAGAAGGCGGCTCATCTTGCCTTG
SC8_JGI	CAGGGACCAACATTTGGAGCCATGATGATATCAGGGCAGAAGGCGGCTCATCTTGCCTTG
COL 22 JGI	CAGGGACCAACATTTGGAGCCATGATGATATCAGGGCAGAAGGCGGCTCATCTTGCCTTG
—	***

AM560-2_Phyto: cv. 60444_JGI TMe-3_JGI TMe-7_JGI SC8_JGI COL 22_JGI AM560-2_Phyto:	zome AAGACGCTGGGGCTGCCTAATGCCTTGGATGGAACATACAAGCGAAGCCCAGAATTTGTC AAGACGCTGGGGCTGCCTAATGCCTTGGATGGAACATACAAGCGAAGCCCAGAATTTGTC AAGACGCTGGGGCTGCCTAATGCCTTGGATGGAACATACAAGCGAAGCCCAGAATTTGTC AAGACGCTGGGGCTGCCTAATGCCTTGGATGGAACATACAAGCGAAGCCCAGAATTTGTC AAGACGCTGGGGCTGCCTAATGCCTTGGATGGAACATACAAGCGAAGCCCAGAATTTGTC xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
TMe-3_JGI TMe-7_JGI SC8_JGI COL 22_JGI	CTAGCAGCAGCAGACTCTGCAGAGACTGCAGATGCTTGA CTAGCAGCAGCAGCAGCTCTGCAGAGACTGCAGATGCTTGA CTAGCAGCAGCAGCAGACTCTGCAGAGACTGCAGATGCTTGA CTAGCAGCAGCAGCAGACTCTGCAGAGACTGCAGATGCTTGA CTAGCAGCAGCAGCAGACTCTGCAGAGACTGCAGATGCTTGA
В	
AtTHI1 MeTHI1a MeTHI1b	MAAIASTLSLSSTKPQRLFDS-SFHGSAISAAPISIGLKPRS-FSVRATTAGYD MATMATALTSLSAKPQNHSLFDSSAFYGTPVAAPSVRMQPTKSTTAVSISMSASTPPPYN MATMATALTSLSAKPQKLSLFDSSAFCGTPLAAPSLRMQPTKASSGVSVSMSASTPPPYD **::*::*: *: *:*** **** :* *: ::* :: :
AtTHI1 MeTHI1a MeTHI1b	LNAFTFDPIKESIVSREMTRRYMTDMITYAETDVVVVGAGSAGLSAAYEISKNPNVQVAI LSAFKFHPIKESIVAREMTRRYMTDMVTHADTDVVIVGAGSAGLSCAYELSKNPSVKVAI LSAFKFNPIKESIVAREMTRRYMTDMVTHADTDVVIVGAGSAGLSCAYELSKNPSVKVAI *.**.*.******************************
AtTHI1 MeTHI1a MeTHI1b	IEQSVSPGGGAWLGGQLFSAMIVRKPAHLFLDEIGVAYDEQDTYVVVKHAALFTSTIMSK VEQSVSPGGGAWLGGQLFSAMVVRKPAHLFLDELGIDYDEADNYVVIKHAALFTSTIMSK VEQSVSPGGGAWLGGQLFSAMVVRKPAQLFLDELGIEYDEADNYVVIKHAALFTSTIMSK :*************************
AtTHI1 MeTHI1a MeTHI1b	LLARPNVKLFNAVAAEDLIVKGNRVGGVVTNWALVAQNHHTQSCMDPNVMEAKIVVSSCG LLARPNVKLFNAVAAEDLIVKNGRVGGVVTNWALVSMNHDTQSCMDPNVMEAKVVVSSCG LLARPNVKLFNAVAAEDLIVKNGRVGGVVTNWALVSMNHDTQSCMDPNVMEAKVVVSSCG ***********************************
AtTHI1 MeTHI1a MeTHI1b	HDGPFGATGVKRLKSIGMIDHVPGMKALDMNTAEDAIVRLTREVVPGMIVTGMEVAEIDG HDGPFGATGVKRLKSIGMIENVPGMKALDMNTAEDAIVRLTREIVPGMIVTGMEVAEIDG HDGPFGATGVKRLKSIGMIENVPGMKALDMNTAEDAIVRLTREIVPGMIVTGMEVAEIDG **********************
AtTHI1 MeTHI1a MeTHI1b	APRMGPTFGAMMISGQKAGQLALKALGLPNAIDGTLVGNLSPELVLAAADSAETVDA APRMGPTFGAMMISGQKAAHLALKTLGLPNALEGTFTLRPEFVIAAADSAETAEA APRMGPTFGAMMISGQKAAHLALKTLGLPNALDGTYKRSPEFVLAAADSAETADA *******************

Supplementary Fig. S4. Determination of the *MeTH11b* full coding sequence and alignment of AtTH11, MeTH11a, MeTH11b protein sequences.

(A) Determination of the MeTHI1b full coding sequence. In the Manihot esculenta v6.1 genome available in Phytozome (Prochnik et al., 2012), the MeTHI1b coding sequence appears incomplete. To determine the unknown sequence, JGI Illumina sequencing data from gDNA for cassava accessions cv. 60444, TMe-3, TMe-7, SC8 and COL 22 (Bredeson et al., 2016) was assembled into contigs (JGI, personal communication). Consensus sequences were extracted and the MeTHI1b truncated coding sequence was used for BLAST searches to identify MeTHI1b sequences in each variety. Complete hits with additional 5' and 3' nucleotides were obtained for all varieties, except COL 22 where the internal 449 bp was not contained within assembled contigs. Splice sites were predicted, using the NetPlantGene server (Hebsgaard et al., 1996). An intron was predicted at the 3' end of the truncated *MeTH11b* gene available in Phytozome, which was not predicted in the annotation. Predicted introns are highlighted in gray. Stars indicate sequence homology between all available sequences. Sequence differences between cultivars are in vermilion. (B) Alignment of AtTHI1 (encoded by At5g54770), MeTHI1a (encoded by Manes.15G075600, 78% identity with AtTHI1) and MeTHI1b (encoded by Manes.03G123800, 79% identity with AtTHI1) protein sequences. In gray are highlighted the invariant residues previously hypothesized to play an essential role in the enzymatic activity of THI1 (Godoi et al., 2006). The AtTHI1 protein sequence is from the TAIR10 database (Lamesch et al., 2012), the MeTHI1a protein sequence is from Phytozome (Prochnik et al., 2012) and the MeTHI1b predicted protein sequence were used for the alignment. The translation of the MeTHI1b coding sequence predicted from the JGI data (A) resulted in a full length protein of high sequence similarity to AtTHI1 (B).

MeTHIC1 (form Ia) – 1308 bp [F_{THIC1} – R_{THIC1}]

MeTHIC1 (form lb) - 815 bp [FTHIC1 - RTHIC1]

MeTHIC1 (form III) – 652 bp [F_{THIC1} – R_{THIC1}]

MeTHIC1 (form III) – 517 bp [F_{THIC1}–3'-RACE nested]

MeTHIC1 (form II) – 275 bp [F_{THIC1} – 3'-RACE nested]

MeTHIC1 (form II) - 250 bp [FTHIC1 - 3'-RACE nested]

В

MeTHIC2 (form Ia) – 1081 bp [F_{THIC2} – R_{THIC2}]

MeTHIC2 (form lb) - 717 bp [FTHIC2 - RTHIC2]

MeTHIC2 (form III) - 526 bp [F_{THIC2} - R_{THIC2}]

MeTHIC2 (form III) - 534 bp [F_{THIC2} - 3'-RACE nested]

MeTHIC2 (form III) – 553 bp [F_{THIC2} – 3'-RACE nested]

<u>GCCAGCAAGTTATATTAAATCCTCTAAG</u>AGGAGCATG<mark>TGA</mark>GGGGGAAGATTTGGTTAAGTCATCATTGGAACTGTGATGCATGTCTGAG TTGTGAGGATGATGGATATGCTGATTTGCTTTCCAGATGCAG<mark>GGGTGCCTGTATCTGCTTTAATACTGGCCATTTTGGCCAGAGGATAGA</mark> GCTGGTCAGGCTGAGAAAGTCCCTTTGAACCTGAACAGGATAATGCCTGCGTAGGGAGTGTGC ACAGGGAGGCAGCTTCCTATGGCTCGGGCTAGCTGATCCATATGTGCAGAATCNATCGCCATTGAGCCCAGGATTATCACTTGAGCCGC TGCAACGTCATCATGGCTGGCAGTTTATGCAATTCTTCAACCAATATTTTAAATAGTAAAGAGAAAATTTGANNAGGCTTGCTTGATCAG CCATTTATTGGATTTTGGTCAATNNATGGTACGAANNNNAAAANAANNAAAATTTCGTATATCCGATNTANNNAGTGANNCNNNNNN NNNNN<u>AAAAAAAAAAAA</u>

MeTHIC2 (form II) – 281 bp [F_{THIC2} – 3'-RACE nested]

<u>GCCAGCAAGTTATATTAAATCCTCTAAG</u>AGGAGCATGTGAGGGGGAAGATTTGGTTAAGTCATCATTGGAACTGTGATGCATGTCTGAG TTGTGAGGATGATGGATATGCTGATTTGCTTTCCAGATGCAGGTAAGTTGATGATGATGATGATGGAGCCTGGAGACATTATCTTAGTT TGATTCATGTTTGCTGCATTAATAAGAAGCGATAATACAGTTGCTACATTCTCTTTATGTTCAAGTTATTTCTCTCNNNNNNTTT<u>AAAAA</u> <u>AAAAAAAAAAAAAA</u>

Supplementary Fig. S5. Sequenced *MeTHIC1* and *MeTHIC2* 3'-UTR splice variants in the cassava accession cv. 60444.

Sequences of the *MeTHIC1* (A) and *MeTHIC2* (B) 3'-UTR splice variants amplified from different cDNA templates and using the primers indicated in brackets. Primer sequences or polyA are underlined. The stop codon is indicated by TGA. The intron sequenced in splice form Ia is represented in bold gray. The full-length aptamer is highlighted in yellow and the truncated aptamer present in form III is highlighted in blue. If and AG represent the splice sites to generate form III. (C) Alignment of Arabidopsis and cassava *THIC* 3'-UTR aptamer structures. The asterisks indicate the nucleotides conserved between *AtTHIC*, *MeTHIC1* and *MeTHIC2*. The nucleotides forming the five stems (P1 to P5) are highlighted in color.

A. MeTHIC1 (Manes.02G121700)

> Transcript sequence including intron 4

ATGGCGTCTGTGCAAGCTACTAGTTTTGCCTCATCTGTGTGCAAAAATGGCACCCAGAAGTTTCCGAGCAGCTCCTTCTTGCCGGGTTTTGATGTCGTG 3GCCGTGGATTTATTAAGAAGGAAACTTTACCTCGCTCTTTGATCTCATCTATTCCCAGAGCCACCTTAACCTTTGATCCTCCAACTACCAATTCAGATAAA ITAAACAGAGGAAGCATACTCTTGATCCTTCTTCTCCTGATTTTCTTCCTCTTCCCTCTTTCGAACAGTGTTTTCCAAGGAGTACAAAAGAATACAG TGTTCATGAACAGACTGGCCATGTTCTCAAGGTTCCTTTCAGGCGGGTCCACTTGTCTGGGGGATGAACCCTGTTTCGATAATTATGATACCAGTGGTCCTCA AAACATTAGTCCCCGAACAG<mark>GACTTCCTAAACTGCGTAAAGACTGGGTTGATAGGCGGGAGAAGCTAGGCACACCAAGATACACTCAGATGTACTATGC</mark> MAGCAAGGAATAATAACTGAGGAAATGCTGTATTGTGCTGTTCGAGAGAAACTTGACCCAGAGTTTGTGAGGTCAGAGGTTGCTCGTGGACGGGCAATAA ICCCTTCCAACAAGAAGCACCTAGAATTACAGCCAATGATAGTTGGAAGAAATTTTTTGGTCAAAGTCAATGCTAATATTGGAAATTCTGCTGTTGCAAGC TATTGAGGAAGAAGTTTATAAGGTTCAATGGGCAACCATGTGGGGTGCTGACACTGTCATGGACCTTTCAACAGGTCGCCACATTCACGAGACCCGTGAA GGATATTACGAAACTCTGCTGTGCCAGTTGGAACTGTGCCCATCTATCAAGCACTTGAGAAAGTTAATGGAATCGCTGAAAATCTGAGCT AGAGAGACATTGATTGAACAAGCCGAGCAAGGAGTAGATTATTTCACTATCCATGCTGGGGTTCTTCTGCGATACATTCCTTTAACTGCAAAACGAATGA AGGAATTGTTTCTCGTGGAGGGTCAATTCATGCCAAGTGGTGCTTGGCTTATCACAAGGAAAATTTTGCTTATGAACACTGGGATGACATACTTGACATC STAATCAATATGATGTGGCCCTTTCAATTGGTGATGGGCTGAGACCTGGGTCCATATATGATGCAAATGACACTGCACAATTTGCAGAGCTCTTGACTCA CAGCTAGAGTGGTGCAATGAAGCACCTTTCTACACTCTTGGACCCCTGACAACTGATATTGCTCCCGGATACGATCACATTACCTCTGCCATTGGTGCTGCC AACATCGGGGGCTCTAGGCACTGCACTCTGTTATGTCACACCAAAGGAGCATCTTGGGTTACCAAATAGGGATGATGTGAAGGCTGGAGTTATAGCATA ACCAATTTGCTTTATCCTTGGACCCGATGACAGCAATGTCCTTCCATGACGAAACCCTGCCATCAGAAGGTGCAAAAGTAGCACATTTTTGCTCTATGTGTG GTCCAAAGTTCTGCTCCATGAAGATAACAGAGGATGTGAGGAAGTACGCAGAGGAGCATGGTTATGGTAGCGCAGAGGAAGCTGTACAACATGGGATGG ATGCTATGAGTGCTGAATTCCTGGCTGCTAAGAAAACTGTTAGCGGAGAACAACATGGTGAAGTTGGTGGAGAAATCTACCTGCCGGAAAGTTACATTAG ATCTTCTGAAAGGTGAGGATCAAGTTCACTTAAACCTATAAAGGACTTGTACTAATGGTGGAAAGTTTTAGAATTGCAATCTGTGGATACGATCTGTAGTG GAATATAATTTTCTCAGGCGGTTGCTGGCAAGGAATGTTGTCATATGGGAACGTTGTTATCATATGATCACAGTGCACTCCTATGTCTCTAAAAGATTGTCA ACGCAGAAAAACTGTAGAGTCTTAACTTATTTGAAAATTTTGAATTATTGATGTTAGTCTTTGTTATGCTAATGCTTGACCACCAAGTACCCTTATTGGATTGT GGTTCGCTTACTGCCTGATATCATATTTATTTTTAACCAGATGGACTGTCATCGCTAAAAACTTGTAATGAAACGTCTTATTGAAATTTTCTTGCAG<mark>GAGCATA</mark>

> Translation from MeTHIC1 transcript sequence excluding intron 4

Met AS VQATSFASSVCK NGTQKFPSSSFLPGFDVVAGRGFIKKETLPRSLISSIPRATLTFDPPTTNSDKIKQRKHTL DPSSPDFLPLPSFEQCFPRSTKEYREVVHEQTGHVLKVPFRRVHLSGDEPCFDNYDTSGPQNISPRTGLPKLRKD WVDRREKLGTPRYTQ Met YYAKQGIITEE Met LYCAVREKLDPEFVRSEVARGRAIIPSNKKHLELQP Met IVGRNF LVKVNANIGNSAVASSIEEEVYKVQWAT Met WGADTV Met DLSTGRHIHETRE WILRNSAVPVGTVPIYQALEKV NGIAENLSWEVFRETLIEQAEQGVDYFTIHAGVLLRYIPLTAKR Met TGIVSRGGSIHAKWCLAYHKENFAYEHWD DILDICNQYDVALSIGDGLRPGSIYDANDTAQFAELLTQGELTRRAWEKDVQV Met NEGPGHIP Met HKIPEN Met QKQLEWCNEAPFYTLGPLTTDIAPGYDHITSAIGAANIGALGTALLCYVTPKEHLGLPNRDDVKAGVIAYKISAHA ADLAKGHPHAQAWDDALSKARFEFRW MET DQFALSLDP MET TA MET SFHDETLPSEGAKVAHFCS MET CGPKFCS Met KITEDVRKYAEEHGYGSAEEAVQHG MET DA MET SAEFLAAKKTVSGEQHGEVGGEIYLPESYIRSSERS I Stop

> Translation from MeTHIC1 transcript sequence including intron 4

Met AS VQATSFASSVCKNGTQKFPSSSFLPGFDVVAGRGFIKKETLPRSLISSIPRATLTFDPPTTNSDKIKQRKHTL DPSSPDFLPLPSFEQCFPRSTKEYREVVHEQTGHVLKVPFRRVHLSGDEPCFDNYDTSGPQNISPRTGLPKLRKD WVDRREKLGTPRYTQMet YYAKQGIITEE Met LYCAVREKLDPEFVRSEVARGRAIIPSNKKHLELQPMet IVGRNF LVKVNANIGNSAVASSIEEEVYKVQWAT Met WGADTVMet DLSTGRHIHETRE WILRNSAVPVGTVPIYQALEKV NGIAENLSWEVFRETLIEQAEQGVDYFTIHAGVLLRYIPLTAKRMet TGIVSRGGSIHAKWCLAYHKENFAYEHWD DILDICNQYDVALSIGDGLRPGSIYDANDTAQFAELLTQGELTRRAWEKDVQVMet NEGPGHIPMet HKIPENMet QKQLEWCNEAPFYTLGPLTTDIAPGYDHITSAIGAANIGALGTALLCYVTPKEHLGLPNRDDVKAGVIAYKISAHA ADLAKGHPHAQAWDDALSKARFEFRWMet DQFALSLDPMet TAMet SFHDETLPSEGAKVAHFCSMet CGPKFCS Met KITE DVRKYAEEHGYGSAEEAVQHGMet DAMet SAEFLAAKKTVSGEQHGEVGGEIYLPESYIRSSER Stop GSS SLKPIKDLY Stop WWKVLELQSVDTICSGST Stop YIISNCNS Stop Met PNLPLQHLSSKI Stop CNTDQPEGI Stop FSQA VAGKECCH Met GTLLSYDHSALLCL Stop KIVNAENCRVLTYFENFELL Met LVFVMet LMETLDHQVPLLDCGSLTA

B. MeTHIC2 (Manes.01G164200)

> Transcript sequence including intron 4

> Translation from MeTHIC2 transcript sequence excluding intron 4

Met AS VQATSLSSAVCK NGSH KFPSGSFLPGFDGVLGRGSLK KEIWPRSLATSVPRATLTFDPPTT NSDKAKQRKH TVDPSSPDFLPLPSFEQCFPRST KEYREIVHEESGHVLK VPFRRVHLSGDEPSFDNYDT SGPQNISPRIGIPKLRKD WVDRREKLGAPRYSQ Met YYAKQGIITEE Met LYCAAREKLDPEFVRSE VARGRAIIPSNKKHLELEP Met IVGRNFL KVNANIGNSAVASSIEEEVYK VQWAT Met WGADT V Met DLST GRHIHET REWILRNSAVP VGT VPI YQALEK VN GIAENLSWE VFRDTLIEQAEQGVDYFTIHAGVLLRYIPLTAKR Met TGIVSRGGSIHAK WCLAYHKENFAYEH WDD ILDICNQYD VALSIGDGLRPGSIYDAND TAQFAELLT QGELT RRAWEKD VQV Met NEGPGHIP Met HKIPEN Met Q KQLEWCNEAPFYTLGPLTTDIAPGYDHITSAIGAANIGALGTALLCYVTPKEHLGLPNRDD VKAGVIAYKISAHAA DLAKGHPHAQAWDDALSKARFEFRW Met DQFALSLDP Met TAMET SFHDETLPSEGAK VAHFCS MET CGPKFCS Met KITED VRKYAEEHGYGSAEEAVQHG MET DA MET SAEFLAAKKTVSGEQHGEVGGEIYLPASYIKSSKRS Met Stop

> Translation from MeTHIC2 transcript sequence including intron 4

Met AS VQATSLSSAVCKNGSHKFPSGSFLPGFDGVLGRGSLKKEIWPRSLATSVPRATLTFDPPTTNSDKAKQRKH TVDPSSPDFLPLPSFEQCFPRSTKEYREIVHEESGHVLKVPFRRVHLSGDEPSFDNYDTSGPQNISPRIGIPKLRKD WVDRREKLGAPRYSQ Met YYAKQGIITEE Met LYCAAREKLDPEFVRSEVARGRAIIPSNKKHLELEP Met IVGRNFL VKVNANIGNSAVASSIEEEVYKVQWAT Met WGADTV Met DLSTGRHIHETREWILRNSAVPVGTVPIYQALEKVN GIAENLSWEVFRDTLIEQAEQGVDYFTIHAGVLLRYIPLTAKR Met TGIVSRGGSIHAKWCLAYHKENFAYEHWDD ILDICNQYDVALSIGDGLRPGSIYDANDTAQFAELLTQGELTRRAWEKDVQV Met NEGPGHIP Met HKIPEN Met Q KQLEWCNEAPFYTLGPLTTDIAPGYDHITSAIGAANIGALGTALLCYVTPKEHLGLPNRDDVKAGVIAYKISAHAA DLAKGHPHAQAWDDALSKARFEFRW Met DQFALSLDP Met TAMEt SFHDETLPSEGAKVAHFCS Met CGPKFCS Met KITEDVRKYAEEHGYGSAEEAVQHG MET DA Met SAEFLAAKKTVSGEQHGEVGGEIYLPASYIKSSKR Stop SNKPKKVFYFGGKSRIALSK Stop YINHLQLQVHCLLNHFTI Stop LARLSKGSCSLLS Stop SLQAKLI MET ED CLI LVS V Met LLFEP

Supplementary Fig. S6. Translation of *MeTHIC1* and *MeTHIC2* transcript forms Ia (including intron 4) and Ib (excluding intron 4).

In the *MeTHIC1* (A) and *MeTHIC2* (B) transcript sequences, the five exons are highlighted in blue. Intron 4 is not highlighted. The corresponding protein sequences were obtained by translation of the transcripts excluding or including intron 4 using the ExPASy translate tool (Artimo *et al.*, 2012). In MeTHIC1 (A) and MeTHIC2 (B) protein sequences obtained from the transcripts, the open reading frames are highlighted in blue-green. For each *MeTHIC* homolog, the underlined amino acids correspond to sequence similarity between the two transcripts. The premature stop codon appearing in the transcript forms including intron 4 is highlighted in orange.

Α

AtTHIC (At2g29630), 5'-UTR and 1000 bp upstream of the 5'-UTR

В

MeTHIC1 (Manes.02G121700), 5'-UTR and 1000 bp upstream of the 5'-UTR

С

MeTHIC2 (Manes.01G164200), 5'-UTR and 1000 bp upstream of the 5'-UTR

Supplementary Fig. S7. Analysis for a CCA1 binding motif upstream of the 5'-UTR of Arabidopsis and cassava *THIC* genes.

The CCA1 binding motif (AAAATATCT) has been reported to be located 128 bp upstream of the 5'-UTR of *AtTHIC* (Bocobza *et al.*, 2013) (A), and could not be detected in the 5'-UTR of either *MeTHIC1* (B) or *MeTHIC2* (C). The 5'-UTR sequence is highlighted in blue-green, the start codon (ATG) is highlighted in blue and the CCA1 binding motif is underlined in vermilion. Sequences predicted in Phytozome, *Arabidopsis thaliana* TAIR10 (Lamesch *et al.*, 2012) and *Manihot esculenta* v6.1 (Prochnik et al., 2012) genomes.

Number Number of THIC of THI1 homologs homologs

Supplementary Fig. S8. Number of THIC and THI1 homologs in the genomes available in the Phytozome database.

Phylogenetic tree representation of the species available in the Phytozome database (Goodstein *et al.*, 2012). In vermilion and blue-green are the number of *THIC* and *THI1* homologs annotated in Phytozome for different plant species, showing a duplication of one or both vitamin B₁ biosynthesis *de novo* genes. Plant species with multiple *THIC* and/or *THI1* homologs are grouped in three main clades (Fabidae, Malpighiales and Panicoideae), which are highlighted in blue boxes.

AtTHIC MeTHIC1 MeTHIC2	MAASVHCTLMSVVCNNKNHSARPKLPNSSLLPGFDVVVQAAATRFKKETTTTRAT MASVQATSFASSVCKNGTQKFPSSSFLPGFDVVAGRGFIKKETLPRSLISSIPRAT MASVQATSLSSAVCKNGSHKFPSGSFLPGFDGVLGRGSLKKEIWPRSLATSVPRAT **: :: * **:* :: :: * **:* :: :: ***
AtTHIC MeTHIC1 MeTHIC2	LTFDPPTTNSERAKQRKHTIDPSSPDFQPIPSFEECFPKSTKEHKEVVHEESGHVLKVPF LTFDPPTTNSDKIKQRKHTLDPSSPDFLPLPSFEQCFPRSTKEYREVVHEQTGHVLKVPF LTFDPPTTNSDKAKQRKHTVDPSSPDFLPLPSFEQCFPRSTKEYREIVHEESGHVLKVPF **********:: *************************
AtTHIC MeTHIC1 MeTHIC2	RRVHLSGGEPAFDNYDTSGPQNVNAHIGLAKLRKEWIDRREKLGTPRYTQMYYAKQGIIT RRVHLSGDEPCFDNYDTSGPQNISPRTGLPKLRKDWVDRREKLGTPRYTQMYYAKQGIIT RRVHLSGDEPSFDNYDTSGPQNISPRIGIPKLRKDWVDRREKLGAPRYSQMYYAKQGIIT ****** **.*********:.: *: *************
AtTHIC MeTHIC1 MeTHIC2	EEMLYCATREKLDPEFVRSEVARGRAIIPSNKKHLELEPMIVGRKFLVKVNANIGNSAVA EEMLYCAVREKLDPEFVRSEVARGRAIIPSNKKHLELQPMIVGRNFLVKVNANIGNSAVA EEMLYCAAREKLDPEFVRSEVARGRAIIPSNKKHLELEPMIVGRNFLVKVNAN *******
AtTHIC MeTHIC1 MeTHIC2	SSIEEEVYKVQWATMWGADTIMDLSTGRHIHETREWILRNSAVPVGTVPIYQALEKVDGI SSIEEEVYKVQWATMWGADTVMDLSTGRHIHETREWILRNSAVPVGTVPIYQALEKVNGI SSIEEEVYKVQWATMWGADTVMDLSTGRHIHETREWILRNSAVPVGTVPIYQALEKVNGI
AtTHIC MeTHIC1 MeTHIC2	AENLNWEVFRETLIEQAEQGVDYFTI <mark>H</mark> AGVLLRYIPLTAKRLTGIV <mark>SRG</mark> GSIHAKWCLAY AENLSWEVFRETLIEQAEQGVDYFTIHAGVLLRYIPLTAKRMTGIV <mark>SRG</mark> GSIHAKWCLAY AENLSWEVFRDTLIEQAEQGVDYFTI <mark>H</mark> AGVLLRYIPLTAKRMTGIV <mark>SRG</mark> GSIHAKWCLAY ****.****:*****
AtTHIC MeTHIC1 MeTHIC2	HKENFAYEHWDDILDICNQYDVALSIG <mark>D</mark> GL <mark>R</mark> PGSIYDANDTAQFAELLTQGELTRRAWEK HKENFAYEHWDDILDICNQYDVALSIGDGLRPGSIYDANDTAQFAELLTQGELTRRAWEK HKENFAYEHWDDILDICNQYDVALSIGDGLRPGSIYDANDTAQFAELLTQGELTRRAWEK ******
AtTHIC MeTHIC1 MeTHIC2	DVQVMN <mark>EG</mark> PGHVPMHKIPENMQKQLEWCNEAPF <mark>Y</mark> TLGPLTTDIAPGYDHITSAIGAANIG DVQVMN <mark>EG</mark> PGHIPMHKIPENMQKQLEWCNEAPF <mark>Y</mark> TLGPLTTDIAPGYDHITSAIGAANIG DVQVMN <mark>EG</mark> PGHIPMHKIPENMQKQLEWCNEAPF <mark>Y</mark> TLGPLTTDIAPGYDHITSAIGAANIG ******
AtTHIC MeTHIC1 MeTHIC2	ALGTALLCYVTPKEHLGLPNRDDVKAGVIAYKIAAHAADLAKQHPHAQAWDDALSKARFE ALGTALLCYVTPKEHLGLPNRDDVKAGVIAYKISAHAADLAKGHPHAQAWDDALSKARFE ALGTALLCYVTPKEHLGLPNRDDVKAGVIAYKISAHAADLAKGHPHAQAWDDALSKARFE *******
AtTHIC MeTHIC1 MeTHIC2	FRWMDQFALSLDPMTAMSFHDETLPADGAKVAHFCSMCGPKFCSMKITEDIRKYAEENGY FRWMDQFALSLDPMTAMSFHDETLPSEGAKVAHFCSMCGPKFCSMKITEDVRKYAEEHGY FRWMDQFALSLDPMTAMSFHDETLPSEGAKVAHFCSMCGPKFCSMKITEDVRKYAEEHGY ************************************
AtTHIC MeTHIC1 MeTHIC2	GSAEEAIRQGMDAMSEEFNIAKKTISGEQHGEVGGEIYLPESYVKAAQK* GSAEEAVQHGMDAMSAEFLAAKKTVSGEQHGEVGGEIYLPESYIRSSERSI* GSAEEAVQHGMDAMSAEFLAAKKTVSGEQHGEVGGEIYLPASYIKSSKRSM* ******:::****** ** *****

Supplementary Fig. S9. Alignment of THIC protein sequences from Arabidopsis and cassava

Alignment of AtTHIC (encoded by At2g29630), MeTHIC1 (encoded by Manes.02G121700, 87% identity with AtTHI1) and MeTHIC2 (encoded by Manes.01G164200, 87% identity with AtTHI1) protein sequences. The residues involved in the main binding sites are conserved in MeTHIC1 and MeTHIC2. The residues responsible for the iron sulfur cluster (consensus amino acid motif CX_2CX_4C , where X represents any amino acid) are highlighted in purple; the residues responsible for the AIR substrate binding site are highlighted in yellow; the conserved histidine residues responsible for the iron binding site are highlighted in blue. The sequence in blue box corresponds to the central domain of the protein (residues 224 - 519) containing the (β/α)₈ TIM barrel, where the active site is located. The differences in amino acid sequence between MeTHIC1 and MeTHIC2 in the central domain are depicted in vermilion.

Supplementary Table S1. Description of the 41 cassava accessions selected for quantification of vitamin B1 content.

	Accession number	Synonyms	Common name	Species	Biological status	Origin
	TMe-3	-	2nd Agric	Manihot esculenta	Traditional accession/Landrace	Nigeria
	TMe-7	Tme-3349, TMe-3350, TMe-3321, TMe-3352, TMe-3440	Oko-iyawo	M. esculenta	Traditional accession/Landrace	Nigeria
	TMe-14	-	Abbey-ife	M. esculenta	Traditional accession/Landrace	Nigeria
	TMS 30001	-	MNga-1	M. esculenta	Improved-Line (lost pedigree)	Nigeria
	TMS 30555	-	-	M. esculenta	Improved-Line (58308 x Oyarugba Dudu)	Nigeria
g	TMS 30572	-	-	M. esculenta	Improved-Line (58308 x Branca de Santa Caterina)	Nigeria
fri	cv. 60444	TMS 60444	-	M. esculenta	Benchmark model accession	Nigeria
٩	Ebwanateraka	-	-	M. esculenta	Traditional accession/Landrace	Uganda
	Kibandameno WT64	-	-	M. esculenta	Traditional accession/Landrace	Kenya
	Kibaha	-	-	M. esculenta	Improved variety	Tanzania
	KBH 2006/18	-	-	M. esculenta	Elite breeding lines from the IITA	Tanzania
	КВН 2006/26	-	-	M. esculenta	Elite breeding lines from the IITA	Tanzania
	Т 200	-	-	M. esculenta	Traditional accession/Landrace	South Africa
	KU50	-	Kasetsart 50	M. esculenta	Improved-Line	Thailand
	SC8	-	-	M. esculenta	Traditional accession/Landrace	China
	SC124	-	-	M. esculenta	Traditional accession/Landrace	China
	TAI 8	-	Cmr 246343(Rayong 60)	M. esculenta	Improved-Line	Thailand
Asia	TAI 3	-	Rayong 3	M. esculenta	Improved-Line	Thailand
4	H226	-	-	M. esculenta	Improved commercial hybrid	India
	KM140	-	-	M. esculenta	Improved line (KM98-1 x KM 36)	Vietnam
	KM397	-	-	M. esculenta	Improved line (SM937-26 SM937-26 x) x (x BKA900 BKA900)	Vietnam
	11SA12	-	-	M. esculenta	-	Vietnam

Supplementary Table S1 (continued)

	Accession number	Synonyms	Common name	Species	Biological status	Origin
	ECU 72	072	Injerta	M. esculenta	Traditional accession/Landrace	Ecuador
	COL 22	COR-313	Uvita	M. esculenta	Traditional accession/Landrace	Colombia
	PER 183	-	Eeat 1	M. esculenta	Traditional accession/Landrace	Peru
	COL 1505	BRA-001007, CMC 76	Ucv 2096	M. esculenta	Traditional accession/Landrace	Venezuela
	CM 2177-2	-	Cebucan	M. esculenta	Improved-Line (CM 430-37 x CM 840-138)	Colombia
ica	MEX 95	-	-	M. esculenta	Traditional accession/Landrace	Mexico
Jer	BRA 132	BGM 0186, BRA-006670	Mendubi	M. esculenta	Traditional accession/Landrace	Brazil
An	ARG 13	-	B1-15-3-73	M. esculenta	Traditional accession/Landrace	Argentina
ral	GUA 79	884	Yuca Colorada	M. esculenta	Traditional accession/Landrace	Guatemala
ent	CM 523-7	-	Catumare	M. esculenta	Improved-Line (COL 655A x COL 1515)	Colombia
d C	SG 107-35	-	-	M. esculenta	Improved-Line (VAR 5)	Colombia
an	PSE XXX-1	-	-	M. pseudoglaziovii	Wild	Brazil
uth	TST XXX-18	-	-	M. tristis	Wild	Brazil
Sol	VEN 25	UCV 2076, 025	Querepa Amarga	M. esculenta	Traditional accession/Landrace	Venezuela
	BRA 685	BRA-068471	Amarelinha	M. esculenta	Traditional accession/Landrace	Brazil
	CM 6438-14	-	-	M. esculenta	Improved-Line (CM 1335-4 x CM 2298-3)	Colombia
	BRA 293	BGM 0549, BRA-012611	Amansa Burro	M. esculenta	Traditional accession/Landrace	Brazil
	BRA 325	BGM 1165, BRA-002291	Tapioqueira	M. esculenta	Traditional accession/Landrace	Brazil
	BRA 222	BGM 0374, BRA-002356	Verdinha	M. esculenta	Traditional accession/Landrace	Brazil

Target	Gene reference	Primer name	Primer sequence (5' - 3')
gene			
MeTHIC1	Manes.02G121700	F _{THIC1}	CCGGAAAGTTACATTAGATCTTCTGAA
		R _{THIC1}	GCAAGCAATTAAAAGGATTAAC
MeTHIC2	Manes.01G164200	F _{THIC2}	GCCAGCAAGTTATATTAAATCCTCTAAG
		R _{THIC2}	CACTTGTTATATCGGATATACG
-	-	3'-RACE primer	GCTGTCAACGATACGCTACGTAACG
-	-	3'-RACE nested	CGCTACGTAACGGCATGACAGTG

Supplementary Table S2. Primers used for PCR amplification of *MeTHIC1* and *MeTHIC2* 3'-UTR splice variants.

Supplementary Table S3. Primers used for RT-qPCR analysis.

It should be noted that primer pairs MeTHIC1-F/MeTHIC1-R and MeTHIC2-F/MeTHIC2-R can amplify *THIC* transcripts Ib, II and III but not Ia.

Target	Gene reference	Primer name	Primer sequence (5' - 3')
gene			
MePP2A	Manes.09G039900	PP2A-F	TGCAAGGCTCACACTTTCATC
		PP2A-R	CTGAGCGTAAAGCAGGGAAG
MeUBQ10	Manes.07G019300	UBQ10_F	TGCATCTCGTTCTCCGATTG
		UBQ10-R	GCGAAGATCAGTCGTTGTTGG
MevATPs	Manes.08G064200	vATPs_F	GTTGAATGGCTTTGTGCTCAG
		vATPs_R	CCATCTGCGTGAACAAAAGAA
MeTHIC1	Manes.02G121700	MeTHIC1_F	ATGAGTGCTGAGTTCCTGGCTG
		MeTHIC1-R	GCTTTTTTGACCAAATCCCTGG
MeTHIC2	Manes.01G164200	MeTHIC2-F	GTTAGTGGAGAACAACATGGTGAAG
		MeTHIC2-R	CATATCCATCATCCTCACAACTCAGA
MeTHI1a	Manes.15G075600	MeTHI1a-F	CATGGAGGTTGCGGAGATTG
		MeTHI1a-R	AAACTCTGGGCGAAGGGTAA
MeTHI1b	Manes.03G123800	MeTHI1b-F	CATGGAAGTTGCAGAGATTG
		MeTHI1b-R	CAAATTCTGGGCTTCGCTTGT

Supplementary Table S4. Phenotypic characterization of greenhouse grown cassava accessions.

(A) Evaluation of plant height, above-ground (leaves and stem) fresh weight and storage root fresh weight in 41 cassava accessions. Average \pm S.D. of 3 biological replicates (except for TMS 30572 (n=2) for aboveground phenotype and for TMS 30572 (n=2), MEX 95 (n=2) and PSE XXX-1 (n=2) for under-ground phenotype). Tukey's multiple comparison test (p < 0.05). (B) Repeated independent evaluation of plant height, above-ground fresh weight, number of leaves, leaf retention (leaves retained at harvest time/total number of leaves), under-ground fresh weight and number of storage roots in 18 selected accessions. Average \pm S.D. of 4 biological replicates (except for CM2177-2 (n=1) and TST XXX-18 (n=3) for above-ground phenotype and CM2177-2 (n=1), TST XXX-18 (n=1) and MEX95 (n=3) for underground phenotype). Tukey's multiple comparison test (p < 0.05).

	A. Preliminary phenotypic characterization		B. Repeated independent phenotypic characterization						
	O	f 41 cassava accessio	ns	of 18 selected cassava accessions					
Accessions	Plant height (cm)	Above-ground	Under-ground	Plant height	Above-ground	Number of	Leaf retention	Under-ground	Number of
		FW (g)	FW (g)	(cm)	FW (g)	leaves	(%)	FW (g)	storage roots
TMe-3	113.3 [±18.7] ^{abcdef}	51.0 [±9.5] ^{abcdef}	47.2 [±16.2] ^{abc}	90.6 [±20.6] ^{abcd}	55.7 [±12.6] ^{bcd}	20.3 [±2.2] ^{abc}	84.3 [±7.3] ^{abcd}	26.7 [±5.1] ^{ab}	3.0 [±1.6] ^a
TMe-7	102.0 [±13.2] ^{abcdef}	64.5 [±4.7] ^{bcdefghi}	39.7 [±14.1] ^{abc}	112.0 [±23.1] ^{cde}	79.9 [±10.0] ^{cdef}	24.3 [±1.0] ^{cde}	98.0 [±2.3] ^e	38.4 [±3.3] ^{abc}	4.8 [±0.5] ^{abc}
TMe-14	122.0 [±26.2] ^{bcdef}	90.0 [±19.4] ^{hij}	35.0 [±16.4] ^{abc}						
TMS 30001	84.3 [±11.8] ^{abcde}	45.7 [±4.7] ^{abcd}	35.8 [±11.7] ^{abc}						
TMS 30555	112.3 [±18.6] ^{abcdef}	73.6 [±13.6] ^{bcdefghij}	37.3 [±23.1] ^{abc}						
TMS 30572	97.0 [±12.7] ^{abcdef}	43.3 [±7.2] ^{abcd}	53.4 [±6.4] ^{abc}	90.0 [±22.6] ^{abcd}	61.3 [±17.6] ^{bcde}	21.5 [±2.6] ^{cd}	95.6 [±5.9] ^{de}	33.1 [±7.8] ^{abc}	8.5 [±1.0] ^{cd}
cv. 60444	94.0 [±21.0] ^{abcdef}	63.8 [±10.8] ^{bcdefghi}	61.7 [±13.3] ^{abc}	82.1 [±19.6] ^{abcd}	58.6 [±15.5] ^{bcde}	22.5 [±1.7] ^{cde}	97.0 [±3.7] ^e	36.6 [±1.5] ^{abc}	7.0 [±1.4] ^{abcd}
Ebwanateraka	135.0 [±26.9] ^{cdefg}	81.9 [±17.5] ^{efghij}	60.0 [±20.3] ^{abc}						
Kibandameno	122.0 [±15.7] ^{bcdef}	64.8 [±7.6] ^{bcdefghi}	32.7 [±18.2] ^{abc}						
Kibaha	129.0 [±9.5] ^{cdefg}	88.7 [±12.5] ^{ghij}	55.5 [±9.2] ^{abc}	125.4 [±3.5] ^{de}	68.0 [±5.8] ^{bcdef}	24.3 [±1.0] ^{cde}	91.7 [±5.6] ^{bcde}	19.9 [±8.5] ^a	4.5 [±1.3] ^{ab}
KBH 2006/18	97.7 [±25.3] ^{abcdef}	45.2 [±9.3] ^{abc}	79.3 [±20.1] ^c	103.3 [±30.2] ^{cd}	58.6 [±9.4] ^{bcde}	25.0 [±0.8] ^{de}	96.3 [±2.9] ^{de}	51.8 [±17.7] ^{bc}	5.3 [±0.5] ^{abcd}
KBH 2006/26	159.7 [±14.3] ^{fg}	77.7 [±5.9] ^{cdefghij}	41.5 [±12.4] ^{abc}						
Т 200	96.0 [±15.6] ^{abcdef}	51.1 [±6.2] ^{abcdef}	0						
ECU 72	107.3 [±33.3] ^{abcdef}	65.7 [±8.7] ^{bcdefghi}	51.8 [±26.5] ^{abc}						
COL 22	134.3 [±26.7] ^{cdefg}	72.3 [±11.6] ^{bcdefghij}	43.6 [±12.5] ^{abc}	127.1 [±15.1] ^{de}	82.2 [±6.3] ^{def}	23.8 [±1.5] ^{cde}	94.0 [±5.2] ^{de}	35.9 [±13.0] ^{abc}	7.8 [±2.1] ^{bcd}
PER 183	105.0 [±18.7] ^{abcdef}	48.3 [±9.2] ^{abcde}	32.0 [±5.5] ^{abc}						
COL 1505	96.0 [±25.5] ^{abcdef}	58.0 [±16.8] ^{bcdefghi}	35.2 [±19.0] ^{abc}	93.8 [±14.6] ^{bcd}	61.4 [±11.6] ^{bcde}	21.5 [±1.9] ^{cd}	87.1 [±9.0] ^{bcde}	20.7 [±4.6] ^a	3.8 [±1.0] ^a
CM 2177-2	92.7 [±10.1] ^{abcdef}	51.1 [±5.1] ^{abcdef}	29.8 [±13.2] ^{ab}	85.0	67.4	25.0	96.2	16.7	2.0
MEX 95	102.0 [±7.0] ^{abcdef}	59.2 [±8.9] ^{bcdefghi}	26.8 [±18.9] ^{abc}	107.8 [±29.9] ^{cd}	66.7 [±8.2] ^{bcdef}	23.0 [±2.4] ^{cde}	81.3 [±5.7] ^{ab}	8.1 [±3.5] ^a	4.0 [±0.0] ^{ab}
BRA 132	71.3 [±17.9] ^{abc}	54.7 [±10.7] ^{abcdefg}	48.0 [±15.8] ^{abc}	64.5 [±2.7] ^{abc}	61.6 [±15.0] ^{bcde}	23.5 [±3.1] ^{cde}	97.2 [±3.7] ^e	53.1 [±32.4] ^{bc}	5.5 [±1.9] ^{abcd}

Supplementary Table S4 (continued)

	A. Preliminary phenotypic characterization			B. Repeated independent phenotypic characterization					
	oi	f 41 cassava accessio	ns	of 18 selected cassava accessions					
Accessions	Plant height (cm)	Above-ground	Under-ground	Plant height	Above-ground	Number of	Leaf retention	Under-ground	Number of
		FW (g)	FW (g)	(cm)	FW (g)	leaves	(%)	FW (g)	storage roots
ARG 13	141.7 [±15.3] ^{defg}	76.6 [±7.4] ^{bcdefghi}	50.9 [±10.6] ^{abc}	157.9 [±6.0] ^e	88.2 [±4.9] ^{ef}	21.0 [±0.0] ^{bcd}	73.7 [±1.5] ^a	27.1 [±6.8] ^{ab}	5.5 [±1.3] ^{abcd}
GUA 79	112.7 [±16.3] ^{abcdef}	72.5 [±16.0] ^{bcdefghij}	20.5 [±10.3] ^a	158.4 [±6.2] ^e	96.5 [±4.5] ^f	20.5 [±1.0] ^{abcd}	97.7 [±4.5] ^e	10.0 [±0.9] ^a	3.3 [±1.7] ^a
CM 523-7	141.0 [±7.9] ^{defg}	79.5 [±6.8] ^{defghij}	33.1 [±12.3] ^{abc}						
SG 107-35	130.0 [±9.6] ^{cdefg}	76.4 [±5.2] ^{bcdefghij}	22.8 [±7.0] ^a						
PSE XXX-1	138.0 [±18.2] ^{cdefg}	51.6 [±9.6] ^{abcdef}	18.4 [±6.6] ^a	98.3 [±18.9] ^{bcd}	41.0 [±12.4] ^{ab}	16.0 [±0.8] ^a	82.2 [±4.5] ^{abc}	11.2 [±4.5] ^a	5.3 [±1.7] ^{abcd}
TST XXX-18	138.7 [±12.4] ^{cdefg}	71.1 [±5.9] ^{bcdefghij}	26.4 [±7.8] ^{ab}	111.7 [±37.6] ^{cde}	41.7 [±19.0] ^{ab}	22.3 [±3.1] ^{cde}	98.7 [±2.2] ^e	32.13	6.0
VEN 25	151.3 [±3.5] ^{efg}	63.8 [±3.4] ^{bcdefghi}	29.3 [±6.2] ^{ab}						
BRA 685	139.3 [±8.3] ^{cdefg}	90.8 [±0.9] ^{ij}	30.1 [±12.1] ^{ab}						
CM 6438-14	137.3 [±4.2] ^{cdefg}	72.6 [±8.8] ^{bcdefghij}	33.6 [±17.1] ^{abc}						
BRA 293	149.7 [±31.3] ^{efg}	83.4 [±12.4] ^{fghij}	21.3 [±5.5] ^a						
BRA 325	195.0 [±12.2] ^g	89.4 [±7.4] ^{hij}	46.6 [±6.4] ^{abc}						
BRA 222	100.3 [±21.1] ^{abcdef}	56.6 [±6.0] ^{bcdefgh}	32.3 [±3.0] ^{abc}						
KU50	122.3 [±5.1] ^{bcdef}	65.7 [±5.0] ^{bcdefghi}	55.7 [±7.0] ^{abc}	114.8 [±16.5] ^{de}	74.7 [±13.5] ^{cdef}	22.3 [±1.0] ^{cd}	93.9 [±4.1] ^{cde}	34.2 [±6.3] ^{abc}	4.3 [±1.3] ^{ab}
SC8	47.0 [±6.2] ^a	43.0 [±7.3] ^{ab}	58.2 [±7.7] ^{abc}	50.5 [±16.9] ^{ab}	51.3 [±16.1] ^{abc}	27.0 [±1.4] ^e	94.8 [±1.8] ^{cde}	24.2 [±12.0] ^{ab}	5.8 [±2.5] ^{abcd}
SC124	92.3 [±67.2] ^{abcde}	51.2 [±12.9] ^{abcdef}	32.0 [±21.3] ^{abc}						
TAI 8	75.7 [±27.5] ^{abcd}	58.6 [±14.4] ^{bcdefghi}	63.5 [±17.4] ^{abc}						
TAI 3	55.3 [±11.2] ^{ab}	21.4 [±4.6] ^a	66.2 [±30.7] ^{abc}	43.0 [±7.1] ^a	25.4 [±4.2] ^a	16.5 [±1.7] ^{ab}	84.6 [±4.0] ^{abcd}	59.3 [±11.0] ^c	9.0 [±2.4] ^d
H226	117.7 [±28.9] ^{abcdef}	100.7 [±21.5] ^j	40.1 [±15.7] ^{abc}						
KM140	102.0 [±17.6] ^{abcdef}	57.5 [±9.0] ^{bcdefghi}	72.8 [±9.4] ^{bc}						
KM397	120.0 [±20.0] ^{bcdef}	46.1 [±3.2] ^{abcd}	19.1 [±4.0] ^a						
11SA12	118.7 [±11.8] ^{bcdef}	67.7 [±9.8] ^{bcdefghij}	44.2 [±20.0] ^{abc}						

Supplementary Table S5. Preliminary quantification of vitamin B_1 in 41 cassava accessions using a yeast bioassay.

Leaf (A) and storage root (B) vitamin B_1 contents in greenhouse grown cassava accessions. Accessions with a vitamin B_1 content below the 25th percentile of the distribution were considered as accessions with low vitamin B_1 content, whereas those with a vitamin content above the 75th percentile were considered as accessions with high vitamin B_1 content. Low, intermediate and high vitamin B_1 accessions selected for a repeated independent quantification are in blue-green, blue and vermilion, respectively. Average ± S.D. of 3 biological replicates except TMS 30572 (n=2) for leaves and TMS 30572 (n=2), MEX 95 (n=2), PSE XXX-1 (n=2) for storage roots. T200 did not produce any storage roots. Tukey's multiple comparison test (p < 0.05). Maximum fold difference (highest/lowest vitamin B_1 content) and S.D. calculated with Taylor series linearization method.

Α	LEAVES			В	STORAGE ROOTS	
Accession	Vitamin B ₁ (Vitamin B ₁ (ng mg FW ⁻¹)		Accession	Vitamin B ₁ (I	ng mg FW ⁻¹)
BRA 132	1.78 [±0.63] ^a	Below the 25 th		CM 2177-2	1.01 [±0.12] ^a	Below the 25 th
COL 22	2.24 [±0.39] ^a	percentile of		KBH 2006/18	1.24 [±0.19] ^{ab}	percentile of
BRA 222	2.46 [±0.80] ^a	vitamin B_1		TST XXX-18	1.41 [±0.63] ^{abc}	vitamin B ₁
TMS 30572	2.50 [±0.99] ^{ab}	content		CM 6438-14	1.49 [±0.47] ^{abc}	content
TST XXX-18	2.64 [±0.65] ^{ab}	distribution		SC124	1.56 [±0.29] ^{abc}	distribution
TAI 3	2.66 [±0.68] ^{ab}			BRA 325	1.73 [±0.29] ^{abcd}	
TAI 8	2.68 [±0.57] ^{ab}			KBH 2006/26	1.75 [±1.11] ^{abcd}	
KU50	2.71 [±0.67] ^{ab}			KU 50	1.76 [±0.48] ^{abcd}	
BRA 685	3.29 [±1.02] ^{ab}	Between the		BRA 222	1.79 [±0.29] ^{abcd}	
MEX 95	3.31 [±0.93] ^{ab}	25 th and 75 th		MEX 95	1.81 [±0.42] ^{abcd}	Between the
VEN 25	3.48 [±1.00] ^{ab}	percentile of		SG 107-35	2.01 [±0.68] ^{abcd}	25 th and 75 th
SC124	3.49 [±1.37] ^{ab}	vitamin B_1		TAI 8	2.03 [±0.59] ^{abcd}	percentile of
KM397	3.55 [±0.96] ^{ab}	content		H226	2.04 [±0.27] ^{abcd}	vitamin B ₁
KM140	3.64 [±0.59] ^{ab}	distribution		BRA 685	2.10 [±0.65] ^{abcd}	content
KBH 2006/18	3.64 [±1.14] ^{ab}			KM397	2.10 [±0.27] ^{abcd}	distribution
CM 6438-14	3.69 [±1.07] ^{ab}			TMS 30572	2.11 [±0.47] ^{abcd}	
BRA 325	3.70 [±0.44] ^{ab}			TAI 3	2.16 [±0.35] ^{abcd}	
TMS 30001	3.82 [±0.34] ^{ab}			BRA 132	2.17 [±1.21] ^{abcd}	
PSE XXX-1	3.84 [±2.38] ^{ab}			TMe-3	2.18 [±0.22] ^{abcd}	
KBH 2006/26	3.85 [±1.52] ^{ab}			KM140	2.23 [±0.55] ^{abcd}	
H226	3.99 [±0.26] ^{ab}			Kibandameno	2.26 [±0.32] ^{abcd}	
BRA 293	4.05 [±2.10] ^{ab}			Ebwanateraka	2.29 [±0.17] ^{abcd}	
Т 200	4.14 [±0.29] ^{ab}			VEN 25	2.39 [±0.49] ^{abcd}	
SC8	4.26 [±1.70] ^{ab}			cv. 60444	2.41 [±0.69] ^{abcd}	
SG 107-35	4.43 [±1.11] ^{ab}			TMS 30001	2.46 [±0.31] ^{abcde}	
TMS 30555	4.44 [±0.74] ^{ab}			COL 22	2.54 [±0.48] ^{abcde}	
CM 2177-2	4.50 [±1.34] ^{ab}			11SA12	2.59 [±0.66] ^{abcde}	
Kibandameno	4.51 [±1.14] ^{ab}			PSE-XXX-1	2.74 [±0.73] ^{abcdef}	
Ebwanateraka	4.57 [±1.10] ^{ab}			Kibaha	2.74 [±0.86] ^{abcdef}	
PER 183	4.84 [±0.48] ^{ab}			CM 523-7	2.81 [±0.20] ^{abcdef}	Above the 75 th
COL 1505	4.95 [±1.60] ^{ab}	Above the 75 th		BRA 293	2.82 [±0.47] ^{abcdef}	percentile of
TMe-3	5.08 [±2.05] ^{ab}	percentile of		SC8	2.86 [±0.39] ^{abcdef}	vitamin B ₁
TMe-7	5.17 [±1.54] ^{ab}	vitamin B ₁		GUA 79	2.87 [±0.39] ^{abcdef}	content
TMe-14	5.18 [±0.86] ^{ab}	content		ARG 13	2.94 [±0.30] ^{abcdef}	distribution
11SA12	5.23 [±3.35] ^{ab}	distribution		TMe-7	3.08 [±0.17] ^{bcdef}	
GUA 79	5.25 [±3.28] ^{ab}			ECU 72	3.17 [±1.01] ^{bcdef}	
cv. 60444	5.30 [±1.20] ^{ab}			PER 183	3.30 [±0.57] ^{cdef}	
Kibaha	5.45 [±2.46] ^{ab}			TMS 30555	3.72 [±1.40] ^{def}	
CM 523-7	5.98 [±1.98] ^{ab}			TMe-14	4.45 [±0.42] ^{ef}	
ECU 72	6.14 [±3.87] ^{ab}			COL 1505	4.72 [±0.69] ^f	
ARG 13	7.52 [±0.27] ^b			Maximum f	old difference	4.68 [±0.69]
Maximum f	old difference	4.22 [±0.37]				

Supplementary Table S6. Repeated independent quantification of vitamin B1 in 18 selected cassava accessions using a yeast bioassay.

Leaf (A, C) and storage root (B, D) vitamin B1 contents in greenhouse-grown cassava accessions. Vitamin B1 contents were expressed according to the fresh weight (FW) (A, B) and dry weight (DW) (C, D). Accessions with a vitamin B1 content below the 25th percentile of the distribution were considered as accessions with low vitamin B₁ content, whereas those with a vitamin content above the 75th percentile were considered as accessions with high vitamin B1 content. Low, intermediate and high vitamin B1 accessions selected for HPLC analysis are in bluegreen, blue and vermilion, respectively. Average ± S.D. of 4 biological replicates except CM2177-2 (n=1), TST-XXX-18 (n=3) for leaves and CM2177-2 (n=1), TST XXX-18 (n=1), MEX 95 (n=3) for storage roots. Tukey's multiple comparison test (p < 0.05). Maximum fold difference (highest/lowest vitamin B₁ content) and S.D. calculated with Taylor series linearization method.

Α	LEAVES						
Accession	Vitamin B1 (ng mg FW ⁻¹)					
TAI 3	1.66 [±0.29] ^a	Below the 25 th					
BRA 132	1.90 [±0.17] ^a	percentile					
PSE XXX-1	2.34 [±0.48] ^{ab}						
KBH 2006/18	2.73 [±0.18] ^{abc}	Between 25 th					
cv. 60444	2.87 [±0.17] ^{abc}	and 75 th					
MEX 95	2.87 [±0.81] ^{abc}	percentile					
KU 50	2.90 [±1.22] ^{abc}						
CM 2177-2	3.05						
TST XXX-18	3.09 [±0.23] ^{abc}						
TMS 30572	3.12 [±1.25] ^{abc}						
COL 22	3.35 [±0.76] ^{abc}						
TMe-3	3.37 [±0.75] ^{abc}						
TMe-7	3.57 [±0.47] ^{abc}						
SC8	4.06 [±1.28] ^{bcd}						
ARG 13	4.40 [±0.89] ^{cde}	Above the 75 th					
COL 1505	4.43 [±0.91] ^{cde}	percentile					
GUA 79	5.68 [±1.07] ^{de}						
Kibaha	6.35 [±0.78] ^e						
Maximum f	old difference	3.82 [±0.49]					

В	STORAGE ROOTS						
Accession	Vitamin B1 (ng mg FW ⁻¹)						
KBH 2006/18	0.69 [±0.07] ^a	Below the 25 th					
Kibaha	0.73 [±0.16] ^a	percentile					
GUA 79	0.89 [±0.21] ^{ab}	Between 25 th					
cv. 60444	0.90 [±0.18] ^{ab}	and 75 th					
TST XXX-18	0.92	percentile					
TMe-3	0.95 [±0.10] ^{abc}						
SC8	0.97 [±0.26] ^{abc}						
COL 22	0.97 [±0.18] ^{abc}						
BRA 132	0.99 [±0.14] ^{abc}						
CM 2177-2	1.00						
PSE XXX-1	1.01 [±0.23] ^{abc}						
KU 50	1.01 [±0.14] ^{abc}						
TMS 30572	1.09 [±0.10] ^{abc}						
TMe-7	1.17 [±0.17] ^{abc}						
MEX 95	1.17 [±0.31] ^{abc}						
TAI 3	1.18 [±0.12] ^{abc}	Above the 75 th					
ARG 13	1.37 [±0.14] ^{bc}	percentile					
COL 1505	1.41 [±0.36] ^c						
Maximum f	old difference	2.03 [±0.52]					

С

LEAVES

Accession	Vitamin B ₁ (ng mg DW ⁻¹)				
TAI 3	3.71 [±0.56] ^a	Below the 25 th			
BRA 132	5.14 [±0.54] ^{ab}	percentile			
PSE XXX-1	5.81 [±1.16] ^{abc}				
KBH 2006/18	6.75 [±0.90] ^{abc}	Between 25 th			
KU 50	7.59 [±3.50] ^{abcd}	and 75 th			
TST XXX-18	7.62 [±1.37] ^{abcd}	percentile			
MEX 95	7.79 [±2.58] ^{abcd}				
TMS 30572	7.93 [±2.93] ^{abcd}				
cv. 60444	8.24 [±0.61] ^{abcd}				
TMe-3	8.32 [±2.28] ^{abcd}				
CM 2177-2	8.66				
COL 22	8.70 [±2.01] ^{abcd}				
TMe-7	9.13 [±1.61] ^{abcd}				
SC8	9.91 [±3.07] ^{bcd}				
ARG 13	11.38 [±2.00] ^{cde}				
COL 1505	13.05 [±3.25] ^{de}	Above the 75 th			
Kibaha	17.26 [±2.48] ^{ef}	percentile			
GUA 79	19.18 [±3.23] ^f				
Maximum fold difference		5.17 [±0.89]			

D	STORAGE ROOTS				
Accession	Vitamin B ₁ (ng mg DW ⁻¹)				
TST XXX-18	1.03	Below the 25 th			
Kibaha	2.00 [±0.48] ^a	percentile			
GUA 79	2.10 [±0.60] ^a				
MEX 95	2.24 [±0.38] ^a				
KBH 2006/18	2.49 [±0.27] ^a	Between 25 th			
TMe-3	2.55 [±0.22] ^a	and 75 th			
SC8	2.79 [±1.04] ^{ab}	percentile			
COL 22	2.82 [±0.59] ^{ab}				
BRA 132	2.90 [±0.76] ^{ab}				
KU 50	2.95 [±0.48] ^{ab}				
PSE XXX-1	3.02 [±1.53] ^{ab}				
cv. 60444	3.03 [±0.62] ^{ab}				
TMS 30572	3.05 [±0.54] ^{ab}				
TMe-7	3.10 [±0.38] ^{ab}				
CM 2177-2	3.28				
TAI 3	3.39 [±0.33] ^{ab}	Above the 75 th			
COL 1505	3.73 [±0.88] ^{ab}	percentile			

4.31 [±0.51]^b

2.15 [±0.30]

Maximum fold difference

ARG 13

Supplementary Table S7. Thermal processing of cassava commercial storage roots.

Cassava commercial storage roots processed for consumption. The gain of weight during processing is expressed as a percentage of the raw material weight. Moisture content in root pieces is expressed as a percentage of the fresh weight and corresponds to the contribution of water to the fresh weight. Vitamin B₁ content was quantified using a yeast bioassay.

	RAW		BOILING		SOAKING + BOILING			
	Moisture	Vitamin B ₁	Gain of weight	Moisture	Vitamin B ₁	Gain of weight	Moisture	Vitamin B ₁
	content in root	content	during processing	content in root	content	during processing	content in root	content
	pieces (%)	(ng mg FW ⁻¹)	(%)	pieces (%)	(ng mg FW ⁻¹)	(%)	pieces (%)	(ng mg FW⁻¹)
Root 1	59,4	1,6	+5,1	60,5	1,5	+4.2	63,9	0,5
Root 2	61,3	1,8	+1,8	60,9	1,5	+2.3	60,4	1,1
Root 3	60,6	1,6	+13,9	64,4	0,8	+3.3	68,9	0,7
Root 4	63,7	1,8	+14,8	60,2	1,2	+1.4	62,1	1,4
Average [±S.D.]	61.2 [±1.8]	1.7 [±0.1]	+8.9 [±6.4]	61.5 [±2.0]	1.3 [±0.3]	+2.8 [±1.2]	63.9 [±3.7]	0.9 [±0.4]