Table S1	Primers	used to	in this study	. Gateway	att site	are in i	italics	and res	striction	enzyme	sites a	re
in bold.												

Name	Sequence 5' to 3'	Role
JAS F	TCTTCCCATTTTCACTCATGG	Screening for T-DNA insertion
JAS R	TCTGTACGAAAGCCAAGGAGA	Screening for T-DNA insertion
SAIL T-DNA	GCTTCCTATTATATCTTCCCAAATTACCAATACA	Screening for T-DNA insertion
LB2		in JAS with JAS screening F
JASg F	GCCTTTCTTCCCCACTCCTACAG	JASg
JASg R	GAAGGAAACTACCGAGTTTGGTTGC	JASg
shortJASg F	GGAAATCAAATAATACGAGACGACTGTTGACGAA	Site directed mutagenesis for
C C	CCGAAACC	shortJASg
shortJASg R	GGTTTCGGTTCGTCAACAGTCGTCTCGTATTATTT	Site directed mutagenesis for
	GATTTCC	shortJASg
longJASg F	CAGTCTGTAGAACCCTTGCTTGTTTTCTCG	Site directed mutagenesis for
		longJASg
longJASg R	CGAGAAAACAAGCAAGGGTTCTACAGACTG	Site directed mutagenesis for
		longJASg
stopJASg F	CGATTTATCAGTCTAGAGAGCCATGGC	Site directed mutagenesis for
		stopJASg
stopJASg K	GULAIGGUIUIUIAGAUIGAIAAAIUG	Site directed mutagenesis for
mentle a s LA C s E		StopJASg
mutiongJA5g F	CCTAAGC	site directed mutagenesis for
mutlong IASg P	GCTTAGGTTGTCGTTCATCAACAGGTCGTCCATAT	Site directed mutagenesis for
inutiong ASg K	CATTTG	mutlongIASg
CTTCIAS ^o F	TTCATCAACAGTCGTCTCATGAAGTTTGATTTCCT	Site directed mutagenesis for
erresnisgr	CAAGAGCGAAACAGTGATTGACC	CTTCJASg
CTTCJASg R	GGTCAATCACTGTTTCGCTCTTGAGGAAATCAAA	Site directed mutagenesis for
8	CTTCATGAGACGACTGTTGATGAA	CTTCJASg
longJASc F	GGGGACAAGTTTGTACAAAAAGCAGGCTTCATGAG	longJASc, JAS NT, JASNT-
6	ACGACTGTTGATGAAC	JAS-LIKE
Short JASc F	AAAAAGCAGGCTTCATGGCTTGTTTTCTCGACTGC	shortJASc
JASc R	<i>CAAGAAAGCTGGGTT</i> GAAGGAAACTACCGAGTTTG	longJASc, shortJASc
JAS-LIKE F	AAAAAGCAGGCTTCATGGGTTGTCTCTCGGTTGC	JAS-LIKEc
JAS-LIKE R	<i>CAAGAAAGCTGGGTT</i> AAAGGAAATGACTGAATGTC	JAS-LIKEc, NT-JAS-LIKE
	G	
NTJAS-LIKE F	GACAACCCATGGCTCTACAGACTGATAAATCG	First PCR for NT-JAS-LIKE
NTJAS-LIKE R	CTGTAGAGCCATGGGTTGTCTCTTCGGTTGC	First PCR for NT-JAS-LIKE
NTJAS-F	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGAG	JAS NT (for NT-GFP), NT-
	ACGACTGTTGATGAAC	JAS-LIKE
NTJAS-R	<i>GGGGACCACTTTGTACAAGAAAGCTGGGT</i> AGTCGAG	JAS NT (for NT-GFP)
		UD014
promUBQ14 F	GGGGACAACTITGTATAGAAAAGTTGATCCGAACAG	UBQ14 promoter
promUBQ14 K		UBQ14 promoter
Long MtrID1		longMtrID10
cDNA F		longivitijkie
Short MtrJKI		shortMtrJR1c
	GCAGIGCTICTICGGAATCAGAG	
MtrJR1 cDNA	GGGGACCACTITGTACAAGAAAGCTGGGTGCTC	longMtrJR1c, shortMtrJR1c
K	СТСААТСТССТСАААТGCCA	
JAS LUC F	GGCAAGCTTTCACTGTTTCGCTCTTGAGG	5'end JAS for luciferase
		assay with HindIII site
JAS LUC R	GGCGGATCCATTGGCGAGTGAAGAATGAGA	5'end JAS for luciferase
		assay with BamHI site

Abbreviation	Species	Gene Identifier
AthJAS	Arabidopsis thaliana	At1G06660
AthJL	Arabidopsis thaliana	At2G30820
AlyJR1	Arabidopsis lyrata	481999
AlyJR2	Arabidopsis lyrata	887868
CruJR1	Capsella rubella	Carubv10012445m
CruJR2	Capsella rubella	Carubv10023398m
BraJR1	Brassica rapa	Bra015516
BraJR2	Brassica rapa	Bra022814
CpaJR1	Carica papaya	evm.model.supercontig_50.118
TcaJR1	Theobroma cacao	Thecc1EG001947t1
CclJR1	Citrus clementine	Ciclev10031282m
PtrJR1	Populus trichocarpa	Potri.002G057000
PtrJR2	Populus trichocarpa	Potri.005G205700
MesJR1	Manihot esculenta	cassava4.1006366
MesJR2	Manihot esculenta	cassava4.1007124m
MtrJR1	Medicago truncatula	Medtr5g090900
MtrJR2	Medicago truncatula	Medtr3g450760
GmaJR1	Glycine max	Glyma14g03450
GmaJR2	Glycine max	Glyma02g45320
GmaJR3	Glycine max	Glyma08g41940
GmaJR4	Glycine max	Glyma18g13680
CsaJR1	Cucumis sativus	Cucsa.179850
PpeJR1	Prunus persica	ppa024302m
VviJR1	Vitis vinifera	GSVIVT01020830001
SlyJR1	Solanum lycopersicum	Solyc07g045010.2.1
SlyJR2	Solanum lycopersicum	Solyc12g006270
AcoJR1	Aquilegia coerulea	Aquca12500018
AcoJR2	Aquilegia coerulea	Aquca02600365

Table S2. Gene identifiers for JR proteins used in Fig. 4.

Fig. S1. Predicted secondary structure of the JAS protein. The AA sequence of JAS was analysed for localization signals and secondary structure. An N-terminal mitochondrial transit peptide (green rectangle) was predicted by TargetP and SLP-Local. The secondary structure of JAS was predicted by PSIPRED to be largely unstructured (black line) with some α -helices (pink barrel) and one β -strand (yellow arrow). Conf indicates the confidence of the prediction, Pred is the predicted secondary structure and AA the shows the target sequence.

stopJASg-GFP

Fig. S2. Subcellular localization of stopJASg-GFP. CLSM was used to view the subcellular location of JAS without the N-terminal peptide (stopJASg-GFP) in the meristematic region of Arabidopsis roots. (A) GFP fluorescence in whole root tips for stopJASg-GFP. (B) Quantification of co-localization for stopJASg-GFP and markers for the Golgi, tonoplast and plasma membrane. For each combination the mean (± standard deviation) Manders' overlap coefficient 1 value (M1) from 20 images is shown along with the average (± standard deviation) for the same red image with the green image randomized (M1R). ** indicates a that the M1 value is significantly higher than the M1R value (t-test, P<0.001). Scale bar = 20 µm.

Fig. S3. Subcellular localization of cDNA encoded JAS-GFP. (A,B) CLSM images of meristematic root cells of Arabidopsis showing JAS-GFP (A) from longJASc-GFP (starting at the first ATG) or (B) shortJASc-GFP (starting at the second ATG). The top panel shows GFP fluorescence (green), the middle panel shows Golgi marker fluorescence (red) and in the bottom panel co-localization can be visually assessed by a yellow color in merged images. The Manders' overlap coefficient 1 for each pair of images (M1) and when the green image is randomized (M1R) is indicated on the merged image. Scale bar = 5 μ m.

Fig. S4. Plasmolyzed Arabidopsis root cell with JAS-LIKE-GFP. CLSM image of an Arabidopsis root cell expressing JAS-LIKE-GFP (green) after incubation for 1h in mannitol. The plant cell wall is stained with red with propidium iodine. Scale bar = $5 \mu m$.

Fig. S5. Subcellular localization of GFP with the N-terminal 28 AA of longJAS. The N-terminal region of longJAS was cloned upstream of GFP (NT-GFP) and localization analysed in Arabidopsis root cells. (A) CLSM images of Arabidopsis meristematic roots cells with NT-GFP. Top panel shows GFP fluorescence (green), the middle panel shows Golgi marker fluorescence (red) and in the bottom panel co-localization can be visually assessed by a yellow color in merged images. (B) Quantification of co-localization of NT-GFP and the Golgi marker. For each combination of GFP and marker the average (± standard deviation) Manders' overlap coefficient 1 value (M1) from 20 images is shown (M1) along with the average (± standard deviation) for the same red image with the green image randomized (M1R). ** indicates that the M1 value is significantly higher than the M1R value (*t*-test, *P*<0.001). Scale bar = 5 μ m.

Fig. S6. Ribosome protection data for *JAS*. Total RNA read coverage, polysomal mRNA and ribosome footprint (RF) at the 5'UTR and first exon of *JAS*, under normal oxygen (normoxia) amd oxygen deprived (hypoxia) conditions. Data from Juntawong et al., 2014. Note JAS is in the reverse orientation. The three potential start codon positions are highlighted in yellow through all samples with those at +1 and +85 indicated above. The 5' UTR of *JAS* is indicated by a narrow orange arrow and the exon by a thick orange arrow. The read coverage was normalized by reads per million (RPM).