

Supplementary Figure S1. Percentage of affected edited sites/transcript in the *orrm5* mutants. (A) Percentage of sites affected by *ORRM5* mutations on each transcript. Each bar represents a transcript color-coded according to the complex to which it belongs. (B) Percentage of sites experiencing reduced editing extents by *ORRM5* mutations on each transcript. (C) Percentage of sites showing increased editing efficiency on each transcript as a result of *orrm5* mutations.

Supplementary Figure S2. Editing on the *nad3* and *rps4* transcripts is affected by *ORRM5* mutation. *ORRM5-3+/+*, wild-type siblings of *orrm5-3* mutants; *orrm5-3 -/-*, *orrm5-3* homozygous mutants; *orrm5-2-/-*, *orrm5-2* homozygous mutants (n=2). (A) *ORRM5* mutations result in increased editing extent at all the mitochondrial C targets on the *nad3* transcript. X-axis represents position of different editing sites on the *nad3* transcript. The lower panel represents the variation in editing extent (Δ editing); Δ *orrm5-2*, (% editing of *ORRM5-3+/+* minus % editing of *orrm5-2-/-)/* % editing of *ORRM5-3+/+*; Δ *orrm5-3*, (% editing of *ORRM5-3+/+* minus % editing of *orrm5-3-/-)/* % editing of *ORRM5-3+/+*; Δ *orrm5-3*, (% editing of *ORRM5-3+/+* minus % editing on the *rps4* transcript. Like in Figure 4A, the upper panel represents editing extent at different sites on the transcript with the location on the X axis. Sites experiencing a significant reduction of editing extents ($\Delta \ge 10\%$, P < 1.6e-6) are in red squares, whereas sites showing an increase of editing extent (Δ editing) with Δ *orrm5-2* and Δ *orrm5-3* calculated as in Figure 4A.

Supplementary Figure S3. Distribution of the editing sites that showed a significant change of editing extent in the mutant lines (vs. the wild-type) in the transgenic lines transformed with the full length *ORRM5* according to the complementation effect. The complementation effect is calculated as (% editing in transgenic-% editing in mutant)/(% editing in wild-type-% editing in mutant). The complementation effect is a measure of the response observed in the transgenic lines in relation to the one observed in the wild-type; when this metric equals 1 the response in the transgenic is similar to the one observed in the wild-type. (A) Distribution for the sites that were significantly increased in the mutant plants. (B) Distribution for the sites that were significantly decreased in the mutant plants. T7 and T8, *orrm5-3* transgenic lines, T5 and T6, *orrm5-2* transgenic lines.

Supplementary Figure S4. Distribution and behavior of the editing sites that did not show any significant change in the mutant lines (vs. the wild-type) in the transgenic lines transformed with the full length *ORRM5*. (A) Distribution in T7 and T8, *orrm5-3* transgenic lines. (B) Distribution in T5 and T6, *orrm5-2* transgenic lines.

Supplementary Figure S5. Editing defect at the *ccmFn-2* C320 site in the *orrm5* mutants and its complementation by expressing *ORRM5* or the N-terminal RRM domain of *ORRM5* (*nORRM5*). Editing extents were measured by STS-PCRseq. T7 and T8: *orrm5-3-/-* w/35S:: *ORRM5*; T11 and T12: *orrm5-3-/-* w/35S:: *nORRM5*; T5 and T6: *orrm5-2-/-* w/35S:: *ORRM5*; T9 and T10: *orrm5-2-/-* w/35S:: *nORRM5*. Both *orrm5-3* and *orrm5-2* mutants show a decrease of editing extent compared to the *ORRM5-3* wild-type. In *orrm5-3* transgenic plants, only the RRM (T11, T12) is able to complement the editing defect to wild-type level. In *orrm5-2* transgenic plants, both the full length *ORRM5* (T5, T6) and the RRM (T9, T10) are able to complement the editing defect to wild-type level or lower. Values represent mean \pm SD for *ORRM5-3+/+*, *orrm5-3-/-*, and *orrm5-2-/-* (n=2).

nad3

rps14

ccmFn-2

Supplementary Figure S6. Transcript abundance of *nad3*, *rps14* and *ccmFn-2* in the *orrm5* mutants versus the controls examined by RNA blots. *orrm5-2*, plants in an *orrm5-2* homozygous mutant background; *orrm5-3*, plants in an *orrm5-3* homozygous mutant background; *+/+*, wild-type siblings of *orrm5-3* mutants. *-/-*, mutant plants that do not contain the *ORRM5* or *nORRM5* transgene; FL, mutant plants transformed with the coding sequence of *ORRM5* under a 35S promoter; RRM, mutant plants transformed with the N-terminal RRM motif of *ORRM5* under a 35S promoter. The negative of the ethidium bromide staining gel in the bottom panel serves as a loading control.

Supplementary Figure S7. Representation of the complex structure of the *nad5* transcript. The five exons are symbolized by squares drawn to scale and numbered 1 to 5. The introns are sketched as solid lines. The maturation of *nad5* transcript necessitates two *cis*-splicing events to join exon1 and exon2 and exon4 and exon5. In addition, two *trans*-splicing events are needed to join exon3 to exon2 and exon4. The arrows represent the primers used in the qRT-PCR assay to determine the splicing efficiency of intron1.

	orrm5 up	orrm5 other	
orrm2 down	16 <i>5.13</i> (23.03)	23 33.87 (3.49)	39
orrm2 other	57 67.87 (1.74)	459 448.13 (0.26)	516
	73	482	555

	orrm5 up	orrm5 other	
<i>orrm3</i> down	21 7.63 (23.44)	37 <i>50.37</i> (3.55)	58
orrm3 other	52 65.37 (2.73)	445 <i>431.63</i> (0.41)	497
	73	482	555

 $\chi^2 = 28.528 P = 9 e-8$

 $\chi^2 = 30.134 P = 4 e-8$

	<i>orrm5</i> up	orrm5 other	
<i>orrm4</i> down	19	207	
	29.73	196.27	226
	(3.87)	(0.59)	
orrm4 other	54	275	
	43.27	285.73	329
	(2.66)	(0.40)	
	73	482	555

$$\chi^2 = 7.518$$
 P = 6 e-3

Supplementary Figure S8. Contingency tables of the number of mitochondrial sites experiencing an increase in *orrm5* mutant (*orrm5* up) or no increase in *orrm5* mutant (*orrm5* other) and a decrease in other mitochondrial editing factors (*orrm2*, *orrm3*, or *orrm4* down) or no decrease in these mutants or silenced tissues (*orrm2*, *orrm3*, or *orrm4* other). The results with *orrm2* were obtained on silenced tissues. The observed number of sites are in plain character while the expected values are in italics, and the individual χ^2 are displayed in parentheses. Below each contingency table is given the χ^2 value for a test of independence and the p value. The total number of mitochondrial sites commonly surveyed between this study and the previous studies on ORRM2. ORRM3, and ORRM4 is 555.

	T7,T8 down	T7,T8 other	
<i>orrm2</i> down	15 <i>5.54</i> (16.13)	6 15.46 (5.79)	21
orrm2 other	103 112.46 (0.80)	323 313.54 (0.29)	426
	118	329	447

	T7,T8 down	T7,T8 other	
<i>orrm</i> 3 down	28 9.5 (36)	8 26.5 (12.9)	36
orrm3 other	90 <i>108.5</i> (3.15)	321 302.5 (1.13)	411
	118	329	447

 $\chi^2 = 23$ P = 2 e-6

В

	T5,T6 down	T5,T6 other	
	11	9	
orrm2 down	2.74	17.26	20
	(24.88)	(3.95)	
	50	375	
orrm2 other	58.26	366.74	425
	(1.17)	(0.19)	
	61	384	445

	T5,T6 down	T5,T6 other	
	22	9	
orrm3 down	4.25	26.75	31
	(74.15)	(11.78)	
	39	375	
orrm3 other	56.75	357.25	414
	(5.55)	(0.88)	
	61	384	445

$$\chi^2 = 30.19 \quad P = 4 \text{ e-8}$$

 $\chi^2 = 92.36$ P = 0

Supplementary Figure S9. Contingency tables of the number of mitochondrial sites experiencing either a decrease in transgenic lines, (T7, T8 down) or (T5, T6 down), or no decrease in transgenic lines, (T7, T8 other) or (T5, T6 other), and a decrease in other mitochondrial editing factors (*orrm2* or *orrm3* down) or no decrease in these mutants or silenced tissues (*orrm2*, *orrm3* other). The results with *orrm2* were obtained on silenced tissues. This analysis is restricted to the invariant sites that did not show significant change in the mutant plants either *orrm5-3*, or *orrm5-2* when compared to the wild-type. The observed number of sites are in plain character while the expected values are in italics, and the individual χ^2 are displayed in parentheses. Below each contingency table is given the χ^2 value for a test of independence and the p value. (A) Contingency tables obtained with *orrm5-3* transgenic lines. (B) Contingency tables obtained with *orrm5-2* transgenic lines.