White Leaf and Panicle 2 encoding a PEP-associated protein, is required for chloroplast biogenesis under heat stress in rice (*Oryza sativa* L.)

Yusong Lv^{1, 2, †}, Gaoneng Shao^{1, †}, Jiehua Qiu¹, Guiai Jiao¹, Zhonghua Sheng¹, Lihong Xie¹, Yawen Wu¹, Shaoqing Tang¹, Xiangjin Wei^{1, *}, Peisong Hu^{1, *}

¹State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China

²National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China

^{*} Corresponding. <u>peisonghu@126.com</u>, <u>hupeisong@caas.cn</u> (P. Hu); <u>weixiangjin@caas.cn</u> (X. Wei)

[†]These authors contributed equally to this work.

Fig. S1. Allelism test for the abnormal phenotypes of the wlp2s and wlp2w by hybridization. (A) Phenotypes of F_1 hybrid plants crossed by wlp2s and wlp2w at the tillering stage; white boxes represent basal leaves of the wild-type and F_1 hybrid plants. (B) Young panicles of F_1 hybrid plants. The wild-type and F_1 hybrid plants were grown in paddy fields during the normal growing seasons at the China National Rice Research Institute, in Hangzhou.

Fig. S2. Phenotypes of wild-type and *wlp2* plants at the heading stage during different years. The wild-type and *wlp2* plants were grown in paddy fields during the normal growing seasons in 2013 (A, D), 2014 (B, E) and 2015 (C, F) at the China National Rice Research Institute, in Hangzhou (30 % latitude). The mean temperature at the heading stage in the summer of 2013, 2014 and 2015 were 34.5 %, 28.5 % and 32.8 %, respectively.

Fig. S3. Chlorophyll content and chloroplast ultra-structure of wild-type and *wlp2* mutant plants. (A, B) Chl a, b in leaves of wild-type, *wlp2s* and *wlp2w* at the four-leaf stage. (C-K) The ultrastructures of chloroplasts in lls of the third leaf of wild-type (C, F, I), *wlp2s* (D, G, J) and *wlp2w* (E, H, K) at 22 \mathbb{C} (C-E), 28 \mathbb{C} (F-H), 32 \mathbb{C} (I-K). (L-N) The ultrastructures of chloroplasts in ells of young panicle of wild-type (L), *wlp2s* (M) and *wlp2w* (N) under field condition in Hangzhou (2013). C, chloroplast; G, granna stacks; N, nucleus, Og, osmiophilic plastoglobuli. Ic, immature chloroplast; S, starch granule. Data in (A, B) are shown as means \pm SD from three individual replicates. The asterisks indicate statistical significance between the wild-type and the mutants, as determined by the Student's *t*-test (** *P* < 0.01).

Fig. S4. Chlorophyll autofluorescence analysis of the wild type and wlp2 mutants. Chlorophyll autofluorescence was measured as an indicator of PSII integrity in leaves of wild-type, wlp2s and wlp2w plants.

Fig. S5. Phenotypes of wild-type, wlp2w and transgenic positive T_1 plants. (A, B) Phenotype of wild-type, wlp2w and transgenic positive T_1 plants (from left to right) at the tillering stage (A) and heading (B) stages (C) Expression levels of *WLP2* in wild-type and transgenic positive T_1 plants. (D) Chlorophyll content in 3-weeks seedlings Data in (C, D) are shown as means \pm SD from three individual replicates.

Fig. S6. Phylogenetic tree of WLP2 proteins. The phylogenetic tree was constructed using by MEGA 4.0 program and the neighbor joining algorithm. Bootstrap values are shown at each node. Bar indicator of genetic distance is based on branch length. The yellow box stands for dicotyledons and the green box represents monocotyledons.

Fig. S7. Alignment of amino acid sequences of WLP2 homologous proteins from higher plants. Black shading indicates identical residues and gray shading similar residues. The comparison was aligned by CLUSTAL W. The green box represents the pfkB domain, the red box indicates the conserved double cysteine motif, and the blue box the pfkB-signature motif II. The oval boxes indicate the mutation sites of *wlp2s* and *wlp2w*. RefSeq numbers: O.sativa, XP_015616764.1; Z.mays, NP_001147575; A.thaliana, NP_190977.1; S.bicolor, XP_002456644.1; B.distachyon, XP_003564619.1.

Fig. S8. Predicted 3D protein structures of WLP2 protein in the wild-type and the two *wlp2* mutants. Protein 3D structures were predicted by SWISS-MODEL (<u>http://swissmodel.expasy.org/</u>). The red box represents the region with 3D structure differences between wild type and the mutants

Fig. S9. ROS production induced by heat stress and RNA-seq analysis in wlp2 mutants. (A) Microscopic analysis of leaves of two-week-old seedlings of wlp2w incubated with H₂DCFDA. Oxidized H₂DCFDA is represented in green staining and chlorophyll in red. (B) The excess produced ROS indicated redox inbalance in wlp2s when the mutant was suffered from heat stress under natural field conditions. (C) List of GO terms indicating the large number of genes associated with responses to abiotic stress. (D) The expression levels of genes associated with ascorbate peroxidase and glutaredoxin synthesis.

Fig. S10. The responses of two mutants and wild-type plants with other abiotic stresses. (A)The plants were grown under continuous 21 °C tmperature conditions in a growth chamber (12/12 h light/dark; light intensity 300 µmol $m^{-2} s^{-1}$). (B) Both the mutants and wild-type plants were germinated and cultivated under high light conditions with light intensity 1000 µmol $m^{-2} s^{-1}$ (12/12 h light/dark, 26 °C temperature). Bars = 2 cm in A and B.

Fig. S11. Potential use of wlp2w as an early selective marker for enhancing seed purity and automated production of hybrid rice.

(A) The wlp2w acts as an early marker for eliminating the false seedlings to enhance sterility line purity. (B) Hybrids seeds derived from the cross MS Yu01s^{wlp2w} and the restorer line Huazhan were germinated and grown in an incubator at 32 °C continuous temperature. The green seedlings are true F₁ hybrids and the albino dead seedlings are off-type seeds (false hybrids) that derived from self-pollination of MS Yu01s^{wlp2w} (C) The wlp2w marker identifies self-pollination of the restorer lines during high through put production of hybrid seeds in trays at 32 °C constant temperature. (D) View of high through put industrial facility for the potential use of the wlp2w gene in the production of hybrid seeds.

Marker	rker Forward sequence (5'-3') Reverse sequence (5'-3')		
For fine mapping	• • •	• ` ` <i>`</i>	
YS1	GCTGGTTGATTCAGCTAGTC	GCCTCGTTGTCGTTCCACAC	
YS2	CACATGCTCTGGACACCAAC	GGAGCAAATAAGCCAACCAA	
YS3	TAGATCTGGATGCCTCATGC	TTTACAAGCGTCCTCCTCCT	
YS4	AGCATTAGGAAGGCACCAAA	CTCTGGCCAACATTGGTCTT	
YS5	GGCCCACGTAATCTGATTTG	CGACGATCGGACTTATCAGC	
YS6	GGGATTATTTGAAATCTTTGC	ATATAGCATTGCCAGTTTGC	
YS7	GCCTGTAGTACCTGGCCTTG	CAGTCGCTGCTCCACGTAT	
YS8	CCAAATTCTTTGTGCCCACT	GGTGCTGAAAATTGTGTTGC	
YS9	TTGCCAGTTGAGCAACATCT	GGAAAGACTGCAATTTATTCTGAA	
YS10	GCAGCCATGGTGTGTCTCT	GAGGAATGTCCTCTTTTTCTTGA	
YS11	AATACTGTATCCTTGTGTAAGATTGC	CCCCTTAGCTAGAAGCCAGA	
YS12	TGATTGATTGCTTGGCACTG	AGATAGCTGCCTGCATCG	
YS13	TCCATCATCCATTCTGAGTTT	TTCTTCTCCGCTTCTGCTTC	
Indel 10	TTGATAACAAGTTTGTTTTATGTTTTG	TTTGATCCCCAGATGAATGA	
Indel 14	TGTTTTGGAAACAAGTAGTGATGT	CAGTGGATGTATGAACAAGTGGA	
Indel 20	GCAGTTCCATGCTAGTATTTTCA	GCTGGAACACTCTTCCCAACT	
For quantitative PCR			
PORA	TGTACTGGAGCTGGAACAACAA	GAGCACAGCAAAATCCTAGACG	
rbcL	CTTGGCAGCATTCCGAGTAA	ACAACGGGCTCGATGTGATA	
rbcS	TCCGCTGAGTTTTGGCTATTT	GGACTTGAGCCCTGGAAGG	
psaA	GCGAGCAAATAAAACACCTTTC	GTACCAGCTTAACGTGGGGGAG	
psbA	CCCTCATTAGCAGATTCGTTTT	ATGATTGTATTCCAGGCAGAGC	
WLP2	ACTCCCTCAATGGAAAGCACAC	CCTTGACCTCCACAAAGGCAAT	
rpoA	GTGGAAGTGTGTTGAATCAA	TCTCTCTTGATCCGTAACTC	
rpoB	TTTGGTTTCGATGTGCA	TATGGTCTAATTCCGAGCGGT	
rpoTp	AAGCAGACAGTGATGACATC	ATCACATGCATGCACCCAAA	
rps12	AGCCGTTTGCTACCAATGG	TGATCGGTACCAATGAATAGG	
OsPPR1	CTAAGACCGAATGACAAATGC	GCACTGCCAACAAGAATACC	
Oscab1R	AGATGGGTTTAGTGCGACGAG	TTTGGGATCGAGGGAGTATTT	
Oscab2R	TGTTCTCCATGTTCGGCTTCT	GCTACGGTCCCCACTTCACT	
CAO1	GATCCATACCCGATCGACAT	CGAGAGACATCCGGTAGAGC	
YGL1	AACCTTACCGTCCTATTCCTT	CCATACATCTAACAGAGCACCC	
VI(NUS1)	TGGAGGTCGGGACAGAGGA	CGAGGAGCACCACCATCAC	
V2	CGACAAGCAGAGCGAAGCG	AGGTTGCTGCTCCTTGAATGT	
APX1	TCCACCCAGGAAGGGAGG	TTGGTAGCATCAGGAAGACGG	
APX2	TCCCCTACCCTGCTGCATC	ACCAGCCAACCACTCGCA	

Supplementary Table S1. Primer sequences used in this study.

APX3	AGCACTCTCAGGCGGCC	AGC	GCACCATCAAATCCTGATCT		
APX7	TTCACGTTGGACGGTTAATGC	TTT	TCTGTAAAAGTGGTTGGCCA		
APX8	ATCATCGCCAGCGGATGA	GCA	AGCGACGAAGGGCTC		
OsFLN2	AGGAGCCATTTACATTATAAGCC	AAC	CTTACGTTTCGGTTGAGCA		
OsTRXz	GCCTCCCTCTCCTGCGATG	CAT	TCCGTCGAACGCCTTG		
For vector construction	1				
1305ubi:WLP2-GFP	CaaggtaccTCCCACCGAAGGAGAGAGAGCC	(CTTactagtACCAGTCCGCCAGTCACCAC		
1381Z-GUS	CCGGAATTC CTAGCCCCCACAGTGAACATG	(CCCAAGCTT GTTCGGGGAGCAGCGAATAT		
p35S-WLP2-GFP	GCCCAGATCAACTAGTATGGCCATGGCGGCCTCCC	C	TTTACTTTACTCTAGACCACATAGAAGGCACATA TACTTGC		
p35S-WLP2 ^{1-250AA} -GFP	1-250AA-GFP CGGAC CGGAC		TGCTCACCATGGATCCCCACATAGAAGGACATATA CTTG		
p35S-WLP2 ^{1-150AA} -GFP	CGGAGCTAGCTCTAGAATGGCCATGGCGGCCTCCCCA NLP2 ^{1-150AA} -GFP TT		TGCTCACCATGGATCCCGGCGAATCCTCCCCGTC TC		
p35S-WLP2 ^{1-70AA} -GFP	S-WLP2 ^{1-70AA} -GFP TT		TGCTCACCATGGATCCCGTGGTCTTCGCCTTCG		
p35S-WLP2 ^{1-50AA} -GFP	CGGAGCTAGCTCTAGAAAGAAGAATACGCAGGAGT	C	TGCTCACCATGGATCCGGGTTCAGGGGATTCCGGT AC		
p35S-WLP2 ^{1-30AA} -GFP	CGGAGCTAGCTCTAGAATGGCCATGGCGGCCTCCCC	CA T	TGCTCACCATGGATCCGAAGATGCTGGGGTGGAT GC		
p35S-WLP2 ^{50-531AA} -GFP	CGGAGCTAGCTCTAGAGTACCGGAATCCCCTGAACC C		TTTACTTTACTCTAGACCACATAGAAGGCACATA TACTTGC		
pGADT7- TRXz	pGADT7- TRXz GGAGGCCAGTGAATTCATGGCCATGGCCGCGGCCGC CTC		CGAGCTCGATGGATCCACAATTCATTATCAATG. ATTTCTGA		
	GGAGGCCAGTGAATTC	(CGAGCTCGATGGATCC		
pGADT7- OsFLN2	ATGCACCGAATGGCTTCTCTTCTTCTC	1	ACTCCACATATAAAAGCTCACTCTCT		
	GGAGGCCAGTGAATTCATGGCCATGGCGGCCTCCC		CGAGCTCGATGGATCC		
pGADT7-WLP2	ATTCCT		ACCACATAGAAGGCACATATACTTGC		
DCRKT7 WI DO	CATGGAGGCCGAATTCATGCACCGAATGGCTTCTCTT		TAGTTATGCGGCCGCTGCAGACTCCACATATAAAA		
r - · · · ·			GCTCACTCTCT		
pGBKT7- TRXz	CATGGAGGCCGAATTCATGGCCATGGCCGCGGCCGG	2 7	TAGTTATGCGGCCGCTGCAGACAATTCATTATCAA		
populi i iluz	СТС		TGATATTTCTGA		
pGBKT7-pfkB	CATGGAGGCCGAATTCGACATATACTCCACGTGGCT CATCT	G	TAGTTATGCGGCCGCTGCAGCTCAGTAGGGAATC CTCGCACAGCA		
pSPYNE-OsFLN2	CGCCACTAGTGGATCC		TACCCTCGAGGTCGAC		
	ATGCACCGAATGGCTTCTCTTCTTCTC	1	ACTCCACATATAAAAGCTCACTCTCT		
pSPYNE-WLP2	CGCCACTAGTGGATCCATGGCCATGGCGGCCTCCCC	CA T	TACCCTCGAGGTCGACCCACATAGAAGGCACATA TACTTGC		
pSPYCE- TRXz	CGCCACTAGTGGATCCATGGCCATGGCCGCGGCCG	5 5	TACCCTCGAGGTCGACCAATTCATTATCAATGATA		

	CTC	TTTC	
PGEX-4T-TRXz	GGTTCCGCGTGGATCCATGGCCATGGCCGCGGC	GTCGACCCGGGAATTCTCACAATTCATTATCAATG	
		ATA	
pET-28a-OsFLN2	AATGGGTCGCGGATCCATGCACCGAATGGCTTC	GGTGGTGGTGCTCGAGTCACTCCACATATAAAAG	
		СТ	
pfast-bacI-WLP2	CCACCATCGGGCGCGGATCCGCCACCATGCTGCTGGT	TAGTACTTCTCGACAAGCTTTCACCACATAGAAG	
		GCACATATAC	

Voor	Motorio	Plant height	No of tillorg	Length of	Seed setting	1000-grain	
rear	Materia	(cm)	No. of timers	panicle (cm)	rate (%)	weight (g)	
2015	WT	97.88±2.90	11.33±2.08	22.73±1.20	0.57±0.01	24.15±0.19	
	wlp2s	78.67±2.52*	12.67±1.53	21.57±0.97	0.19±0.05**	17.95±0.84**	
	wlp2w	99.22±3.47	11.23±2.11	23.79±1.36	0.44 ±0.03*	21.06±0.23**	
2014	WT	103.4±2.01	8.6±1.95	22.98±0.99	0.75 ± 0.06	27.29±0.74	
	wlp2s	90.78±1.49**	8.6±1.34	23.48±0.84	0.72±0.04	23.15±0.34**	
	wlp2w	106.24±3.01	9.00±1.88	23.18±0.98	0.76±0.08	26.38 ±0.65	

Supplementary Table S2. Main agronomic traits of wild-type, *wlp2s* and *wlp2w* plants grown at the Hangzhou paddy field in 2014 and 2015.

The mean temperature at the heading stage in the summer of 2014 and 2015 were 28.5 $^{\circ}$ C and 32.8 $^{\circ}$ C, respectively. Data are shown as means \pm SD from five replicates. The asterisks indicate statistical significance between the wild-type and the mutant, as determined by the Student's *t*-test (* *P* < 0.05; ** *P* < 0.01).

Supplementary Table S3. Genetic analysis for the *wlp2s* mutant gene.

The segregation behavior in each of the two derived F_2 populations was consistent with the Mendelian monogenic ratio of three wild type to one albino

Cross	Number of wild type plants	Number of <i>wlp2s</i> type plants	χ ² (3:1)	Р
wlp2s/NJ11	5037	1607	2.340759	0.126
wlp2s/Peiai64	322	117	0.638573	0.424