Supplementary Materials and Methods.

Generation of CRISPR-Cas9 driven LPAR1 knock out in astrocytes.

sgRNA targeting LPAR1 were designed using Broad institute web tool:

https://portals.broadinstitute.org/gpp/public/analysis-tools/sgrna-design; synthesized as separate

oligo nucleotides and cloned into pLentiCRISPR v2 (1) (a gift from Feng Zhang (Addgene plasmid

52961)). Lentiviral particles were produced as previously described (2). Immortalized astrocytes

were infected and selected on 1 µg/ml of puromycin until stable clones were formed. Individual

cloned were established and tested for LPAR1 expression.

1. Sanjana NE, Shalem O, Zhang F. Improved vectors and genome-wide libraries for CRISPR screening. Nature methods. 2014;11(8):783-4.

2. Pugacheva EN, Jablonski SA, Hartman TR, Henske EP, Golemis EA. HEF1-dependent Aurora A activation induces disassembly of the primary cilium. Cell. 2007;129(7):1351-63.

Primary cilia formation in human astrocytes and astrocytes immortalized with large T antigen.

A. Quantification of primary cilia in human astrocytes and human astrocytes immortalized with large T antigen (LTA) in serum-free media (SFM) as in **Fig.1 A-B**; two-tailed Student's *t*-test, n=3, 100 cells per experiment. **B.** Quantification of primary cilia over time in HA-LTA constitutively expressing shCon, shIFT88 or shKIF3B, pre-incubated for 48h with serum-free media (SFM) and stimulated with serum-supplemented media (SSM); experimental design on top, n = 3, per time point.

Supplementary Figure 1. Loskutov

Proliferation and ERK1/2 and AKT phosphorylation in response to single growth factor stimulation of HA-LTA.

A. Growth rate of HA-LTA with intact (shCon) or impaired (shIFT88, shKIF3B) ciliogenesis in serum-supplemented media (SSM), serum-free media (SFM) or SFM supplemented with indicated single growth factors. One-way ANOVA with Dunnett's post hoc test, *p< 0.05; n=3. **B, C.** Representative western blot of response to single growth factor stimulation for cells as in **A**. Experimental set up shown in top **B**: serum-starved cells were treated with 20ng/ml of EGF (bottom **B**), 20ng/ml of bFGF (**C**), lysed in time-dependent manner; and stained with antibodies against Thr202/Tyr204 phosphorylated ERK1/2 (pERK1/2 T202/204), total ERK1/2, Ser473 phosphorylated AKT (pAKT S473), total AKT and GAPDH, as a loading control. * indicates bleed-through of pERK1/2 signal.

Proliferation and ERK1/2 and AKT phosphorylation in response to single growth factor stimulation of HA-LTA.

A, **B**. Representative western blot of response to single growth factor stimulation for cells as in **Fig.S2A**. Experimental set up shown in top **Fig.S2B**: serum-starved cells were treated with 10ng/ml of PDGF-AB (**A**), or 20ng/ml of HGF (**B**), lysed in time-dependent manner; and stained with antibodies against Thr202/Tyr204 phosphorylated ERK1/2 (pERK1/2 T202/204), total ERK1/2, Ser473 phosphorylated AKT (pAKT S473), total AKT and GAPDH, as a loading control. * indicates bleed-through of pERK1/2 signal.

Supplementary Figure 3. Loskutov

LPAR1, 3 and 6 subcellular localization in cells with assembled primary cilium.

A. Representative images of cells with primary cilia expressing 3xFLAG LPAR3 and LPAR6, stained for FLAG-tag, acetylated α-tubulin (AcTub, cilia marker) and γ-tubulin (γTub, centriole/basal body marker). Scale bar - 10µm. **B.** Signal intensity profile of the primary cilium and cell edge regions of cell in **A** and **Fig.5A**, as shown in pictogram on top.

Supplementary Figure 4. Loskutov

LPAR1, 3 and 6 subcellular localization in cells with disassembled primary cilium.

A. Representative images of cells w/o primary cilia expressing 3xFLAG tagged LPAR1, LPAR3 and LPAR6, stained for FLAG-tag, acetylated α-tubulin (AcTub, cilia marker) and γ-tubulin (γTub, centriole/basal body marker). Scale bar - 10µm. **B.** Signal intensity profile of the centriole and cell edge regions of cell in **A**, as shown in pictogram on top.

LPAR1 antibodies validation for immunofluorescent staining.

A. Western blot of CRISPR-Cas9 induced knockout of LPAR1 in immortalized astrocytes (HA-LTA) stably expressing sgRNA (Con) or sgRNA against LPAR1. * indicates glycosylated forms of LPAR1. **B-C.** Representative image of HA-LTA, stained for acetylated α -tubulin (AcTub, cilium marker; B) or Arl13b (cilium marker; C), γ -tubulin (γ Tub, basal body marker) and LPAR1 (B - Proteintech 20442-I-AP, C - SantaCruz sc-515665); scale bar – 10µm.

Supplementary Figure 6. Loskutov

Endogenous LPAR1 localization in cells with and without primary cilium.

A. Representative images of HA-LTA with intact (shCon) or impaired (shIFT88, shKIF3B), stained for LPAR1, acetylated α -tubulin (AcTub, cilia marker) and γ -tubulin (γ Tub, centriole/basal body marker). Scale bar - 10µm. **B.** Signal intensity profile of the cilium/centriole and cell edge regions of cells in **A**, as shown in pictogram on top.

GBM6 and GBM12 have decreased ciliation and utilize LPA as a growth factor.

A. Representative images of GBM6 and GBM12 PDXs stained for Arl13b (marker of cilia) and γ-tubulin (γTub, marker of centriole/basal body). Arrows indicate primary cilia, black asterisks - ciliated cells, white asterisks - deciliated cells. Scale bar - 10µm. **B.** Quantification of primary cilia occurrence in GBM6 and GBM12 xenografts as in **A**; n=3, 100 cells per group. **C.** Representative images of GBM6 and GBM12 cultured primary cells stained for acetylated α-tubulin (AcTub, marker of cilia) and γ-tubulin (γTub, marker of centriole/basal body). Arrows indicate primary cilia occurrence in GBM6 and GBM12 primary cells, as in **C**; n=3,100 cells per group. **E.** Representative images of GBM6 and GBM12 cultured primary cells stained for acetylated α-tubulin (AcTub, marker of cilia), LPAR1 and γ-tubulin (γTub, marker of centriole/basal body). Arrows indicate primary cilia. Scale bar - 10µm. **F.** Growth rate of GBM6 and GBM12 primary cells in serum-free media supplemented with 20ng/ml of EGF, 20ng/ml of bFGF, B27 supplement and indicated concentrations of LPA. One-way ANOVA with Dunnett's post hoc test; *, *p<0.05 for GBM6 and GBM12 respectively, compared to no LPA control; n=3. **G.** Growth rate of GBM6 and GBM12 respectively, compared to no LPA control; n=3. **G.** Growth rate of GBM6 and GBM12 respectively, compared to no Ki16425 control; n=3.

Administration of Ki16425 has no effect on intracranial tumor growth.

A. Representative images of GBM12 growing in brains of mice treated with Vehicle-control or Ki16425. **B.** Quantification of bioluminescence, as in **A**; two-way ANOVA, Tukey post hoc test; n = 5. **C.** Representative images of mice brains injected with PEG-PLGA nanoparticles loaded with fluorescent dye. **D.** Quantification of fluorescence from brains as in **C**; n=2.

target	cat.#	host species	company	application	dilution
acetyated alpha tubulin	T6793	mouse	Sigma	IF, F-IHC	1:1000
acetyated alpha tubulin	5335S	rabbit	Cell Signaling	IF	1:500
gamma tubulin	sc-7396	goat	Santa Cruz	IF, F-IHC	1:500
IFT88	60227-1-lg	mouse	Proteintech	WB	1:1000
Kif3B	sc-50456	rabbit	Santa Cruz	WB	1:500
alpha tubulin	16199	mouse	Sigma	WB	1:40000
pERK1/2 T202/204	9101	rabbit	Cell Signaling	IF, WB	1:200, 1:1000
ERK1/2	4695	rabbit	Cell Signaling	WB	1:1000
GAPDH	MAB374	mouse	Millipore	WB	1:80000
pAKT S473	AF887	rabbit	R&D Systems	IF, WB	1:100, 1:500
AKT	2920	mouse	Cell Signaling	WB	1:1000
FLAG	F1804	mouse	Sigma	IF, WB	1:500, 1:1000
FLAG	PA1-984B	rabbit	Thermo Fisher Scientific	IF, WB	1:500, 1:1000
G alpha s	sc-135914	mouse	Santa Cruz	IF, WB	1:100, 1:500
G alpha q	sc-393	rabbit	Santa Cruz	IF, WB	1:200, 1:1000
G alpha 12	sc-409	rabbit	Santa Cruz	IF, WB	1:100, 1:200
G alpha i1	sc-391	rabbit	Santa Cruz	IF, WB	1:100, 1:500
Arl13b	17711-1-AP	rabbit	Proteintech	IF, F-IHC	1:400, 1:200
LPAR1	20442-1-AP	rabbit	Proteintech	IF	1:100
LPAR1	10005280	rabbit	Cyman chemicals	WB	1:250
LPAR1	sc-515665	mouse	Santa Cruz	IF	1:100

Supplementary table 1

name	clone ID	targeting sequence	vector	company
shIFT88#1	V3LHS_338157	GGAATAACACTGACCACCT	pGIPZ	Dharmacon
shIFT88#2	V3LHS_338155	AGCATCTGAATACTGACCA	pGIPZ	Dharmacon
shKif3B#1	V3LHS_644788	TTGCTAGTCTCTTCTCTCA	pGIPZ	Dharmacon
shKif3B#2	V3LHS_635533	ATCTCATCTTCATCCTGCA	pGIPZ	Dharmacon

Supplementary table 2

name	sequence	company
BamHI-LPAR1	ATTGGATCCATGGCTGCCATCTCTACTTCC	IDT Technologies
LPAR1-TGA-Xhol	ATTCTCGAGTCAAACCACAGAGTGGTCATTGC	Invitrogen
BamHI-LPAR3	ATTGGATCCATGAATGAGTGTCACTATGACAAGC	IDT Technologies
LPAR3-TGA-Xhol	ATTCTCGAGTCAGGAAGTGCTTTTATTGCAGACTG	Invitrogen
BamHI-LPAR6	ATTGGATCCATGGTAAGCGTTAACAGCTCC	IDT Technologies
LPAR6-TGA-Xhol	ATTCTCGAGTCAGGCAGCAGATTCATTGTCAAATATC	Invitrogen
ER-3xFlag-MSC (forward strand)	GATCCTAAGCTTACCGGTATGAAGACGATCATCGCCCTGAGCT ACATCTTCTGCCTGGTATTCGCCATGGACTACAAAGACCATGAC GGTGATTATAAAGATCATGACATCGATTACAAGGATGACGATGA CAAGGGAGGTGGAGGCGGTGGAGGATCCTGTACAGCTAGCGA ATTCTGCAGATATCGGCGCGCCGTTTAAACACGCGTCTCGAGT GATTAATTAAGGTCGACGATCCT	Invitrogen
sgLPAR1_F	caccgTCTTTGGCTATGTTCGCCAG	Invitrogen
sgLPAR1_R	aaacCTGGCGAACATAGCCAAAGAc	Invitrogen

Supplementary table 3