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Supplementary Tables

Supplementary Table 1: Overview of freely available tools for module detection. The marker of a method is filled
if this tool was used for the evaluation of that particular method. Tools with a graphical user interface (GUI) can be
both local, usually using the local computing resources, or web-based, using the computing resources of the server.

Name Methods Availability Website/References

Clustering

flame A Command-line [1]

wgcna L M R [2, 3]

mcl G Command-line [4]

scikit-learn
I H M

K F T
Python [8]

apcluster H R [5, 6]

ELKI

H B M

M F T

V

Java, GUI (local) elki.dbs.ifi.lmu.de [7]

cluster B M P R [9]

nbclust D N R [22]

cluto M F Command-line

matlab M E F Matlab

GenePattern M E GUI (web) genepattern.org [13]

BicAT M F Command-line, GUI (local) tik.ee.ethz.ch/sop/bicat [11]

gitools M GUI (local) gitools.org [15]

Sleipnir M Command-line [10]

weka M F T Java [12]

babelomics M F Q GUI (web) babelomics.org [14]

transitivity clustering M J Command-line, GUI (local,web) transclust.compbio.sdu.dk [16]

Expander M S Command-line, GUI (local) acgt.cs.tau.ac.il/expander [17–19]

orange M GUI (local), Python (visual pro-

gramming)

orange.biolab.si/

scipy M Python [20]

fastcluster M Python, R [21]

GENE-E M GUI (local), R, Java broadinstitute.org/cancer/software/GENE-E

fclusttoolbox C Matlab

mfuzz C R/Bioconductor [23]

kohonen E R [24]

hybridHclust O R

clValid Q R [26]

densityClust R R [25]

fpc T R

clues U R [27]

ConsensusClusterPlus R/Bioconductor [32]

Lemon-Tree Java [29]

mclust R [30, 31]

Bayesian Hierarchical
Clustering

R [28]
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Name Methods Availability Website/References

Decomposition

Matrix decomposition

fastICA A B C R

PCA and ICA
A B C

E
Matlab

scikit-learn
A B C

E
Python [8]

FastICA for JAVA A B Java

mixOmics D R [33]

stats E R

nimfa Python [34]

Postprocessing

fdrtool
A B D

E
R [35, 36]

Biclustering

scikit-learn A Python [8]

biclust A F H R [37]

isa2 B R [39]

BicAT B H Command-line, GUI (local) tik.ee.ethz.ch/sop/bicat [11]

FABIA E R/Bioconductor [38]

QUBIC C R, Command-line, GUI (web) sbl.bmb.uga.edu/ maqin/bicluster/ [40]

BiCluE D Command-line [41]

msbe G Command-line [42]

ELKI H Java, GUI (local) elki.dbs.ifi.lmu.de [7]

opsm I Command-line [43]

BicMix Command-line

cMonkey R

BiBench Python [44]

blockcluster R [45]

Network inference followed by graph clustering

Direct network inference

GENIE3 A R [47]

GP-DREAM A B D GUI (web), Command-line dream.broadinstitute.org [46]

minet B R/Bioconductor [49]

CLR B Matlab [48]

TIGRESS D Matlab [50]

ARACNE Command-line, GUI (local) califano.c2b2.columbia.edu/aracne [51]

Graph clustering

mcode GUI (local) baderlab.org/Software/MCODE [52]

transitivity clustering Command-line [16]

mcl Command-line [4]

apcluster R [5]

Module network inference

Lemon-Tree Java [29]
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Name Methods Availability Website/References

Iterative network inference

GP-DREAM A GUI (web), Command-line dream.broadinstitute.org [46]

merlin A Command-line [53]

Genomica B GUI (local) [54]

Supplementary Table 2: Overview of freely available tools for the visualization of co-expression modules.

Visualization of modules

d3heatmap R
Interactive heatmaps

plotly R, Python, GUI (web)

gitools GUI (local) Interactive heatmaps with additional annotations

pheatmap R

Heatmaps with additional annotations

ComplexHeatmap R/Bioconductor

gplots R

GENE-E GUI (local), R, Java

matplotlib Python

Heatplus R/Bioconductor

Furby GUI (local)

Interactive visualization of biclusters and their relationshipsBicOverlapper GUI (local)

ExpressionView GUI (local)

Supplementary Table 3: Overview of freely available tools for the functional interpretation of co-expression modules,
using biological functional terms such as Gene Ontology, pathway analysis or disease associations.

Functional interpretation of genes within modules

gitools GUI (local) Enrichment for GO terms and KEGG pathways

Enrichr GUI (web) Enrichment for a vast variety of functional, pathway or disease
related gene sets

Enrichment Map GUI (local) Cytoscape plug-in to visualize results of module enrichment

FGNet R/Bioconductor Interpreting and visualizing functional enrichment in gene net-
works

ReactomePA R/Bioconductor Pathway analysis of Reactome pathways

ConsensusPathDB GUI (web) Pathwaw enrichment

AmiGO GUI (web) GO enrichment

ReViGO GUI (web) Dimensionality reduction of enrichment results

gProfiler GUI (web) Enrichment for GO terms, KEGG pathways and OMIM disease
associations

gostats R GO enrichment while taking into account the structure of the
GO graphtopGO R/Bioconductor

clusterProfiler R/Bioconductor Assess enrichment of modules for GO terms, pathways,
disease associated genes and custom gene setsDAVID GUI (web)

MSigDB GUI (web) Assess enrichment of modules for GO terms, pathways and
disease associated genesGSEA GUI (local)
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Supplementary Table 4: Overview of freely available tools to infer and visualize regulatory module networks.

Inferring and visualizing regulatory module networks

GP-DREAM GUI (web) State-of-the-art tools for inferring regulatory networks

Cytoscape GUI (local) Visualization of (regulatory) networks

Lemon-Tree Command-line Infer and visualize the regulation of modules as decision trees

Supplementary Table 5: Overview of freely available tools for parameter estimation of module detection methods.

Parameter estimation using cluster validity indices or external measures

nbclust R Internal: Average silhouette width, Calinski-Harabasz index,
Davis-Bouldin index and many more

scikit-learn Python Internal: Average silhouette width

clValid R External: BHI
Internal: Dunn index

clusterCrit R Internal: Average silhouette width, Calinski-Harabasz index,
Davis-Bouldin index and many more

clv R Internal: Davis-Bouldin index and many more

Cluster Validity Analysis
Platform

Matlab Internal: Calinski-Harabasz index, Davis-Bouldin index and
many more
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Supplementary Figures
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Supplementary Figure 1: Illustration of the four main scores used in this study.
Each score assesses the similarity between a set of known modules and a set of observed modules. The recovery and
relevance will try to match individual modules between the two sets using the Jaccard index, a measure of overlap
between two mathematical sets. The recovery tries to match known modules with observed modules, while the
relevance tries to match observed modules with known modules. The recall and precision scores will compare the
number of times a pair of genes is together present in observed modules versus those in known modules. The recall
determines whether a pair of genes is present in at least the same number of modules in the known modules as in
the observed modules, and vice-versa for the precision.
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Training score for genes in only one module
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Supplementary Figure 2: Bias of module detection methods towards genes within one module.
Shown are training scores (using the harmonic mean of only the Recall and Precision as these are gene-based scores) for
genes present in only one module (x-axis) versus genes in more than one module (y-axis) in the minimal co-regulation
module definition. Dotted lines represent an equal score (black) or a two-fold higher score (grey). The shape of a
method is filled if it can detect overlapping modules (Supplementary Note 2). We found that most clustering and
decomposition methods are better at correctly grouping genes present in one module, while biclustering methods are
slightly biased towards genes in more than one module. Despite this, decomposition methods still outperform every
other category both at genes within one module as well as for genes in multiple modules.
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Supplementary Figure 3: Average test scores across different datasets (top) and module definitions (bot-
tom).
(a) While the performance of individual methods is variable across the different datasets (y-axis), the relative perfor-
mance of the top methods within every category remains relatively stable. For example, in none of the datasets do
biclustering methods outperform decomposition methods, although some biclustering methods do perform relatively
well on human and synthetic datasets. (b) The relative performance of the different methods is very stable between
different module definition.
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Supplementary Figure 4: Variability of performance for all module detection methods.
We calculated score for every combination of gold standard regulatory network, module definition, training datasets
and (in case of test scores) test dataset. Shown are the distributions of the ranks of each method along each of
these combinations, where every combination was weighted so that each of the three module definitions (minimal
co-regulation, strict co-regulation and interconnected subgraphs) and each of the four organisms (E. coli, yeast,
human and synthetic) had equal weight. Whiskers denote 10% and 90% weighted percentiles, while the box denotes
25% and 75% percentiles. (a) Methods are ordered according to their average test score. (b) Methods are ordered
according to their average training score.
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Supplementary Figure 7: Comparison of method ranks across different scoring metrics.
Each score (y-axis) assesses the correspondence between a set of observed and known modules. Some scores have some
difficulties with handling overlapping and/or non-exhaustive module assignment (Supplementary Note 1). Ranks
which are potentially unreliable, if also the method detects non-exhaustive and/or overlapping modules (bottom),
are therefore shown in a smaller font. Despite this, we found that the overall ranking of most methods was similar
between most scores.
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Supplementary Figure 8: Comparison of method test and training scores across different scoring metrics.
Each score (y-axis) assesses the correspondence between a set of observed and known modules (Supplementary
Note 1). Some scores have some difficulties with handling overlapping and/or non-exhaustive module assignment
(Supplementary Note 1). Scores which are potentially unreliable, if also the method detects non-exhaustive and/or
overlapping modules, are therefore shown with a diagonal pattern. Methods are ordered according to their average
test score. 10
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Supplementary Figure 9: Comparison between different ways of estimating the number of modules.
One of the most important parameters for most module detection methods are those influencing the number of
modules found in the dataset. There are three ways a method can determine the number of modules: (i) explicitly,
by retrieving a fixed number of modules determined by the user, (ii) implicitly, by using other parameters determined
by the user to estimate the number of modules and (iii) automatically, by determining the number of modules
independent of parameters. Implicitly or automatically determining the number of methods can therefore allow
methods to better adapt to individual characteristics of a dataset, although it can also lead to a suboptimal number
of modules when compared with a given gold standard. We found that among clustering methods those that implicitly
estimated the number of methods performed better than their explicit counterparts. However, implicit or automatic
module number estimation is (among current methods) not mandatory for optimal performance, as all decomposition
methods have a user parameter for the number of components (and thus the number of modules) within the data.
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Supplementary Figure 10: Comparison between automatic parameter estimation methods and optimizing
parameters on other datasets.
Shown are the percentage of dataset and gold standard (module definition and regulatory network) combinations
where automatically estimating the number of parameters is better than using the most optimal parameters from
another dataset (as given by the test score). This shows that even when a certain method is on average good at
estimating the parameters of a particular method, none of the parameter estimation methods consistently perform
well on every single combination of datasets and gold standards.
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Supplementary Figure 11: Comparing the automatic estimation of parameters with randomly selecting
parameters.
Shown in dark grey are the distribution of the score (x-axis) obtained after randomly selecting a set of parameters
from those explored within the grid-search (Supplementary Note 2) across different datasets. Other annotations are
similar as in Figure 3. The different markers and colors denote the score after automatically estimating parameters
using either a cluster validity index or some measure looking at functional enrichment. The average training score
(the most optimal score across all parameters) and average test scores (the score at those parameters which were
optimal for another dataset) are shown as a grey background window. Current cluster validity indices usually only
perform better than random when used with clustering methods, while measures based on functional enrichment
(using the Gene Ontology database) usually work well across all different method categories.
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Supplementary Figure 12: Effect of alternative similarity metrics on the performance of clustering methods.
One of the most important parameters for some clustering methods is the similarity or distance measure used
to compare genes. The most popular measure, the Pearson correlation, assesses the extent towards which the
expression of two genes is linearly correlated among all samples. Several alternative measures have been proposed
(Supplementary Note 3), for handling inverse relationships, non-linear effects or improve the robustness of the
measure. Here we evaluated these alternative measures on four of the top clustering methods which require a
similarity or distance matrix as input. (a) Example of an inverse relation between two known co-regulated genes
(RLI1 and RMR1) in the DREAM5 yeast dataset. (b) Example of a non-linear relation between two known co-
regulated genes (gltA and ackA) in the DREAM5 E. coli dataset. (c) Example of a relation between two known
co-regulated genes (TRP4 and HIS3) with a skewed distribution and outliers. (d) Performance of four clustering
methods with different similarity measures, averaged over datasets and module definitions. (e) For every limitation
of the Pearson correlation we assessed whether alternative measures can handle it theoretically (+,± and -). Can
the metric handle inverse relations (+)? Can the metric detect non-linear monotonic relations (±) or more complex
non-linear relations (+)? Can the method either handle outliers and/or skewed distributions (+)? Shown next to
the theoretical properties are three case studies from a, b and c. Given are the rank percentages of every case study
among all gene pairs in the datasets (higher is better). (f) Percentage of known co-regulated gene pairs removed
(red) and gained (blue) between the Pearson correlation and an alternative metric within the top 10% of all gene
pairs.
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Supplementary Figure 13: Effect of a reduced number of samples on the performance of top module
detection methods.
A subset of samples (x-axis) were randomly sampled, the performance of top methods (best methods within every
module detection category) was again assessed using a grid search parameter exploration. We found that the
performance of decomposition methods was more sensitive to a reduced number of samples, both for training and
test scores.
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Supplementary Figure 14: Effect of noise on the performance of module detection methods
We used synthetic data to assess the influence of noise on the performance of the different methods. (a) Different
levels of noise (noise strength, x-axis) were generated by changing the variance of normal and lognormal noise
distributions within the GeneNetWeaver program. We found that most top methods had a comparable decrease in
performance with increasing noise strength. Performance of other methods is shown in the background. (b) This
was even more pronounced when comparing the robustness to noise (calculated by dividing the average performance
among all noise strength levels over the initial performance without noise) with baseline performance, with some
exceptions such as WGCNA (clustering method L).
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Supplementary Figure 15: Recommendations for future development for the detection and interpretation
of modules in gene expression data.
Counterpart of Figure 5 for developers of module detection methods. We list some aspects for developers of methods
which have already been accomplished (green), primarily with regards to generating a global unsupervised overview
of the data using clustering methods. In addition, we list some ongoing challenges, primarily with the parameter
estimation, visualization and interpretation of biclustering and decomposition methods (orange and red).
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Supplementary Figure 16: Performance of the inferred network when combining modules from different
module detection methods with direct network inference.
Modules can be used to improve the interpretability and the quality of an inferred regulatory network. Here we com-
pared the accuracy of the inferred network when using a state-of-the-art direct network inference method (GENIE3)
in combination with different module detection methods. Starting from the output of GENIE3 (a weighted network
between regulators and target genes), we first calculated a weighted network between modules and regulators by
averaging the weights of all genes within the module. From this, we again calculated a weighted network between
regulators and individual target genes by determining for every regulator and target pair its maximal weight within the
module network. The accuracy of this network was then assessed using the standard area under the precision-recall
curve metric (AUPR). We found that the modules from decomposition methods generally lead to the most accurate
inferred network. However, the advantage of including modules to improve the inferred network was only clear on
yeast and synthetic data, as the performance slightly decreased on E. coli data and the increase of performance on
human data was negligible.
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Supplementary Figure 17: Effect of working on the operon level or adding sigma factor interactions. (a)
Genes within an operon typically have similar expression values due to co-transcription. We assessed whether merging
the expression profiles of the genes within an operon, together with their regulatory interactions, would have an effect
on the relative performance of the methods. We found that while the performance was slightly lower for most methods
when merging the operons, the overall ranking of the methods was not severely affected. (b) We also found that
including regulatory links between sigma factors (excluding the basal sigma factor) and target genes has a negligible
effect on the performance of the methods.
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Supplementary Figure 18: Membership distributions for two module definitions in which overlap was
prevalent.
These distributions show the number of genes (y-axis) which are part of one (red) or more (blue, x-axis) modules. We
found that irregardless of the network a similar number of genes was part of more than one module, 30%-40% in the
case of minimal co-regulation and 50%-60% in the case of a particular interconnected subgraph definition (transitivity
clustering with cutoff = 0.9). The presence of overlap in the gold standard could allow methods which can detect
overlapping modules (such as most biclustering and decomposition methods) to outperform other methods which
can not handle overlap (such as most clustering methods).
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Supplementary Figure 19: Co-expression of the known modules.
To determine whether the expression datasets contain the known modules, we assessed whether the known modules
are globally or locally co-expressed. (a) Distributions of the correlation (x-axis) between gene pairs within at least
one known modules (according to three module definitions, where the distributions of the interconnected subgraph
definitions were merged), compared with random gene pairs. Gene pairs within a known module are more frequently
positively co-expressed compared with random gene pairs, especially on E. coli and synthetic datasets. (b) Local
co-expression of the known modules, compared with randomly permuted modules, based on the extreme biclustering
definition employed by biclustering methods such as ISA and QUBIC. Extreme biclusters are defined as groups of
genes which are relatively highly (or lowly) expressed in (at least) a subset of samples. We assessed this for every
module by first transforming the expression matrix to z-scores (µ = 0 and σ = 1 for every gene). If a module is
locally co-expressed in 5% of the samples, it will (according to the extreme bicluster definition) have a high average
absolute z-score in 5% of the samples. We therefore show here the distributions of the 95% percentile of these
average absolute z-scores across different modules. This figure indicates that the known modules are also more
locally co-expressed compared with randomly permuted modules.
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Supplementary Figure 20: Functional enrichment of known modules.
(a) The functional coverage of the known modules, i.e. how well do all known modules cover the known functional
space, given by non-overlapping Gene Ontology terms and KEGG pathways. This is much higher on E. coli datasets
compared to yeast, indicating that the regulatory networks of E. coli are relatively more complete compared with
those of yeast. (b) Percentage of known modules enriched in at least one functional term. In E. coli a large majority
of known modules are enriched, while on yeast data this value varies around 50%.
Together, this indicates that the known modules on E. coli have relatively better quality, one possible explanation
for why the performance on E. coli data is generally higher than on yeast data.
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Supplementary Figure 21: Functional coverage of observed modules.
We assessed how well the observed modules of different methods cover the (non-overlapping) functional space of
Gene Ontology terms and KEGG pathways. (a) Average coverage across E. coli, yeast and human datasets. We
calculated both the average coverage when using the most optimal parameters (light color) or the average coverage
at the most optimal parameters of another dataset (dark color). Decomposition and direct NI methods have the best
coverage of functional space, followed by clustering and iterative NI methods. (b) Average functional coverage (test
scores) on individual datasets. The observed modules generally cover a larger part of the functional space on E. coli
data compared with yeast and human, although for yeast data the coverage is still considerably larger compared with
the known modules (Supplementary Figure 20).
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Supplementary Figure 21: Heatmaps of the expression datasets used in this study.
Shown are expression values (red - orange - blue) and the first 20 principal components (purple - white - green) for
both the gene (rows) and sample (columns) dimensions. Dendrograms were created through hierarchical clustering
using Ward’s criterion.
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Supplementary Figure 22: Distribution of log-fold changes between all genes and samples, for three datasets
analyzed by Hochreiter et al. [38] and datasets used in this study. Some datasets contain large changes in gene
expression (with high fold-changes) while others contain more subtle changes.
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Supplementary Figure 23: Characterization of the known modules with respect to the coverage of all genes
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Whiskers denote 10% and 90% weighted percentiles, while the box denotes 25% and 75% percentiles.
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Supplementary Figure 24: Co-expression of modules detected by module detection methods and known
modules.
Three co-expression measures were calculated, based on the three main bicluster types. To calculate the strength of
co-expression, we calculated the median of the difference between the co-expression of a true module and its permuted
version. (a) Co-expression based on the average correlation between gene pairs within a module, measuring how well
the expression profiles are similar within a module. (b) Co-expression based on the average top 5% z-score, measuring
how extreme the expression is within a module. (c): Co-expression based on the root mean squared deviation within
each module, measuring how constant the expression is within a module. (d-f) Similar as a b and c but looking at
co-expression within the biological samples of a bicluster.
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Supplementary Figure 25: Variability of scores of permuted modules
Shown are distributions of the scores when using randomly permuted known modules to assess performance (n = 500).
Whiskers denote 10% and 90% weighted percentiles, while the box denotes 25% and 75% percentiles.
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Supplementary Figure 26: Effect of network cutoff on human datasets. Average aucodds scores across the
three different human datasets at different cutoff values of the gold standard regulatory network. Generally, the
performance of methods decreases with increasing stringency (a, b), although the performance of some biclustering
methods (c) and direct NI methods (d) remains stable for much longer.
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Supplementary Note 1: Measures for comparing overlapping modules

Numerous scores have been proposed to compare clusterings of data [55–58], but most of these scores have problems
with handling overlap1 and/or non-exhaustive cluster assignment2, which has already been discussed elsewhere [58]
and which we here further illustrate using 12 small test cases (Supplementary Note 1 Figure 1). We define two
different sets of known modules, without overlap (1-6) and with overlap (7-12). A perfect match between the observed
modules and known modules is given in case 1 and 7. In every other test case the observed modules do not perfectly
correspond with the known modules, and therefore the score of these test cases should become worse compared to
case 1 or 7. However, as shown in Supplementary Note 1 Table 1, none of the classical clustering scoring metrics
fulfill this criterion. Most scores have issues when the known modules and/or observed modules overlap with each
other, as the performance on cases 4-6 and 11-12 stays the same or even increases compared to the perfect case.
Only one score can perfectly handle overlap (F-measure [56]), but it has problems handling non-exhaustive cluster
assignment, as evidenced by its perfect score on cases 2 and 9.

1 3 4 5 6

7

2

8 9 10 11 12

Observed modules Known modules

Known modules without overlap

Known modules with overlap

Perfect solution

Supplementary Note 1 Figure 1: 12 test cases to assess scores for comparing two sets of potentially
overlapping modules.

Several alternative scores have been proposed in literature to better handle potential overlap between clus-
ters/modules. In the following formulas, we use these conventions: G represent all genes, M a set of known
modules, M ′ a set of observed modules, M(g) the modules which contain g and E(g,M) the set of genes which are
together with g in at least one module of M (including g itself).

One family of measures, which includes the recovery and relevance scores used in this study, have already been
extensively applied within the biclustering literature [44, 59]. Similar scores have also independently been described
elsewhere [60, 61]. These scores are calculated in two steps. First a similarity/distance matrix is calculated between
the two sets of modules. There are several possibilities for this similarity score, such as the Jaccard index [59] or
entropy based measures [60]. In the next step the similarity values are summarized in one number by mapping
known modules to observed modules and vice versa. A score quantifying the false positives (S1) is calculated by
summing/averaging the similarities for every observed modules by selecting the best representative in the known
modules. Similarly, a score quantifying the false negatives (S2) is calculated by summing/averaging the similarities
for every known modules by selecting the best representative in the observed modules. These two scores can then
be combined in a final score giving the trade-off between false positives and false negatives by summing or averaging
S1 and S2.

Turner et al. [62] used an asymmetric measure for module similarity:

S1 = Sensitivity =
1

|M ′|
∑

m′∈M ′

max
m∈M

|m′ ∩m|
|m|

S2 = Precision =
1

|M |
∑
m∈M

max
m′∈M ′

|m′ ∩m|
|m′|

S =
2

1
S1

+ 1
S2

(Score 1)

1Defined as at least one gene belonging to multiple modules
2Defined as certain genes not included in any modules
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Known modules without overlap Known modules with overlap

F-measure [55] 1.00 0.75 0.50 1.11 1.21 1.33 1.25 0.90 0.75 0.73 1.57 2.06

F-measure [56] 1.00 1.00 0.77 0.89 0.81 0.77 1.00 0.89 1.00 0.67 0.96 0.97

1-FDR [56] 1.00 0.94 0.25 1.00 1.00 1.00 1.00 0.60 0.75 0.40 1.00 1.00

1-FPR [56] 1.00 0.92 0.50 1.00 1.00 1.00 1.00 0.50 0.62 0.40 1.00 1.00

FMI [56] 1.00 0.97 0.50 0.83 1.00 0.89 1.00 0.77 0.87 0.63 1.00 0.91

Jaccard [56] 1.00 0.94 0.25 0.70 1.00 0.80 1.00 0.60 0.75 0.40 1.00 0.83

Rand [56] 1.00 0.96 0.57 0.75 1.00 0.86 1.00 0.71 0.82 0.57 1.00 0.86

Sensitivity [56] 1.00 1.00 1.00 0.70 1.00 0.80 1.00 1.00 1.00 1.00 1.00 0.83

Specificity [56] 1.00 0.92 0.50 1.00 1.00 1.00 1.00 0.50 0.62 0.40 1.00 1.00

V-measure [56] 1.00 0.00 1.00 0.22 0.67 0.49 0.13 0.43 0.00 0.46 0.12 0.07

Purity [57] 1.00 0.75 0.62 1.00 1.38 1.25 1.25 1.00 0.75 1.00 1.62 2.00

Entropy [57] 0.56 0.00 0.67 0.61 1.17 1.01 0.68 0.67 0.00 1.05 1.06 1.09

Supplementary Note 1 Table 1: Comparison of different measures for comparing two sets of modules,
based on the test cases described in Supplementary Note 1 Figure 1.
These metrics are frequently used to compare different non-overlapping and exhaustive clusterings. Compared with
the score on test cases 1 and 7 (grey), a good measure should consequently score lower on cases 2-6 and 8-12 (green).
This condition is not satisfied by any of the measures.

The ”Precision” score was originally named the ”Specificity” in this study, but the actual meaning relates more closely
to the common usage of precision as it estimates how well the observed modules are also known.

Prelić et al. [59] used a symmetric measure for module similarity, the Jaccard index:

S1 = Recovery =
1

|M |
∑
m∈M

max
m′∈M ′

Jaccard(m′,m)

S2 = Relevance =
1

|M ′|
∑

m′∈M ′

max
m∈M

Jaccard(m′,m)

Jaccard(m′,m) =
|m′ ∩m|
|m′ ∪m|

S =
2

1
S1

+ 1
S2

(Score 2)

Hochreiter et al. [38] proposed a slightly modified version of the Recovery and Relevance. They added an
additional constraint so that every known module can only be mapped to one observed module and vice versa. If
pi = {mi,m

′
i} represents a pair of a known module m and observed modules m′, the consensus score is defined as

Consensus =
1

max (|M |, |M ′|)
∑
pi∈P

Jaccard(m′,m) (Score 3)

The known modules and observed modules are matched with each other so that the consensus score is maximized
using the Hungarian algorithm (Score 3).

Goldberg et al. [61] proposed the Best Match scores, using the edit distance, jaccard index and an entropy based
measure (based on earlier work by [60]) as similarity measures.

S1 =
1

|M |
∑
m∈M

max
m′∈M ′

Jaccard(m′,m)

S2 =
1

|M ′|
∑

m′∈M ′

max
m∈M

Jaccard(m′,m)

S =S1 + S2 (Score 4)
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S1 =
1

|M |
∑
m∈M

max
m′∈M ′

H(m′|m)

S2 =
1

|M ′|
∑

m′∈M ′

max
m∈M

H(m|m′)

S =S1 + S2 (Score 5)

Although Score 2 and Score 4 have the same S1 and S2, they differ in the way these two scores are aggregated,
ie. a harmonic mean (Score 2) and a summation (Score 4). We did not consider the other scores proposed by
Goldberg et al. [61] because they require one or more parameters and would add another source of potential bias in
the analysis.

Another family of measures is based on the BCubed measure. First proposed in [63] to compare non-overlapping
clustering, Amigó et al. [58] extended this measure to also handle overlap. Rosales-Méndez and Raḿırez-Cruz [64]
adapted the metric to make sure it can only reach the optimal value of 1 when the observed modules are the same
as the known modules:

S1 = Recall =
1

|G|
∑
g∈G

1

|E(g,M)|
∑

g′∈E(g,M)

min(|M ′(g) ∩M ′(g′)|, |M(g) ∩M(g′)|) · Φ(g, g′)

|M(g) ∩M(g′)|

Φ(g, g′) =
1

|M ′(g, g′)|
∑

m′∈M ′(g,g′)

max
m∈M(g,g′)

Jaccard(m′,m)

S2 = Precision =
1

|G|
∑
g∈G

1

|E(g,M ′)|
∑

g′∈E(g,M ′)

min(|M ′(g) ∩M ′(g′)|, |M(g) ∩M(g′)|) · Φ(g, g′)

|M ′(g) ∩M ′(g′)|

Φ(g, g′) =
1

|M(g, g′)|
∑

m∈M(g,g′)

max
m′∈M ′(g,g′)

Jaccard(m′,m)

S =
2

1
S1

+ 1
S2

(Score 6)

While we also considered including ”module preservation statistics” as proposed by Langfelder and colleagues
[65], we found that these measures are primarily useful to assess whether individual modules are preserved within a
network, but not whether all (or most) modules present within a network are found by a particular module detection
method.

The structure and size of modules detected by module detection methods can vary wildly between methods and
parameter settings. For instance, some parameter settings of decomposition methods will only assign a small number
of genes to any module. Other parameter settings will assign all genes multiple times to several large modules. A
good score should be robust against such extreme cases as they could be produced by certain methods during the
parameter optimization procedure. We tested this based on an empirical experiment where we used a set of known
modules (from the E. coli COLOMBOS dataset using the minimal co-regulation module definition) and compared
them with several extreme cases of observed modules (Supplementary Note 1 Figure 2):

• Two trivial clustering examples. Putting all genes together in one large module had bad performance for all
scores except for Score 5. Putting all genes in their own separate module resulted in bad performance for all
scores except for Score 4.

• Permutations of the known modules. A certain percentage of all genes is mapped to a permuted version of
these genes, and all instances of a gene within the known modules are replaced by the mapped version. As
expected, in all cases permuting the known modules had severe effects on performance.

• Effect of using only a subset of all known modules. Again, performance decreased consistently between all
scores.

• Effect of randomly adding extra genes to the known modules. Score 5 responded very strongly to this relative
to other perturbations.

• Effect of randomly removing genes from known modules. Again, performance decreased in all scores, although
the effect was relatively weak for Score 5.
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• Randomly sampling modules from the full solution set (all possible modules).

Overall we concluded that Score 4 and 5 respond inconsistently in certain perturbational settings, while the other
scores are more robust.
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Supplementary Note 1 Figure 2: Empirical study of the robustness of several scores comparing overlapping
clusters (as defined in Supplementary Note 1) in perturbational settings.
In every case, known modules (from the E. coli COLOMBOS dataset using the minimal co-regulation module
definition) were compared to a different set of modules given in the y-axis, usually derived from the known modules
but with a subset of genes permuted, a subset of modules selected or some random genes added or removed from
the modules. As a reference we also give the performance of the modules detected by affinity propagation (clustering
methods I) at optimal parameter settings.

Finally, we tested whether these scores can better handle both overlap and non-exhaustive cluster assignment
using the test cases from Supplementary Note 1 Figure 1. We found that only Score 1 still had problems regarding
overlap in a subset of cases. The other scores (Score 2, 3 and 6) all performed well according to our test cases.
Together with the strong theoretical background of Score 6 [58] and several examples of studies where Score 2 has
been successfully applied to compare biclustering methods [40, 44, 59], we chose Score 2 and Score 6 for the main
evaluation study. The score on the other metrics, together with the three most popular classical clustering evaluation
measures are given in Supplementary Figure 8.
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Known modules without overlap Known modules with overlap

Sensitivity (Score 1a) [62] 1.00 0.50 0.75 1.00 1.00 1.00 1.00 0.83 0.75 0.58 1.00 1.00

Specificity (Score 1b) [62] 1.00 1.00 1.00 0.76 1.00 0.83 1.00 1.00 1.00 1.00 1.00 0.95

F-measure (Score 1) [62] 1.00 0.67 0.86 0.86 1.00 0.91 1.00 0.91 0.86 0.74 1.00 0.98

Recovery (Score 2a) [59] 1.00 0.50 0.75 0.76 1.00 1.00 1.00 0.83 0.62 0.58 1.00 1.00

Relevance (Score 2b) [59] 1.00 1.00 0.75 0.76 0.71 0.83 1.00 0.83 1.00 0.56 0.92 0.95

F-measure (Score 2) [59] 1.00 0.67 0.75 0.76 0.83 0.91 1.00 0.83 0.77 0.57 0.96 0.98

Consensus (Score 3) [38] 1.00 0.50 0.75 0.76 0.50 0.67 1.00 0.83 0.50 0.39 0.67 0.67

Recall (Score 6a) [64] 1.00 0.75 0.34 0.81 1.00 1.00 1.00 0.56 0.64 0.30 1.00 1.00

Precision (Score 6b) [64] 1.00 0.75 0.44 0.60 0.91 0.70 1.00 0.83 0.75 0.58 0.87 0.50

F-measure (Score 6) [64] 1.00 0.75 0.39 0.69 0.95 0.82 1.00 0.67 0.69 0.40 0.93 0.67

F-measure (Score 2 and 6) 1.00 0.71 0.51 0.73 0.89 0.86 1.00 0.74 0.73 0.47 0.94 0.80

Supplementary Note 1 Table 2: Comparison of different measures for comparing two sets of modules,
based on the test cases described in Supplementary Note 1 Figure 1.
Unlike the metrics in Supplementary Note 1 Table 1, all metrics have been developed for overlapping and non-
exhaustive sets of modules. Compared with the score on test cases 1 and 7 (grey), a good score should consistently
score lower on cases 2-6 and 8-12 (green).
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Supplementary Note 1 Figure 3: Comparing known and observed modules on human datasets.
Shown are the distribution of normalized test scores when comparing known modules with observed modules on three
human datasets (GTEX, TCGA and SEEK GPL) using the Recovery and Relevance scores. Known modules were
extracted from the regulatory circuits networks [66] at different cutoffs using the minimal coregulation definition
(as described in the Methods). We found that none of the module detection methods consistently outperformed
permuted known modules across the different datasets and cutoffs.

While almost all module detection methods performed better than permutations of the known modules on E. coli,
yeast and synthetic data, we found that the performance was generally very low on human datasets, rarely reaching
the performance levels of permuted modules (Supplementary Note 1 Figure 3). We reasoned that this was mainly
because of the extremely high number of false positive interactions in current large-scale human regulatory networks
due to (i) promiscuous binding, (ii) context specific regulation and (iii) the difficulty of linking binding events to the
activity of a promoter and (iv) the degeneracy of binding specificity.

We therefore developed a new score (aucodds) which, instead of looking at the exact overlap between known and
observed modules, will use the enrichment of known targets of a particular transcription factor within the observed
modules. To calculate the aucodds score given a regulatory network and observed modules, first the enrichment of
target genes is calculated for every observed module and transcriptional regulator using a Fisher’s exact test. Next,
after correction for multiple testing, we calculate for every regulator the best odds ratio in the modules where the
regulator’s target genes are enriched (q-value < 0.1). Finally, for a range of odds-ratio cutoff values the percentage
of regulators with an equal or larger odds-ratio are calculated and these values are combined within a final score by
calculating the area under the curve formed by the log10-cutoff values and the percentage of enriched regulators.
The score therefore not only looks at whether the targets of a regulator are enriched in any of the modules, but also
how strongly they are enriched.

We found the aucodds score to be more stable when false-positive interactions are added to the gold standard
(Supplementary Note 1 Figure 4a), while Scores 2 and 6 quickly converged to the levels of permuted modules.
Although this score is therefore much more robust against large number of false positive regulatory interactions, it
conversely also makes the score less sensitive to false positive genes in the observed modules compared with previously
described measures (Supplementary Note 1 Figure 4b). Nonetheless, we found the aucodds score to be highly
correlated with other scores for overlapping modules on the E. coli, yeast and synthetic datasets across parameter
settings and methods (Supplementary Note 1 Figure 4c).
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Supplementary Note 1 Figure 4: (a) The aucodds score (Score 7) decreases more slowly than other scores with
increasing number of false positive regulatory interactions. (b) Empirical study of the robustness of aucodds score
(Score 7) (as defined in Supplementary Note 1) in perturbational settings. See Supplementary Note 1 Figure 2
(c) Spearman correlation between the aucodds score and other scores on all perturbational settings in (b).
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Supplementary Note 2: Module detection methods

Here we briefly describe every method, their implementation and the parameter settings which were varied during
parameter tuning. We consider the following properties of each method:

Overlap Whether the method can assign a gene to multiple modules.

Local co-expression Whether the method can detect local co-expression in only a subset of the samples. This can
either be qualitative (a sample is either part of the co-expression or it isn’t) or quantitative (a sample is part
of the co-expression to a certain degree).

Network inference Whether the method models the gene regulatory network.

Non-exhaustive Whether the method assigns every gene to at least one module. This usually means that the
algorithm could not find sufficient evidence that some genes belonged to any module and classified their
expression profiles as noise.

Deterministic Whether the output of the method is always the same between different runs (starting from a different
state of the random number generator).

Co-expression Whether the genes within a module should be (locally or globally) co-expressed according to the
algorithm. This is not necessarily the case with modules detected by direct network inference methods, as the
expression of two target genes X and Y can be similar with a putative regulator Z even if the expression profiles
X and Y are themselves independent.

Similarity measure Unless stated otherwise, the Pearson correlation coefficient was used as the default similarity
measure. When an algorithm required a distance (dissimilarity) matrix, we subtracted the Pearson correlation
from 2.

Standardization In gene expression datasets, absolute expression values are not always informative to assess co-
expression because they can depend on things such as basal expression levels and differences in hybridization
and do not necessarily implicate co-regulation. Therefore, when an algorithm intrinsically uses the Euclidean
distance (such as K-means) or related geometric distance metrics, we standardized the expression matrix prior
to module detection by shifting and scaling the expression profiles of every gene so that mean = 0 and standard
deviation = 1. Where noted, we also standardized the expression matrix for some biclustering algorithms when
it improved performance.

Parameters influencing module number Parameters directly influencing the number of modules are denoted with
a †. These parameters were automatically estimated when comparing the performance of automatic module
number estimation methods using cluster validity indices.

Module number estimation We distinguish three different ways the number of modules can be determined by
a method: explicit methods require the number of modules to be explicitely provided by the user, implicit
methods have other parameters which directly influence the number of modules while automatic methods can
determine the number of modules automatically regardless of user parameters (usually based on cluster validity
indices).

Clustering and biclustering subcategories We classified clustering and biclustering methods further into subcate-
gories (see Methods). When methods use aspects from multiple subcategories, the category used in the main
study is shown in bold.

1 Clustering

A FLAME: Fuzzy clustering by Local Approximation of MEmbership

Overlap: yes Local co-expression: no Network inference: no

Non-exhaustive: yes Deterministic: yes Co-expression: yes

Module number estimation: implicit

Clustering subcategories: representative, density, graph

The FLAME algorithm [1], based on an implementation from code.google.com/ p/ flame-clustering/ . This algorithm
uses similarities between the k-nearest neighbours (knn) to estimate local densities. Cluster Supporting Objects
are then defined as genes with local maximum density, and are used to estimate fuzzy cluster memberships for the
genes around them. We obtained crisp but potentially overlapping clusters by putting a threshold for the cluster
membership (threshold). Expression data was standardized prior to clustering.
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knn† ∈ {1, 2, 4, 5, 7, 9, 11, 13}
threshold ∈ {∗, .01, 0.1, 0.2, 0.3, 0.5, 0.7, 0.9, 0.95, 0.99}

*: Every gene assigned to exactly one module with the highest fuzzy membership

B K-medoids

Overlap: no Local co-expression: no Network inference: no

Non-exhaustive: no Deterministic: no Co-expression: yes

Module number estimation: explicit

Clustering subcategories: representative

K-medoids clustering using the pam function in the R cluster package. This algorithm is very similar to K-means (see
F), but uses an individual gene as the representative for a cluster instead of the mean. This makes the algorithm less
sensitive to outliers and also allows an arbitrary distance matrix as input. The algorithm has one main parameter:
the number of clusters (k).

k† ∈ {25, 50, 75, ..., 275, 300}

C K-medoids with automatic module number estimation

Overlap: no Local co-expression: no Network inference: no

Non-exhaustive: no Deterministic: no Co-expression: yes

Module number estimation: automatic

Clustering subcategories: representative

See B. The k parameter was automatically estimated using cluster validity indices (cvi).

cvi ∈ {Average silhouette width,Calinski-Harabasz index,Davis-Bouldin index,Kim-Ramakrishna}

D Fuzzy c-means

Overlap: yes Local co-expression: no Network inference: no

Non-exhaustive: yes Deterministic: no Co-expression: yes

Module number estimation: explicit

Clustering subcategories: representative

The fuzzy c-means algorithm [67] (implemented in the mfuzz R package [23]) is based on k-means but it uses
a membership vector for every gene which represents the degree to which a certain gene belongs to a certain cluster
center. It uses a modified version of the inertia which, instead of using the distance to the nearest cluster center,
will weight the Euclidean distance based on the membership vector. This weighing introduces another parameter
(m). After convergence, crisp modules are obtained by placing a cutoff on the final membership vectors (cutoff ).
Expression data was standardized prior to clustering.

k† ∈ {25, 75, 125, ..., 275, 325}
m ∈ {1.01, 1.02, 1.05, 1.1}

cutoff ∈ {0.001, 0.01, 0.05, 0.1, 0.2, 0.5}

E Self-organizing maps

Overlap: no Local co-expression: no Network inference: no

Non-exhaustive: no Deterministic: no Co-expression: yes

Module number estimation: explicit

Clustering subcategories: representative

Self-organizing map (SOM) [68] clustering using the som function in the kohonen R package. Apart from grouping
genes in modules, this algorithm also provides an intuitive 2D representation of all genes in the expression matrix.
The algorithm embeds every gene in a two dimensional grid structure (with dimensions w by h). Every node has an
associated expression profile, which is randomly initialized by sampling from the original data. Next, the algorithm
iterates several times (rlen) over all genes. During an iteration, a gene is matched with a node based on the minimal
distance between expression profiles (Euclidean distance), and the profile of the node and nodes in the neighbourhood
are slightly (determined by the learning rate α) adjusted based on the expression profile of the gene. The magnitude
by which the neighborhood of a node is influenced is determined by radius parameter. The topology of the grid
(rectangular versus hexagonal) determines the number of connections between adjacent nodes. A high number of
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iterations was chosen (rlen = 500) to make sure the algorithm reached convergence. Note that due to this, the
running times given in Figure 2 are almost certainly an overestimation.

Expression data was standardized prior to clustering.

w = h† ∈ {6, 9, 12, ..., 24, 27}
radius ∈ {0.5, 1, 1.5, 2}

topology ∈ {rectangular, hexagonal}

F K-means

Overlap: no Local co-expression: no Network inference: no

Non-exhaustive: no Deterministic: no Co-expression: yes

Module number estimation: explicit

Clustering subcategories: representative

The k-means algorithm [69] (implemented in the python scikit-learn [8, 70] package, scikit-learn.org) is one of
the oldest and most popular clustering techniques. The goal of the algorithm is, given a number of clusters k, to
find the cluster centers that minimize the inertia (the sum of Euclidean distances between every gene and the nearest
center). It does this by starting from k initial centers (usually randomly chosen from the data points), and iteratively
optimizing the cluster centers and a cluster assignment until convergence.

The results of k-means are known to be very dependent on the random initialization. Moreover, like most clustering
algorithms, k-means is not guaranteed to reach the most optimal clustering solution. Some modern implementations
will therefore use a more intelligent initialization (the implementation we used will make sure that the initial cluster
centers are distant from eachother [70]), and use multiple random starts (in our case 10) to finally choose the one
with minimal intertia.

We standardized the expression data prior to clustering.
k† ∈ {25, 50, 75, ..., 275, 300}

G MCL: Markov clustering

Overlap: no Local co-expression: no Network inference: no

Non-exhaustive: no Deterministic: yes Co-expression: yes

Module number estimation: implicit

Clustering subcategories: graph

The Markov clustering algorithm [4] will simulate random walks based on Markov chains, where the probability
of getting to particular end node after a random walk of n steps can be easily calculated by repeatedly multiplying
the transition matrix (which is a normalized version of the matrix denoting the edge weights) which is called ex-
pansion. The clustering method is based on the idea that random walks within the graph tend to stay around the
nodes with which the starting node is (indirectly) strongly connected. Because this effect tends to disappear with
increasing number of steps, MCL will ”inflate” the weights after every expansion step by exponentiation with an
inflation parameter. This step will strengthen the connection between already strongly connected nodes, while the
connection between lesser connected nodes are weakened. After convergence, the cluster structure can be extracted
from the probability matrix. We used the pearson correlation as the input for the weighted graph, where correlations
lower than a threshold were set to zero.

inflation† ∈ {1.4, 2, 3, 4, 6, 8, 10, 15, 20}
threshold† ∈ {0, 0.1, ..., 1}

H Spectral clustering using the Pearson correlation

Overlap: no Local co-expression: no Network inference: no

Non-exhaustive: no Deterministic: no Co-expression: yes

Module number estimation: explicit

Clustering subcategories: graph

Spectral clustering [71] (implemented in the python scikit-learn [8] package, scikit-learn.org) using the Pearson
correlation as input adjacency matrix. Essentially, this algorithm will apply dimensionality reduction on the adjacency
matrix, so that genes which are connected (but not necessarily similar) will be close in the resulting subspace. Clusters
are then defined within this subspace using other clustering algorithms, in this case k-means. The latter has one
main parameter: the number of clusters (k).

k† ∈ {25, 50, 75, ..., 275, 300}
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I Affinity propagation

Overlap: no Local co-expression: no Network inference: no

Non-exhaustive: no Deterministic: yes Co-expression: yes

Module number estimation: implicit

Clustering subcategories: graph, representative

Affinity propagation [6] (using an implementation from the R apcluster package). Views every gene as a node
in a network, and sends messages between nodes based on their affinity at a certain step in the iterative pro-
cess. Starting from a similarity matrix (in our case the Pearson correlation), two types of messages (responsibility
and availability) are being passed between genes. After a number of iterations, exemplars are identified by com-
bining responsibilities and availabilities, based on an aditional preference parameter of every gene. We used a
common preference value for all genes, which we varied based on the range of similarity values over all gene pairs:
Preference = min (similarities)+(max (similarities)−min (similarities))∗α. We left the additional damping parameter
at default (0.5) because it had no impact on algorithm performance.

α† ∈ {−3,−2.75,−2.5, ..., 0.75, 1}

J Spectral clustering with k-nearest neighbor graphs

Overlap: no Local co-expression: no Network inference: no

Non-exhaustive: no Deterministic: no Co-expression: yes

Module number estimation: explicit

Clustering subcategories: graph

See H. We used a k-nearest neighbor graph as input affinity matrix by setting affinity to nearest neighbors. The
number of neighbors is influenced by the knn parameter. Expression data was standardized before clustering.

k† ∈ {25, 50, 75, ..., 275, 300}
knn ∈ {10, 20, 30, 50, 70, 100}

K Transitivity clustering

Overlap: yes Local co-expression: no Network inference: no

Non-exhaustive: no Deterministic: yes Co-expression: yes

Module number estimation: implicit

Clustering subcategories: graph

Transitivity clustering [16] will try to remove and add edges within the co-expression graph so that all nodes within
a connected component are completely connected with each other (form a clique). The algorithm starts from a
similarity matrix where edges are removed if the similarity between the two nodes is lower than a threshold . The
algorithm uses several heuristics to find the transitivity graph which minimizes the cost of removing existing edges
and adding new edges. We used the fuzzy extension of the algorithm [72] which requires an additional cutoff to
convert the fuzzy memberships into crisp clusters.

threshold† ∈ {−0.5,−0.4, ..., 0.9}
cutoff ∈ {∗, 0.001, 0.01, 0.05, 0.1, 0.2, 0.5}

*: Every gene assigned to exactly one module with the highest fuzzy membership

L WGCNA: Weighted Gene Co-expression Network Analysis

Overlap: no Local co-expression: no Network inference: no

Non-exhaustive: yes Deterministic: yes Co-expression: yes

Module number estimation: implicit

Clustering subcategories: hierarchical, graph

The WGCNA algorithm (implemented in the R WGCNA package [2]) is build around classical agglomerative hi-
erarchical clustering (see M), but with several improvements. First, pairwise similarity values are used to construct
a weighted gene co-expression network. The weights between genes are calculated based on the Pearson correlation
but are transformed based on an additional ”soft-thresholding” parameter to make the co-expression network more
scale-free (power). Based on this network, topological overlap measure (TOM) are calculated for all gene pairs. The
TOM between two genes is high when they are connected to similar genes within the weighted co-expression network.
The advantage of this measure is that it considers the context of a gene pair when calculating the similarity between
two genes, instead of only the two expression profiles in case of the Pearson correlation. Next, the algorithm performs
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an agglomerative hierarchical clustering using the TOM similarity matrix and average linkage. Instead of cutting the
tree at a certain height (like classical agglomerative hierarchical clustering), the WGCNA algorithm will then use a
dynamic tree cutting algorithm which will make sure the obtained clusters satisfy several criteria related to cohesion
and separation with other clusters [73].

The WGCNA package offers a lot of different options and parameters. To contrast the algorithm to a more classical
agglomerative hierarchical clustering analysis, we used both the topological overlap measure and the dynamic tree
cutting algorithm. We found that only two parameters had the major influence on performance: power (used to
convert the gene expression similarities to edge weights for the weighted co-expression network prior to calculated the
TOM) and the mergeCutHeight (used by the dynamic tree cutting algorithm to merge related clusters and therefore
implicitly estimates the number of clusters).

power ∈ {∗, 1, 2, 3, ..., 10}
mergeCutHeight† ∈ {0.05, 0.10, 0.15, ..., 0.5}

*: The power parameter automatically chosen using the pickSoftThreshold function

M Agglomerative hierarchical clustering

Overlap: no Local co-expression: no Network inference: no

Non-exhaustive: no Deterministic: yes Co-expression: yes

Module number estimation: explicit

Clustering subcategories: hierarchical

Agglomerative hierarchical clustering [74] (implemented in the cluster R package) builds a binary tree of all genes
by starting from the leaves (each representing one gene) and progressively grouping genes in clusters until all genes
are in one cluster. In every iteration, the algorithm uses a certain linkage criterion to group two nodes (which can
represent one or more genes) of the tree into a new node. After the tree is build, it is cut at a certain height given
a desired number of modules (k).

linkage ∈ {ward, single, complete,mcquitty,median, centroid}
k† ∈ {25, 50, 75, ..., 275, 300}

N Hybrid hierarchical clustering

Overlap: no Local co-expression: no Network inference: no

Non-exhaustive: no Deterministic: yes Co-expression: yes

Module number estimation: explicit

Clustering subcategories: hierarchical

Hybrid hierarchical clustering [75] (implemented in the R hybridHclust package) combines both divisive and ag-
glomerative hierarchical clustering. It will first apply a divisive hierarchical clustering algorithm but will make sure
that a certain set of ”mutual” clusters are not split. It will then finish the tree by applying a divisive clustering
algorithm within each mutual cluster. After the tree is build, it is cut at a certain height given a desired number of
modules (k).

k† ∈ {25, 50, 75, ..., 275, 300}

O Divisive hierarchical clustering

Overlap: no Local co-expression: no Network inference: no

Non-exhaustive: no Deterministic: yes Co-expression: yes

Module number estimation: explicit

Clustering subcategories: hierarchical

Divisive hierarchical clustering [74] (as implemented in the diana function in the cluster R package) starts from
one large cluster containing every gene and will progressively split clusters until each cluster contains a single gene.
At each iteration, it will split the cluster with the highest maximal dissimilarity between any two genes. After the
tree is build, it is cut at a certain height given a desired number of modules (k).

k† ∈ {25, 50, 75, ..., 275, 300}
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P Agglomerative hierarchical clustering with automatic module number estimation

Overlap: no Local co-expression: no Network inference: no

Non-exhaustive: no Deterministic: yes Co-expression: yes

Module number estimation: automatic

Clustering subcategories: hierarchical

See M. The k parameter was automatically estimated using cluster validity indices (cvi).

cvi ∈ {Average silhouette width,Calinski-Harabasz index,Davis-Bouldin index,Kim-Ramakrishna}

Q SOTA: Self-Organising Tree Algorithm

Overlap: no Local co-expression: no Network inference: no

Non-exhaustive: no Deterministic: no Co-expression: yes

Module number estimation: explicit

Clustering subcategories: representative

The Self-Organising Tree Algorithm (SOTA, implemented in the R clValid package) combines aspects from hier-
archical clustering and self-organizing maps [76]. It starts from two nodes which are trained similar to self-organizing
maps. Next, the most diverse node is split in two which are again trained. The splitting of nodes stops until a
desired level of heterogeneity is reached within a node (maxDiversity), which is in the same order of magnitude
as the input dissimilarities. Because the distributions of input dissimilarities depends on the dataset, we calculated
the maxDiversity as the α percentile of the input dissimilarities and optimized α as a parameter. Similar to regular
self-organizing maps, we found that the other parameters of the algorithm had no significant effect on the results.

α† ∈ {0.05, 0.1, 0.2, 0.3, ..., 0.9}

R Density clustering

Overlap: no Local co-expression: no Network inference: no

Non-exhaustive: no Deterministic: yes Co-expression: yes

Module number estimation: implicit

Clustering subcategories: density

This recently proposed density-based clustering algorithm [25] (implemented in the R densityClust package) will
calculate for every gene i two values: ρi represents the local density and δi the nearest point in a higher density
region. It will then define cluster centers as genes with a high δi, because these genes are very dissimilar to other
genes in high density regions. Finally, each gene is assigned to the cluster of its nearest neighbour of higher density.
The algorithm has two parameters: ρc determines the minimal local density for cluster centers and δc the minimal
distance to other nearby high density cluster centers.

δc
† ∈ {0.1, 0.2, 0.3, ..., 0.8}

ρc
† ∈ {0.5, 1, 2, 3, ..., 15}

S CLICK: CLuster Identification via Connectivity Kernels

Overlap: no Local co-expression: no Network inference: no

Non-exhaustive: yes Deterministic: yes Co-expression: yes

Module number estimation: implicit

Clustering subcategories: density, graph

The CLICK algorithm [17] (implemented in the EXPANDER tool, available at acgt.cs.tau.ac.il/ expander) will first
find tight groups (kernels) of co-expressed genes. It will then add ”singleton” genes to their nearest kernels. In a final
post-processing step, similar kernels are merged. The tool exposes one parameter, (homogeneity), which adjusts the
required tightness of the clusters.

homogeneity† ∈ {0, 0.05, 0.1, 0.15, ..., 1}

T DBSCAN: Density-Based Spatial Clustering of Applications with Noise

Overlap: no Local co-expression: no Network inference: no

Non-exhaustive: yes Deterministic: yes Co-expression: yes

Module number estimation: implicit

Clustering subcategories: density, graph
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This algorithm (as implemented in the fpc R package) categorizes each gene into three groups: core points have at
least MinPts within ε distance, a border point has at least one core point within ε distance and all other points are
classified as noisy. Clusters are then defined as groups of core and border points each within ε distance to another
gene of the cluster.

ε† ∈ {0.05, 0.1, 0.15, ..., 0.6}
MinPts† ∈ {1, 2, 3, ..., 10}

U CLUES: CLUstEring based on local Shrinking

Overlap: no Local co-expression: no Network inference: no

Non-exhaustive: no Deterministic: no Co-expression: yes

Module number estimation: automatic

Clustering subcategories: density, representative

This algorithm [27] (implemented in the clues R package) first applies the Mean-shift algorithm for ”shrinking”
using the k-nearest neighbours for density estimation (with k as parameter). In a next ”partitioning” step, clusters
are defined by starting from a random starting point (gene) and iteratively moving to its closest (unvisited) point
while recording the distances between every point. Cluster boundaries are then defined as big jumps in these recorded
distances, based on an outlier detection procedure. The k parameter is automatically determined by iterating over
several values and selecting the best one based on the average silhouette width. Datasets were standardized before
applying this algorithm.

V Mean shift

Overlap: no Local co-expression: no Network inference: no

Non-exhaustive: no Deterministic: yes Co-expression: yes

Module number estimation: implicit

Clustering subcategories: density

The mean shift clustering algorithm (as implemented in the python scikit-learn [8] package, scikit-learn.org) will
first apply kernel density estimation using, in this case, a Gaussian kernel (with a bandwidth parameter). Next,
points are iteratively shifted towards nearby regions of higher density until convergence. Datasets were standardized
before applying this algorithm.

bandwidth† ∈ {∗, 2.5, 5, 7.5, ..., 70}
*: Automatic bandwidth estimation using the scikit-learn estimate bandwidth function.

2 Decomposition

Using decomposition methods for module detection consists of two steps. In the first step the expression matrix
is decomposed in two or more matrices using several algorithms. One of these matrices generally contains weights
for every gene and a particular component (in case of principal component analysis) or source signal (in case of
independent component analysis). Another matrix contains the weights for every sample and module. In the second
step, a module is extracted from every component/source signal using several postprocessing methods.

A ICA FDR (1): Independent Component Analysis followed by FDR estimation

Overlap: yes Local co-expression: yes Network inference: no

Non-exhaustive: yes Deterministic: no Co-expression: yes

Module number estimation: explicit

The basic goal of an independent component analysis (ICA) is to find a mixture of independent signals in data
by decomposing it in two matrices: a source matrix and a mixing matrix. In the case of module detection the source
matrix contains for every module the evidence that a certain gene belongs to that module. Similarly, the mixing
matrix contains the individual contributions of a sample to every module.

Several algorithms have been developed for ICA mainly differing in the optimization criterion for independence and
heuristics [77]. In this study we used the FastICA algorithm [78], implemented in the python scikit-learn [8] package
(www.scikit-learn.org). This algorithm defines independence as maximizing non-Gaussianity of the individual source
signals. We used the default measure of non-Gaussianity (logcosh). n independent source signals are found using an
iterative process, whereby the weight vector of an individual source signal is randomly initialized and non-Gaussianity
iteratively optimized until convergence.
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Next, the source matrix with n source signals is post-processed to obtain crisp but potentially overlapping modules.
Every source signal can be seen as originating from a heavy-tailed normal distribution. The goal of the post-processing
step is selecting lower and higher cutoffs on the weights to identify the genes associated with these heavy-tails. We
explored three post-processing techniques, all of which have been described in past studies. In the first post-processing
method, the cutoffs were determined using false-discovery rate (FDR) estimation, previously described in [79]. We
estimated the FDR using the fdrtool R library [36] with cutoff.method set to fndr. All genes with p-value lower than
a cutoff were added to a module and this cutoff was varied as a parameter denoting the compactness of the module.

n† ∈ {50, 100, 150, ..., 550, 600}
cutoff ∈ {10−1, 10−2, 10−3, ..., 10−13}

B ICA FDR (2): Independent Component Analysis followed by FDR estimation

Similar to A, but every component generates two modules depending on whether the genes have positive or negative
weights.

C ICA z-score: Independent Component Analysis followed by z-scores

Overlap: yes Local co-expression: yes Network inference: no

Non-exhaustive: yes Deterministic: no Co-expression: yes

Module number estimation: explicit

Similar method as A, but here the weights of every source signal were first standardized to z-scores. A gene was
assigned to a module if its absolute z-score was higher than a cutoff. This post-processing procedure was previously
described in [80].

n† ∈ {50, 100, 150, ..., 550, 600}
cutoff ∈ {0.5, 1, 1.5, ..., 6.5, 7}

D IPCA: Independent Principal Component Analysis

Overlap: yes Local co-expression: yes Network inference: no

Non-exhaustive: yes Deterministic: no Co-expression: yes

Module number estimation: explicit

This method is similar to A, but uses the independent principal component analysis algorithm [81]. In essence,
this algorithm applies the FastICA algorithm on the loading vectors of a principal component analysis. This prepro-
cessing step should make the algorithm more robust to noise. The source signals are then again post-processed using
FDR estimation.

n† ∈ {50, 100, 150, ..., 550, 600}
cutoff ∈ {10−1, 10−2, 10−3, ..., 10−13}

E PCA: Principal Component Analysis

Overlap: yes Local co-expression: yes Network inference: no

Non-exhaustive: yes Deterministic: yes Co-expression: yes

Module number estimation: explicit

This method is similar to C, but uses principal component analysis (PCA) instead of FastICA, as implemented
in the python scikit-learn [8] package (scikit-learn.org). Expression data was standardized prior to the PCA.

n† ∈ {25, 50, 75, ..., 275, 300}
cutoff ∈ {0.5, 1, 1.5, ..., 6.5, 7}

3 Biclustering

Biclustering methods detect biclusters, sets of genes and samples which share some local similarity in expression
profile. The exact definition and optimization problem underlying this similarity is the basis of our categorization
[82]. Overall, we distinguish three types of biclusters:

• Constant biclusters, in which the expression remains relatively constant

• Extreme biclusters, in which the expression of the genes is high or low in the samples of the biclusters compared
to the normal expression variability of the genes.
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• Biclusters with more complex co-expression patterns. These include:

– Additive biclusters, in which the expression xij within a certain row i and column j is modeled by
xij = µ + αi + βj + εij , where µ is the average expression in the bicluster and ε the error term which
should be minimized.

– Multiplicative biclusters, similar to additive biclusters but with xij = µ× αi × βj + εij .

– Coherent evolution, in which the expression values can be ordered such that they monotonically increase
along samples and/or genes, disregarding the magnitude.

Note that constant biclusters can be seen as a special case of additive and multiplicative biclusters where
respectively αi = βj = 0 and αi = βj = 1.

A Spectral biclustering

Overlap: no Local co-expression: yes Network inference: no

Non-exhaustive: no Deterministic: no Co-expression: yes

Module number estimation: explicit

Biclustering subcategories: constant

The goal of spectral biclustering [83] (implemented in the python scikit-learn [8] package, www.scikit-learn.org)
is to re-order the genes and samples of the expression matrix in such a way to reveal a checkerboard structure. The
expression within a ”square” of the checkerboard (which can have any dimensions) is relatively constant and corre-
sponds to a bicluster. Kluger et al. [83] show that this problem can be solved using a singular value decomposition
(SVD). An SVD will decompose the expression matrix in n pairs of left and right singular vectors with accompanied
eigenvalues. For a crisp partition, both the left and right eigenvectors are then clustered (ngenes and nsamples) using
k-means. We found that the other parameters, including the normalization step prior to SVD, had minimal impact
on performance. Gene expression profiles were standardized prior to biclustering.

n† ∈ {10, 20, 50, 100, 200, 300, 400, 500}
ngenes

† ∈ {10, 20, 50, 100, 200, 300, 400, 500}

B ISA: Iterative Signature Algorithm

Overlap: yes Local co-expression: yes Network inference: no

Non-exhaustive: yes Deterministic: no Co-expression: yes

Module number estimation: implicit

Biclustering subcategories: extreme

The Iterative Signature Algorithm (ISA) [84–86], implemented in the isa2 R package (www.github.com/ gaborcsardi/
ISA). ISA will try to find biclusters in which the expression is extremely high or low relative to the genes and samples
outside of the bicluster. ISA will first randomly generate no.seeds seeds (which we fixed on 10000, 100 times more
than the default). Starting from every seed, the genes and samples within the bicluster are iteratively optimized
until convergence. In every iteration, the most extreme genes (samples) are selected based on a high z-score in the
current samples (genes) of the bicluster. Here two parameters determine the cutoff of extreme expression: isa.thr .col
(samples) and isa.thr .row (genes). Gene expression profiles were standardized prior to biclustering.

isa.thr .col† ∈ {0.5, 1, 1.5, ..., 5}
isa.thr .row† ∈ {0.5, 1, 1.5, ..., 3}

C QUBIC: QUalitative BIClustering algorithm

Overlap: yes Local co-expression: yes Network inference: no

Non-exhaustive: yes Deterministic: yes Co-expression: yes

Module number estimation: implicit

Biclustering subcategories: extreme, patterns

In essence, QUBIC [40] (implemented in the rqubic Bioconductor package) consists of two steps. In the first step
the expression matrix is discretized to signed integers, where positive and negative integers represent respectively up-
and downregulation (based on the q parameter) and 0 represents the unperturbed state. The number of discrete
states depends on the rank parameter, which we fixed on 1 because higher ranks always decreased performance.
After discretization, QUBIC will start from two genes which are similarly up- or downregulated in a high number of
conditions and expand this ”seed” bicluster until the consistency level (a score of bicluster quality) falls under a user
defined parameter (tolerance). Gene expression profiles were standardized prior to biclustering.
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q ∈ {0.01, 0.06, 0.11, ..., 0.51}
tolerance† ∈ {0.3, 0.4, 0.5, ..., 1}

D Bi-Force

Overlap: no Local co-expression: yes Network inference: no

Non-exhaustive: no Deterministic: no Co-expression: yes

Module number estimation: implicit

Biclustering subcategories: extreme

Bi-Force is implemented in the BiCluE software (biclue.mpi-inf.mpg.de). The algorithm consists of four steps [87].
In the first step, the expression matrix is converted to a bipartite graph, where individual nodes represent genes or
samples. A weighted edge is drawn between a gene and a sample if the gene is extremely expressed in that sample,
where extreme expression depends on the clustering mode (m) parameter and a cutoff (t). In the next step, starting
from an initial circular layout, nodes are re-arranged in an iterative manner so that genes and samples with a lot
of (highly weighed) edges are located close to each other. The final layout is used to compute a partitioning using
clustering algorithms. The biclusters are further post-processed: redundant biclsuters are merged while certain nodes
are moved to an alternative bicluster if it improves the cost function of the algorithm. We standardized the expression
matrix before applying this algorithm, as it greatly increased performance. Gene expression profiles were standardized
prior to biclustering.

t† ∈ {0, 0.1, 0.2, 0.5, 0.75, 1, 1.5, 2, 5, 10}
m ∈ {o, u, l, h}

E FABIA: Factor Analysis for BIcluster Acquisition

Overlap: yes Local co-expression: yes Network inference: no

Non-exhaustive: yes Deterministic: no Co-expression: yes

Module number estimation: explicit

Biclustering subcategories: patterns

The FABIA algorithm [38] (implemented in the fabia Bioconductor package) was inspired by Plaid and is related
to ICA. FABIA will model the expression matrix as the sum of n multiplicative biclusters. The algorithm ensures
the sparsity of both gene and sample membership values using Laplacian priors. From a theoretical point of view,
FABIA is strongly related to ICA, the main difference being that FABIA additionally requires sparseness in the sample
dimension (i.e. the mixing matrix). Similarly to ICA, FABIA includes a post-processing step to detect crisp modules,
which requires cutoff parameters for both the genes (thresL) and samples (thresZ ). Although the algorithm has
several other parameters, most of which influence the sparsity of the models, we found that tuning these had only
negligible impact on performance.

n† ∈ {25, 50, 75, ..., 300}
thresZ ∈ {0.05, 0.2, 0.35, 0.5, 0.65}
thresL ∈ {∗, 0.05, 0.2, 0.35, 0.5, 0.65}

*: Parameter automatically estimated by the extractBic function

F Plaid

Overlap: yes Local co-expression: yes Network inference: no

Non-exhaustive: yes Deterministic: no Co-expression: yes

Module number estimation: explicit

Biclustering subcategories: patterns

Plaid (implemented in the R biclust package) models the expression matrix as the sum of layers, where each layer
represents an additive bicluster. The algorithm was first proposed by Lazzeroni and Owen [88] and further improved
by Turner et al. [62]. The algorithm detects additive biclusters one by one. In every iteration a model is fitted by
starting from a seed bicluster memberships and iteratively optimizing these and additive bicluster effects until con-
vergence using least-squares. After fitting a layer, genes and samples are pruned based on how good the model can
explain the data using two parameters(row .release and col .release). The maximal number of layers (i.e. biclusters)
has to be explicitely given by the user (max .layers).

col .release ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}
row .release ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}

max .layers† ∈ {50, 100, 150, ..., 500}
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G MSBE: Maximum Similarity Bicluster problem Extended

Overlap: yes Local co-expression: yes Network inference: no

Non-exhaustive: yes Deterministic: no Co-expression: yes

Module number estimation: implicit

Biclustering subcategories: patterns

The extended version of the MSBE algorithm [42] starts from a seed gene and sample and finds additive biclus-
ters through extension and shrinking by demanding a minimal local similarity with the reference gene (γ). Two
additional parameters control the tightness of the biclusters by preferring preference for small distances (β) and
ignoring large distances (α). We fixed the number of random seed genes to 500 and seed samples to 20. Gene
expression profiles were standardized prior to biclustering.

α ∈ {0.1, 0.2, 0.3, 0.4}
β ∈ {0.2, 0.4, 0.6}
γ ∈ {0.5, 0.8, 1.1, 1.4}

H Cheng & Church

Overlap: yes Local co-expression: yes Network inference: no

Non-exhaustive: yes Deterministic: no Co-expression: yes

Module number estimation: implicit

Biclustering subcategories: patterns

The Cheng & Church algorithm [89] (implemented in the R biclust package) tries to find additive biclusters in
the expression matrix. The algorithm will start from the full expression matrix, fit an additive model and remove
those genes and samples which highly influence the residual error of the additive model. Once the error of the model
reaches a threshold δ it will again add certain genes and samples with a low effect on the residual. The algorithm then
finds the next bicluster by again starting from the whole expression matrix, but in which previously found biclusters
are masked by random values. The algorithm has an additional α parameter which controls the number of genes
and rows which can be deleted at once before recalculating the additive model. As this parameter mainly controls
running time, it had only minimal effect on performance.

δ† ∈ {0.0001, 0.0002, 0.0005, 0.001, ..., 0.5, 1}
α ∈ {1.01, 1.1, 1.5}

I OPSM: The Order-Preserving Submatrix Problem

Overlap: yes Local co-expression: yes Network inference: no

Non-exhaustive: yes Deterministic: yes Co-expression: yes

Module number estimation: implicit

Biclustering subcategories: patterns

The OPSM algorithm [43] (implemented in the BicAT tool, tik.ethz.ch/ sop/ bicat) is the only algorithm in the
evaluation study trying to find coherent evolution biclusters. Because of the combinatorial complexity of the problem
of testing all possible biclusters, the algorithm will start from ”partial models”, in which the samples with highest
and lowest expression of the bicluster are specified but not the samples inbetween. Among those partial models, it
selects the best ` models based on the probability of find such partial models at random. Next, the algorithm expands
every chosen partial model by adding one sample and again choses ` models among all possible expansions. Gene
expression profiles were standardized prior to biclustering. While performance increased with increasing `, it quickly
stagnated around ` = 10.

`† ∈ {1, 5, 10, 15, 20}

4 Direct network inference

Common to direct network inference (direct NI) methods is that they return a score for every regulator and target
gene pair. To detect modules, we converted this weighed network to an unweighed one using a percentile cutoff
on this score and applied the three different different module definitions (minimal co-regulation, strict co-regulation
and interconnected subgraphs, see Methods section). Finally modules were filtered on high overlap by removing the
smallest of two modules if their jaccard similarity was higher than maxoverlap.

cutoff † ∈ {0.001, 0.002, 0.005, ..., 0.1, 0.2}
maxoverlap ∈ {0.6, 0.7, 0.8, 0.9}
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Supplementary Note 2 Figure 1: Effect of the density of the inferred regulatory network on the quality of the
inferred modules. We used a percentile cutoff to convert weighted networks (as returned by direct network inference
methods) to an unweighted network, which was subsequently used for graph clustering for the detection of modules.
The performance of these modules generally followed a bell curve, and the most optimal density was in most cases
well within the boundaries of the percentile cutoffs chosen for parameter tuning.

We assessed the performance of 3 of the top performing direct NI methods each belonging to a different category
as defined in the DREAM5 evaluation study [46], together with a naive but fast network inference approach based
on the Pearson correlation between regulator and target.

A GENIE3

Overlap: yes Local co-expression: no Network inference: yes

Non-exhaustive: yes Deterministic: no Co-expression: no

Module number estimation: implicit

The GENIE3 algorithm [47] (implemented in the genie3 R package, montefiore.ulg.ac.be/∼huynh-thu/ software.html)
was the best performing algorithm in the DREAM5 network inference challenge [46]. For every target gene, GENIE3
will try to predict its expression based on regulator expression using random forests. The score for a particular
regulator and target pair is then calculated using a feature importance measure.

B CLR: Context Likelihood Ratio

Overlap: yes Local co-expression: no Network inference: yes

Non-exhaustive: yes Deterministic: yes Co-expression: no

Module number estimation: implicit

The CLR algorithm [48] (implemented in MATLAB, m3d.mssm.edu/ network inference.html) first estimates mu-
tual information similarities between all genes. It than calculates log-likelihood scores for each gene pair based on all
the other mutual information scores of the two genes (i.e. its local context).

C Pearson correlation

Overlap: yes Local co-expression: no Network inference: yes

Non-exhaustive: yes Deterministic: yes Co-expression: no

Module number estimation: implicit

The absolute Pearson correlation coefficient between every regulator and target pair.

D TIGRESS: Trustful Inference of Gene REgulation using Stability Selection

Overlap: yes Local co-expression: no Network inference: yes

Non-exhaustive: yes Deterministic: no Co-expression: no

Module number estimation: implicit

TIGRESS [50] (implemented in MATLAB, cbio.ensmp.fr/∼ahaury/ svn/ dream5/ html/ index.html) generates linear
regression models to predict target gene expression based on regulator expression. It uses Least Angle Regression
(LARS) to generate sparse regression coefficients. It runs LARS multiple times on slightly perturbed data to deter-
mine the regulators which are consistently selected as being predictive for target gene expression, which provides a
score for every regulatory and target pair.
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5 Iterative network inference

A MERLIN: Modular regulatory network learning with per gene information

Overlap: no Local co-expression: no Network inference: yes

Non-exhaustive: yes Deterministic: no Co-expression: yes

Module number estimation: implicit

MERLIN [53] (available at pages.discovery.wisc.edu/∼sroy/ merlin) combines strengths of both direct and mod-
ule network inference algorithms [90], by making sure the genes within a module have similar regulatory programs.
The algorithm starts from an initial clustering, for which we used agglomerative hierarchical clustering (with Ward’s
method as the linkage and number of clusters equal to 1

10 the number of genes). The choice of this initial clustering
algorithm and its parameters had a negligible impact on the performance. It will then predict a regulatory network
between regulators and target genes using probabilistic graphical models in which p controls the number of edges in
the network and r controls the influence of modules on the regulatory network. Next, the genes are clustered based
on the similarity of their regulatory programs, where h determines the tightness of the resulting clusters. The two
steps are repeated until convergence. Due to the computational complexity of the algorithm, especially on the yeast
and human datasets, we limited the number of iterations to 10.

h† ∈ {0.5, 0.6, 0.7, 0.8}
p ∈ {−10,−8,−5,−3}
r ∈ {2, 4, 6, 8}

B Genomica

Overlap: no Local co-expression: no Network inference: yes

Non-exhaustive: no Deterministic: no Co-expression: yes

Module number estimation: implicit

Genomica [91] (implemented in Java, genomica.weizmann.ac.il) will create a so called module network, in which
regulators are connected to modules instead of individual target genes. The algorithm starts from an initial clustering
using a slightly adopted version of agglomerative clustering [92] (with n clusters). For every module it then predicts a
regulatory program in the form of a decision tree using a probabilistic network model. Next, the algorithm determines
those modules which best fit the given regulatory program. The network inference and module detection step are
repeated until convergence.

n† ∈ {25, 50, 75, ..., 300}

Supplementary Note 3: Alternative similarity measures

Here we briefly describe the similarity measures evaluated in this study. Most of these are extensively described by
de Siqueira Santos et al. [93], together with some practical recommendations.

Pearson correlation: The ratio between sample covariance of X and Y and the product of their standard deviations.

Distance correlation: The sample distance covariance of X and Y , normalized by the product of their distance
standard deviations. The distance co-variance is calculated using the distance between individual pairs of
samples, instead of a global mean in case of the regular co-variance. The distance correlation is high if X
and Y to follow a similar, but potentially non-linear, curve. We did not evaluate this measure because of its
excessive computation requirements (longer then 1 week on the yeast datasets).

Percentage bend correlation and Biweight midcorrelation: [94] Both measures use the median, rather than the
mean in case of the Pearson correlation, to estimate the covariance of X and Y . This makes them more robust
to outliers. Both measures are implemented in the asbio R package.

Spearman’s ρ and Kendall’s τ : These correlation measures compare the rankings, which make the measures more
robust and can also detect non-linear monotonic relationships, compared to the Pearson correlation.

Mutual information: The mutual information is a symmetric measure quantifying how much the knowledge of
one variable (such as the gene expression in X) tells us about another variable (gene expression in Y) and vice-
versa. As such, it compares the joint probability distribution P(X,Y) with the marginal probability distributions
P(X) and P(Y). We compared three different estimators for the mutual information, all implemented in the
bioconductor minet package [49]: (1) the empirical estimator of Paninski [95], (2) the shrink entropy estimator
Schafer and Strimmer [96] and (3) the empirical estimator corrected by Miller-Madow.
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Maximal information coefficient [97]: Mutual information values are calculated by binning the gene expression
values. The number of bins is selected by choosing the ones maximizing the mutual information, normalized for
grid dimensions. We did not evaluate this measure because of its excessive computation requirements (longer
then 1 week on the E. coli datasets).

Topological overlap measure [2]: The topological overlap measure quantifies whether two genes have the same
gene neighbourhood in a gene co-expression network. It is therefore unique among all measures in that it
not only compares the expression profiles of a gene pair, but actually takes into account the context of the
co-expression among all the other genes. To create the gene co-expression network, we used the default settings
in the WGCNA R package, specifically the Pearson correlation converted to a more scale-free network with
β = 6.
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Supplementary Note 4: Previous evaluation studies

• evaluation

metrics: – Metrics should use external biological knowledge

– Multiple evaluation metrics should be used, each assessing a different aspect of the
correspondence between the gold standard and observed modules

parameters: – Parameters should be optimized, moving beyond default setting while avoiding too
many manual steps

– Evaluations should control for parameter overfitting

• synthetic data

complementary: – Synthetic data should be used to complement the evaluation on real data

– Main conclusions should not be derived from synthetic data only

realistic: – Synthetic data should be generated using model inspired by biology, such as gene
regulatory networks

– Synthetic data should not be biased towards certain assumptions made by a module
detection method (such as a particular biclustering model)

• real data

datasets: – Performance should be assessed on multiple datasets from various organisms

gold standard: – Although they can certainly be informative, evaluations on real data should not uniquely
depend on anecdotal evidence, but should also build upon an objective, quantitative
evaluation

– Good metrics should assess both sensitivity and precision of a method

• method coverage

coverage: – Evaluations should compare state-of-the-art methods across different module detection
strategies

Supplementary Note 4 Table 1: Overview of different evaluation studies of module detection methods for gene
expression data and those evaluation criteria (defined above) where we think these studies do well (+ or ±) and
where we think they are lacking (-).

citation [62] [59] [98] [80] [99] [40] [38] [79] [81] [44] [53] [100] [87]

evaluation
metrics − ± ± − − ± − − ± ± ± + ±

parameters ± − − − − − ± − − − − − ±

synthetic data
complementary − ± + − − ± − − + − + − +

realistic − − − − − − − − − − ± − −

real data
datasets − − ± − − ± − − ± ± − − ±

gold standard − − + + − − − − − − ± − −

method coverage
− ± − − − − ± − − ± − ± ±
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Ziv Shkedy, and Djork-Arné Clevert. FABIA: factor analysis for bicluster acquisition. Bioinformatics, 26(12):
1520–1527, 2010.
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Lothar Thiele, and Eckart Zitzler. A systematic comparison and evaluation of biclustering methods for gene
expression data. Bioinformatics, 22(9):1122–1129, may 2006. ISSN 1367-4803. doi: 10.1093/bioinformatics/
btl060.

[60] A Lancichinetti, S Fortunato, and J Kertész. Detecting the overlapping and hierarchical community structure
in complex networks. New Journal of Physics, 2009.

[61] MK Mark K. Goldberg, Mykola Hayvanovych, and Malik Magdon-Ismail. Measuring Similarity between Sets
of Overlapping Clusters. In 2010 IEEE Second International Conference on Social Computing, pages 303–308.
IEEE, aug 2010. ISBN 978-1-4244-8439-3. doi: 10.1109/SocialCom.2010.50.

[62] Heather Turner, Trevor Bailey, and Wojtek Krzanowski. Improved biclustering of microarray data demonstrated
through systematic performance tests. Comput. Stat. Data Anal., 48(2):235–254, 2005.

[63] Breck Baldwin Amit Bagga. Entity-Based Cross-Document Coreferencing Using the Vector Space Model. In
Proceedings of the 17th international conference on Computational linguistics, pages 79–85. Association for
Computational Linguistics, 1998. doi: 10.3115/980451.980859.
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