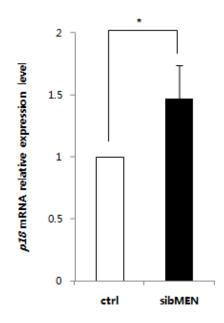
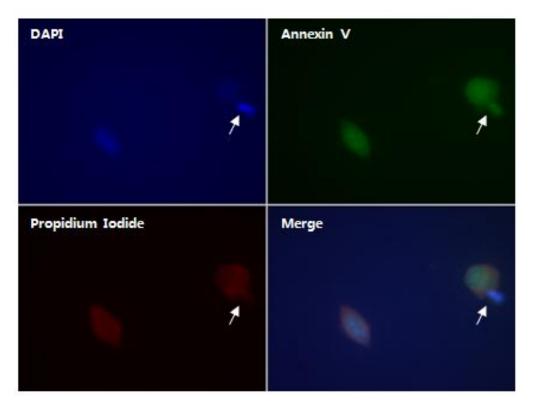

Menin modulates mammary epithelial cell numbers in bovine mammary glands through *Cyclin D1*

Kerong Shi^{*}, Xue Liu, Honghui Li, Xueyan Lin, Zhengui Yan, Qiaoqiao Cao, Meng Zhao, Zhongjin Xu, and Zhonghua Wang^{*}



Supplementary Fig. S1. *MEN1*/menin expression in mammary gland tissue decreases in the early lactation period and increases by the end of lactation and in the dry period. To investigate the expression levels of *MEN1*/menin during lactation cycle in the mammary glands of dairy cows, mammary gland tissues from 5 different lactation stages of cows on days in milk (DIM) + (4.6 ± 1.5) , $+(55\pm4.3)$, $+(163\pm6.24)$ and $+(312\pm24.6)$ as well as during the dry period, were used to analyze the expression levels of *MEN1* mRNA (A) and its encoded protein menin (B) via qRT-PCR and western blotting. The data are shown as relative expression levels normalized to an internal control β -Actin. The expression level of *MEN1*/menin at each stage was determined in two or three different individuals at each lactation stage. The results showed that the levels of both *MEN1* mRNA (A) and the menin protein (B) slowly decreased with advancing lactation, but later increased after the peak milking stage through the dry period (or involution stage), with the lowest expression level of menin being observed around the peak lactation stage (55±4.3 days in milk, DIM). One-way ANOVA analysis indicated no statistical difference among different lactation


stages (P=0.108 and P=0.114 for mRNA and protein expression, respectively.) (C) Representative western blot images of the expression of menin and the loading control β -actin are shown.

Supplementary Fig. S2 Besides *CycinD1* expression suppression, histone H3 lysine 4 trimethylation (H3K4me3) was inhibited upon *MEN1*/menin knockdown in mammary epithelial cells. (A) Histone H3 lysine 4 trimethylation level was decreased in MAC-T cells at 24h after transfected with MEN1-specific siRNAs (sibMEN), compared with its negative control (Ctrl) (n=3). * P<0.05. (C) Representative western blot images using antibodies against-menin (Bethyl), anti-H3K4me3 (Sangon) and anti- β -Actin (Beytime) are shown. β -Actin serves as a lysate loading control.

Supplementary Fig. S3 Cell progression negative regulator gene *p18* was up-regulated in mammary epithelial cells. Expression of *p18* was assessed at 24h in the MAC-T cells transfected with *MEN1*-specific siRNAs (sibMEN), as well as its negative control (Ctrl). Data are shown as relative expression levels normalized to an internal control β -Actin. **P*<0.05.

Supplementary Fig. S4 Suppression of *MEN1/menin* **expression induced mammary epithelial cell apoptosis**. Mammary epithelial cells MAC-T were exposed to *MEN1*-specific siRNAs for 24 hours and assessed for the cell apoptosis by Annexin V/propidium iodide (PI) staining. Cells were stained with Annexin V (green) and PI (red) and mounted in DAPI-containing anti-fade mounting medium. The apoptotic cells with broken cell membrane can be stained by both Annexin-V-FITC and propidium iodide. The two epithelial cells in the images showed apoptosis, with positive for both annexin V and PI staining. Arrow shows the cell in late apoptosis, with broken cell membrane and fragmented nuclear DNA waded out.

Name	Sense(5'-3')	Anti-sense (3'-5')		
sibMEN-1	CCGUUGACCUGUCUCUCUA dTdT	dTdT GGCAACUGGACAGAGAGAU		
sibMEN-2	CCACUGUCGUAACCGCAAU dTdT	CCACUGUCGUAACCGCAAU dTdT		
sibMEN-3	CCGAGUGACUACACGCUUU dTdT	dTdT GGCUCACUGAUGUGCGAAA		

Supplementary Table S1 Sequences information of siRNAs specific to MEN1 gene^{1,2}

¹The "dT" letters denote deoxythymines.

²A scramble siRNA was also used in the study as the negative control. We can't provide its sequence because it belongs to commercial confidentiality of Ribobio (Guangzhou, China).

Gene	Primers	Primer sequences $(5' \rightarrow 3')$	Product size
MENI	Forward	GATGGAGGTGGCATTTATGG	256bp
	Reverse	GATGTGCTCATCCCGGTAGT	
β-actin	Forward	CCCAGCACAATGAAGATCAA	180bp
	Reverse	TAGAAGCATTTGCGGTGGAC	
Custin D1	Forward	AGAAGTGCGAGGAAGAGGT	186bp
CyclinD1	Reverse	CGGATGGAGTTGTCAGTGT	
Cualiz D2	Forward	AGCGCTGTGAAGAGGAAGTC	224bp
CyclinD3	Reverse	CAAGACCAGCACCCAAT	
	Forward	AAAGGCTCCTGTACCTGTGC	215bp
CyclinB1	Reverse	CTCCGTCTTCTGCATCCACA	
Custin D2	Forward	TTCTCCCACACCTCAGGACA	276bp
CyclinB2	Reverse	AGCAGCCTGAACTTGGAGTG	
	Forward	AGGACCAAGAAAGCCACTGG	292bp
CyclinA2	Reverse	CAGGGTCTCGTTCTGCAGTT	
	Forward	CAGCTGGCTACTCAACTCCA	162bp
CDK1	Reverse	CCACTTCTGGCCACACTTCA	
	Forward	GGAGACCAAAGTGACCCTGG	212bp
CDK4	Reverse	GCTTGACTGTCCCACCACTT	
CD V/	Forward	CGAGGCCTGGACTTTCTTCA	226bp
CDK6	Reverse	CAACGCTCCAGAGATCCACA	
10	Forward	CATTCATGATGCGGCCAGAG	288bp
p18	Reverse	CATTGCAGATTCGCAGCTCC	

Supplementary Table S2 Primer sequences of target genes detected for expression analysis in MAC-T cells and mammary gland tissues

Name	Promoter region ¹	Primer sequences (5'→3')	Product size (bp)
P1	-1342 ~ -1103	F: TGTTAAGACTGGGTAAGATGTCC	240
		R: TGAGCCTGAGGTGGTTGG	
P2	-901 ~ -692	F: TGTTAAATTGCCGGCACAGG	210
		R: TTTCAGCCTAACATGCGCTC	
Р3	-602 ~ -442	F: CCCTGAGTCCCTGAATGGTA	160
		R: GGGTTCGGTGACACTCTGAG	
P4	-374 ~ -223	F: TCTGCAGAGCCACCTTCAC	152
		R: CGAAGCCGGGTTTTCATAGA	
Р5	-242 ~ -31	F: TCTATGAAAACCCGGCTTCG	212
		R: AAACTCCCCTGTAGTCCGTG	
P6	-19 ~ +194	F: GCAAAGTCCTAGAGCCTCCA	213
		R: TCTCCATCTCGCAGCACAG	

Supplementary Table S3 Primer information of the six amplicons of the promoter region of *Cyclin D1* gene used in the ChIP assay

¹ shown is the start and end position of the target region. Given the transcription start site is +1, its upstream region is labeled as "-" using increasing number from 3' to 5', while, its downstream region labeled as "+".