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Figure S1. Frontier KS orbitals of [Fe(tpy),]*" complexes substituted by carboxylic acid groups at the 4'
(1a), 4,4" (3a), and 5,5" (4a) positions.
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Figure S2. Top: HOMO and LUMO energies, bottom: HOMO-LUMO gaps (red), and average % of
electron density (%p.) on the linker group in doubly degenerate LUMO (blue) for 2a-f series of
complexes.
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Figure S5. Degenerate LUMO orbitals for 1b-f with carboxylic acid (A) on the center pyridines and
donor groups on the side pyridines. Surfaces are constructed with 0.04 isovalue.
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Figure S6. Average percent of electron density on a single donor group for the 21 lowest energy

unoccupied orbitals near the frontier region for the 1¢, 1e, and 1f. Note that average density equal to 25%
means that the MO is fully localized on the donor groups.
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Figure S7. First singlet excitation of 1a-f obtained from the TD-DFT that has contribution mostly from
the HOMO to LUMO transition.
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Figure S8. Lowest energy singlet excitations of 1a-f obtained from TD-DFT. The shaded plots indicate
transitions from HOMO into an e,* orbital.
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Figure S12. The effect of the change in the dihedral (marked in green) on the energy levels of Sb (left)
and 5c (right). The red lines are the KS orbitals involved in interaction.
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Figure S14. Electron density on Fe (p™) of the 21 higher energy occupied orbitals near the frontier region
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doubly degenerate orbitals are labeled as “*’.
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Figure S16. Excited states for 1c. Excited states were characterized for wavelengths > 350 nm with

oscillator strength (f,s.) = 0.01. Only those hole-particle pairs were considered whose contributions add up
to > 70 %.
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Figure S17. Excited states for le. Excited states were characterized for wavelengths > 350 nm with
oscillator strength (f,s.) = 0.01. Only those hole-particle pairs were considered whose contributions add up
to > 70 %. Transitions were classified as metal-centered (MC), metal-to-ligand charge transfer (MLCT),
intra-ligand charge transfer (ILCT), intra-ligand charge transfer with some inter-ligand contribution
(ILCT"), or ligand-centered (LC) based on visual inspection.
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Figure S18. Excited states for 1f. Excited states were characterized for wavelengths > 350 nm with
oscillator strength (f,s.) = 0.01. Only those hole-particle pairs were considered whose contributions add up
to > 70 %. Transitions were classified as metal-centered (MC), metal-to-ligand charge transfer (MLCT),
intra-ligand charge transfer (ILCT), intra-ligand charge transfer with some inter-ligand contribution
(ILCT"), or ligand-centered (LC) based on visual inspection.
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Transitions were classified as metal-centered (MC), metal-to-ligand charge transfer (MLCT), intra-ligand
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ligand-centered (LC) based on visual inspection.
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Figure S22. Calculated UV-Vis spectra of 1a, 1f-L. and 1f. 1f-L denotes a ligand only structure obtained
from the optimized geometry of 1f.
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Figure S24. Calculated UV-Vis spectra with TD-DFT employing CAM-B3LYP functional for 1a, 1h, 1¢
and 1e¢"'"".
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Figure S25. Excited states for 1h. Excited states were characterized for wavelengths > 350 nm with
oscillator strength (f,s.) = 0.01. Only those hole-particle pairs were considered whose contributions add up
to > 70 %.
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*Excitation with closely contributing hole-particle pairs hence only those with > 10 % contribution were
considered for characterization.
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*Excitation with closely contributing hole-particle pairs hence only those with > 10 % contribution were
considered for characterization.
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Figure S26. Excited states for 1¢’'”’". Excited states were characterized for wavelengths > 350 nm with
oscillator strength (f,s.) = 0.01. Only those hole-particle pairs were considered whose contributions add up
to > 70 %. Transitions were classified as metal-centered (MC), metal-to-ligand charge transfer (MLCT),
intra-ligand charge transfer (ILCT), intra-ligand charge transfer with some inter-ligand contribution
(ILCT"), or ligand-centered (LC) based on visual inspection.
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Figure S27. Calculated UV-Vis spectra employing TD-DFT for 1a, 1h, 1f and 1f'. Oscillator strength of
the transitions are in the bottom plots.
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Figure S28. Electron density on Fe (p') for the 21 highest energy occupied orbitals near the frontier
region for 1a, 1h, 1f, 1f’ . The KS orbitals with electron distribution > 20% are shown in red and among
these the doubly degenerate orbitals are labeled with *.
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Figure S29. Calculated UV-Vis spectra, with CAM-B3LYP functional, of [Fe(CNC),]*" and complex
with conjugated thiophene substituent on 4' position CNC.
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Figure S30. Electron density on Fe (p™°) of the 21 higher energy occupied orbitals near the frontier region
for [Fe(CNC)z]2+ and the complex with conjugated thiophene substituent on 4' position of CNC. The KS
orbitals with electron distribution > 20% are shown in red and among these the doubly degenerate orbitals
are labeled as “*’. The red ‘*’ indicates energy levels with difference in energy by 0.01 eV.
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