BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>editorial.bmjopen@bmj.com</u>

BMJ Open

Understanding the gender gap in antibiotic prescribing: a cross-sectional analysis of English primary care

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-020203
Article Type:	Research
Date Submitted by the Author:	20-Oct-2017
Complete List of Authors:	Smith, David; Public Health England, Modelling and Economics Unit, National Infection Service Dolk, Christiaan; University of Groningen, PharmacoTherapy, - Epidemiology & -Economics, Department of Pharmacy Smieszek, Timo; Public Health England, Modelling and Economics Unit, National Infection Service Robotham, Julie; Public Health England, Modelling and Economics Unit, National Infection Service Pouwels, Koen; Public Health England, Modelling and Economics Unit, National Infection Service; Pouwels, Koen; Public Health England, Modelling and Economics Unit, National Infection Service; Imperial College School of Public Helath, MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology
Primary Subject Heading :	General practice / Family practice
Secondary Subject Heading:	Health services research, Public health
Keywords:	anti-bacterial agents, prescriptions, electronic health records, antibiotic prescribing, consultation, gender bias

SCHOLARONE[™] Manuscripts

1

1		
2 3	1	Understanding the gender gap in antibiotic prescribing: a cross-sectional analysis of
4 5 6	2	English primary care
7 8	3	David RM Smith ¹ * [†] , F Christiaan K Dolk ^{1,2} *, Timo Smieszek ^{1,3} , Julie V Robotham ¹ , Koen B
9 10	4	Pouwels ^{1,2,3}
11 12 13	5	1. Modelling and Economics Unit, National Infection Service, Public Health England, London,
14 15	6	United Kingdom.
16 17	7	2. PharmacoTherapy, -Epidemiology & -Economics, Department of Pharmacy, University of
18 19 20	8	Groningen, Groningen, The Netherlands.
20 21 22	9	3. MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease
23 24	10	Epidemiology, Imperial College School of Public Health, London, United Kingdom.
25 26 27	11	* shared first author
27 28 29	12	+ corresponding author: <u>david.r.m.smith@phe.gov.uk</u> ; +44 20 8327 6651 ; 61 Colindale Ave,
30 31	13	London UK, NW9 5EQ
32 33	14	Word count: 2635
34 35 36	15	
37 38		
39 40		
41 42		
43 44 45		
46 47		
48 49		
50 51		
52 53		
54 55 56		
57 58		1
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

16	Abstract
17	Objectives: To explore the degree to which the gender gap in antibiotic prescribing is driven
18	by prescribing behaviour, consultation behaviour, comorbidity and urinary tract infection
19	(UTI).
20	Design: Cross-sectional analysis of patient consultation and antibiotic prescribing.
21	Setting: English primary care.
22	Participants: Patients who consulted general practices registered with The Health
23	Improvement Network between 2013 and 2015.
24	Primary and secondary outcome measures: Total antibiotic prescribing was measured in
25	children (<19 years), adults (19 – 64) and the elderly (65+). For twelve common conditions,
26	the number of adult consultations was measured, and the relative risk (RR) of being
27	prescribed antibiotics when consulting as female or with comorbidity was estimated.
28	Results: Female patients received 67% more antibiotic prescriptions than males, and 43%
29	more when excluding antibiotics used to treat UTI (trimethoprim and nitrofurantoin). These
30	gaps were more pronounced in adult women (99% more prescriptions than males; 69%
31	more when excluding UTI) than in children (9%; 0%) or the elderly (67%; 38%). Among
32	adults, women accounted for 64% of consultations (61% among patients with comorbidity),
33	but were not substantially more likely than men to receive an antibiotic prescription when
34	consulting with common conditions such as cough (RR 1.01; CI 1.00 – 1.02), sore throat (RR
35	1.01, CI 1.00 – 1.01) and lower respiratory tract infection (RR 1.00, CI 1.00 – 1.01).
36	Exceptions were skin conditions: women were less likely to be prescribed antibiotics when
37	consulting with acne (RR 0.67, CI 0.66 – 0.69) or impetigo (RR 0.85, CI 0.81 – 0.88).
38	Conclusions : The gender gap in antibiotic prescribing can largely be explained by
39	consultation behaviour. Although in most cases adult men and women are equally likely to
	2
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

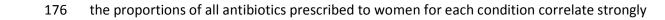
2 3	40	be prescribed an antibiotic when consulting primary care, it is unclear whether or not they
4	10	
5 6	41	are equally indicated for antibiotic therapy.
7 8	42	
9 10	43	Strengths and limitations of this study:
11 12	44	• This study is one of the first to explore the underlying causes of the large gap in the
13		
14 15	45	number of antibiotics prescribed to men and women in primary care.
16 17	46	• Findings are derived from a large, representative sample of primary care patients in
18 19	47	England.
20 21	48	• Extensive mapping of Read (diagnostic) codes to clinical conditions made it possible
22 23		
24	49	to analyse prescribing across a range of conditions and to account for comorbidity.
25 26	50	Identification of antibiotics that are used to treat UTI but rarely other conditions
27 28	51	(trimethoprim and nitrofurantoin) allowed for approximation of UTI prescribing
29	51	
30 31	52	despite incomplete diagnostic coding.
32 33	53	• The data do not include indicators of antibiotic appropriateness, such as severity of
34 35	54	illness, and so the clinical appropriateness of gender differences in prescribing could
36 37		
38	55	not be evaluated.
39 40	56	
41 42		
42 43		
44		
45		
46		
47		
48 49		
50		
51		
52		
53		
54		
55		
56 57		
57 58		
59		3
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3
4
5
6 7
8
9
10
11 12
12 13
14
15
16
17 18
19
20
21
22 23
23 24
25
26
27 28
29
30
31
32 33
33 34
35
36
37 38
38 39
40
41
42
43 44
45
46
47
48 49
5 0
51
52
53 54
54 55
56
57
58 50
59 60

57 Introduction

58	Reducing the unnecessary use of antibiotics is as an essential means of mitigating the
59	emergence of antimicrobial resistance (AMR) and its associated costs.[1,2] However,
60	prescribing reductions are not without risk. The causes and magnitudes of prescribing vary
61	substantially between practices and prescribers, [3-5] and sweeping, uncalibrated
62	interventions could jeopardise some patients while failing to prevent unnecessary
63	prescribing in others. In order to safely and effectively reduce antibiotic use, it is imperative
64	to understand how and to whom antibiotics are prescribed.
65	
66	Gender is a key determinant of antibiotic prescribing. A recent meta-analysis across primary
67	care in nine high-income countries found that females received more antibiotics than males
68	in all age groups except those >75, with women aged 16 to 54 receiving 36% to 40% more
69	antibiotics than men of the same age.[6] Similarly, across English and Welsh primary care,
70	the rate of antibiotic prescribing has been found to be 40% higher in female than in male
71	patients.[7] Although the latter figure dates from 1996, gender disparities in England have
72	more recently been observed in out-of-hours and paediatric care, with women and girls
73	receiving more antibiotic prescriptions than men and boys.[8,9]
74	
75	There are several proposed explanations for this gender gap in antibiotic prescribing. First,
76	some infectious diseases affect men and women differently. In particular, urinary tract
77	infection (UTI) is more common in adult women than in men and accounts for over 20% of
78	antibiotic prescriptions in English primary care.[10,11] However, respiratory tract infections
79	(RTIs) account for more than twice as many prescriptions as UTI,[11] and women are not
80	more susceptible to these conditions than men, [12,13] although gender differences in

2 3 4	81	comorbidity may underlie some variation in prescribing. Second, as in many
5 6	82	countries,[14,15] women in the UK consult their general practitioner (GP) more often than
7 8	83	men.[16-18] Although consultation rate is linked to antibiotic prescribing,[5] it is not clear to
9 10	84	what extent gender differences in antibiotic prescribing can be explained by gender
11 12 13	85	differences in health-seeking behaviour. Finally, social and behavioural factors may play a
14 15	86	role. For example, men and women communicate differently with health professionals, and
16 17	87	prescribers may have biases that cause them to be more willing to prescribe antibiotics
18 19 20	88	during consultations with women than with men.[19,20]
20 21 22	89	
23 24	90	Here, the gender gap in antibiotic prescribing was analysed using a large, representative
25 26	91	sample of primary care patients in England. Antibiotic prescribing in male and female
27 28 29	92	children, adults and the elderly was compared at the population level. The influence of
29 30 31	93	gender on prescribing was assessed by controlling for consultation and comorbidity, and
32 33	94	calculating the proportions of men and women that received antibiotic prescriptions when
34 35 26	95	presenting to primary care with a suite of common conditions. These prescribing
36 37 38	96	proportions facilitate a deeper understanding of the causes of the gender gap in antibiotic
39 40	97	prescribing, and may inform prescribing intervention design.
41 42	98	
43 44 45	99	Methods
46 47	100	This study used data from English general practices registered with The Health Improvement
48 49	101	Network (THIN), a UK-based primary care electronic medical record database. Practices
50 51 52	102	were included that provided data for at least one full calendar year between January 1,
52 53 54	103	2013 and December 31, 2015; there were 349 such practices in 2013, 285 in 2014 and 191 in
55 56	104	2015. Anonymised patient data were extracted from these practices that met acceptable
57 58		5
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml


2 3	105	standards for research data collection. All systemic antibiotic prescriptions (antibiotics from
4 5 6	106	British National Formulary chapter 5.1,[21] excluding antituberculosis and antileprosy drugs)
7 8	107	recorded in THIN were analysed by patient gender and age. Patient age at the time of
9 10	108	consultation was used to classify patients as children (aged 0-18 years), adults (19-64 years)
11 12 13	109	and the elderly (65+ years).
14 15	110	
16 17 18	111	Read codes (the diagnostic codes used in THIN) were analysed to quantify the number of
19 20	112	male and female consultations for acute presentations of 12 common conditions that are
21 22	113	treated with antibiotics to varying degrees: acne, bronchitis, chronic obstructive pulmonary
23 24 25	114	disease (COPD), cough, gastroenteritis, impetigo, influenza-like illness (ILI), lower respiratory
26 27	115	tract infection (LRTI), otitis media, sinusitis, sore throat and upper respiratory tract infection
28 29	116	(URTI). A vast number of Read codes are used in THIN, and the methods used to assign
30 31 32	117	specific Read codes to different conditions and to link Read codes to acute antibiotic
33 34	118	prescriptions are described elsewhere.[11] The ratio of female to male consultations (F:M)
35 36	119	was then calculated to quantify gender differences in consultation for each of these
37 38	120	conditions.
39 40 41	121	
42 43	122	In THIN, a large proportion of UTI consultations are poorly coded, particularly in patients
44 45	123	consulting for UTI prophylaxis or chronic/recurrent UTI. However, in English primary care
46 47 48	124	the antibiotics used to prevent and treat the vast majority of UTIs – trimethoprim and
49 50	125	nitrofurantoin – are rarely used for other conditions.[11] Prescriptions of trimethoprim and
51 52	126	nitrofurantoin were thus used as a proxy measure for prescribing for UTI.
53 54 55	127	
56 57		
58		6
59		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60		r or peer review only - mtp.//bmjopen.bmj.com/site/about/guidelines.xntmi

Page 7 of 26

$1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 19 \\ 20 \\ 12 \\ 23 \\ 24 \\ 25 \\ 27 \\ 28 \\ 9 \\ 31 \\ 33 \\ 33 \\ 33 \\ 35 \\ 37 \\ 39 \\ 40 \\ 14 \\ 23 \\ 44 \\ 45 \\ 47 \\ 47 \\ 47 \\ 47 \\ 47 \\ 47$	
40 41 42 43 44 45	

128	Prescribing proportions were then calculated by dividing the total number of prescriptions
129	for a given condition by the number of consultations for that condition. To account for
130	patients that consulted more than once, robust standard errors were used when calculating
131	prescribing proportions. These data were also used to calculate the relative risk (RR) of
132	being prescribed an antibiotic when consulting as female as opposed to male. In the main
133	analysis, consultations were included if they occurred at a patient's primary registered
134	practice, but in a sensitivity analysis all patient consultations recorded in THIN were
135	included. Patients with comorbidity were analysed separately from otherwise 'healthy'
136	patients (i.e., those without comorbidity) to minimise potential biases in consultation and
137	prescribing due to gender differences in background health status. Further, the RR of being
138	prescribed an antibiotic when consulting with comorbidity was also calculated for each
139	condition and gender. Comorbidities were identified by the Read codes that indicate
140	qualification for the free seasonal influenza vaccination programme: asthma, chronic heart
141	disease, chronic kidney disease, chronic liver disease, chronic neurological disease and
142	immunosuppressive disease.[22] Patients who received at least two prescriptions of
143	systemic or inhaled corticosteroids or immunosuppressive drugs in the 365 days prior to
144	their consultation were also included in this group, since these drugs indicate an increased
145	risk of serious complications after (respiratory tract) infections.[22]
146	
147	All data were analysed using STATA 13.1 and R version 3.1.
148	
149	Results
150	Of all antibiotic prescriptions observed in THIN between 2013 and 2015 (n=4,574,363), the
151	majority (62.6%) were in female patients (Figure 1). Adult women received approximately

1		
2 3 4	152	twice (99.0%) as many antibiotic prescriptions as adult men, whereas elderly women and
5	153	girls received 67.4% and 9.2% more prescriptions, respectively, than elderly men and boys.
7 8	154	Nitrofurantoin and trimethoprim accounted for 17.1% of all prescriptions, 81.3% of which
9 10	155	were prescribed to female patients. The prescribing gender gap narrowed in all age groups
11 12 13	156	when these antibiotics were removed, and became negligible in children (0.3%), but adult
14 15	157	and elderly women still received, respectively, 69.2% and 37.7% more antibiotic
16 17	158	prescriptions than adult and elderly men.
18 19 20	159	
21 22	160	Healthy adult women consulted primary care more than men for the 12 conditions included
23 24	161	in this study, accounting for 64.3% of all consultations (61.9% among patients with
25 26 27	162	comorbidity). The biggest gender gaps in consultation were in acne (F:M 2.90) and sinusitis
27 28 29	163	(F:M 2.78). However, there was little gender difference in the proportions of healthy adult
30 31	164	patients that received antibiotic prescriptions when consulting (Table 1). The greatest gaps
32 33	165	were in acne, where 60% of consulting men received systemic antibiotics compared to 41%
34 35 36	166	of women (RR 0.67; Cl 0.66 – 0.69), and in impetigo, where, respectively, 62% and 52% of
37 38	167	men and women received prescriptions (RR 0.85, Cl 0.81 – 0.88). In all other conditions, the
39 40	168	difference between the proportions of men and women that received antibiotic
41 42 43	169	prescriptions when consulting was ≤2%, although these gaps were statistically significant in
44 45	170	cough (F>M, p=0.02), LRTI (F>M, p=0.02), sinusitis (F>M, p<0.001) and URTI (M>F, p<0.001).
46 47	171	These results held in a sensitivity analysis when consultations and prescriptions outside of
48 49	172	patients' primary registered practice were included (see online supplementary appendix).
50 51 52	173	Further, with the exception of acne and impetigo, the proportions of all antibiotics
53 54	174	prescribed to men and women for different conditions are proportionate to the proportions
55 56	175	of all consultations made by men and women for those conditions (Figure 2). Accordingly,
57 58		8
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

177 with the proportions of consultations made by women (Spearman's ρ =0.92; p<0.001), but

178 not with the proportions of women that received prescriptions when consulting with those

179 conditions (Spearman's ρ =0.28, p=0.38).

Table 1. Primary care consultations and antibiotic prescribing proportions per consultation

in adult men and women (aged 19 – 64 years) with and without comorbidity for 12 different

183 conditions. Only consultations from patients' primary registered practices are included.

	Number of consultations (% of total)		F:M consultation ratio	Proportion of patients receiving prescription when consulting (95% CI)		Relative risk of receiving antibiotic prescription when consulting as female (95% CI)
	Women	Men		Women	Men	
Acne	25,676 (74%)	8,864 (26%)	2.90	41% (40% – 41%)	60% (59% – 61%)	0.67 (0.66 – 0.69) (p<0.001)
Acne with comorbidity	2,344 (66%)	1,185 (34%)	1.98	40% (38% – 42%)	55% (52% – 58%)	0.73 (0.68 – 0.78) (p<0.001)
Bronchitis	7,085 (61%)	4,584 (39)%	1.55	83% (83% – 84%)	84% (83% – 86%)	0.99 (0.97 – 1.00) (p=0.14)
Bronchitis with comorbidity	3,101 (60%)	2,065 (40%)	1.50	87% (86% – 89%)	89% (88% – 91%)	0.98 (0.96 – 1.00) (p=0.03)
COPD	3,274 (59%)	2,271 (41%)	1.44	76% (74% – 78%)	75% (73% – 77%)	1.02 (0.99 – 1.05) (p=0.25)
COPD with non- respiratory comorbidity	1,287 (56%)	1,029 (44%)	1.25	73% (70% – 76%)	70% (69% – 72%)	1.06 (1.01 – 1.11) (p=0.02)
Cough	158,614 (61%)	103,058 (39%)	1.54	48% (48% – 49%)	48% (48% – 48%)	1.01 (1.00 – 1.02) (p=0.02)
Cough with comorbidity	68,353 (60%)	46,210 (40%)	1.48	58% (57% – 58%)	56% (56% – 57%)	1.03 (1.02 – 1.04) (p<0.001)
Gastroenter itis	41,870 (58%)	30,810 (42%)	1.36	6% (6% – 6%)	6% (6% – 6%)	1.01 (0.96 – 1.08) (p=0.65)
Gastroenter itis with comorbidity	12,184 (57%)	9,216 (43%)	1.32	8% (7% – 8%)	7% (7% – 8%)	1.03 (0.94 – 1.14) (p=0.49)
ILI	10,569 (57%)	7,946 (43%)	1.33	20% (19% – 20%)	19% (18% – 20%)	1.02 (0.96 – 1.09) (p=0.47)
ILI with comorbidity	1,951 (57%)	1,468 (43%)	1.33	25% (23% – 27%)	29% (27% – 31%)	0.87 (0.78 – 0.97) (p=0.02)
Impetigo	5,272 (64%)	2,907 (36%)	1.81	52% (51% – 54%)	62% (60% – 63%)	0.85 (0.81 – 0.88) (p<0.001)
Impetigo with comorbidity	1,139 (66%)	598 (34%)	1.90	54% (51% – 57%)	63% (58% – 66%)	0.86 (0.80 – 0.94) (p<0.001)
LRTI	52,996 (60%)	35,777 (40%)	1.48	91% (91% – 92%)	91% (91% – 91%)	1.00 (1.00 – 1.01) (p=0.02)
LRTI with comorbidity	36,693 (60%)	24,519 (40%)	1.50	91% (90% – 91%)	90% (89% – 90%)	1.01 (1.01 – 1.02) (p<0.001)
Otitis	11,773	6,545	1.80	84% (84% –	84% (83% –	1.00 (0.99 – 1.02) (p=0.58)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	media	(64%)	(36%)		85%)	85%)			
	Otitis	2,556	1,400	1.83	85% (84% –	84% (82% –	1.01 (0.98 – 1.04) (p=0.41)		
	media with	(65%)	(35%)		87%)	86%)			
	comorbidity	46.224	46.625	2 70	000/ (000/	0.50/ (0.50/	4 02 (4 02 4 02) (0 004)		
	Sinusitis	46,221 (74%)	16,625 (26%)	2.78	88% (88% – 89%)	86% (86% – 87%)	1.02 (1.02 – 1.03) (p<0.001)		
	Sinusitis with comorbidity	12,013 (73%)	4,394 (27%)	2.73	90% (90% – 91%)	89% (88% – 90%)	1.02 (1.00 – 1.03) (p=0.006)		
	Sore throat	136,117 (68%)	65,531 (32%)	2.08	57% (56% – 57%)	57% (56% – 57%)	1.00 (0.99 – 1.01) (p=0.67)		
	Sore throat with comorbidity	24,376 (67%)	11,968 (33%)	2.04	53% (52% – 54%)	50% (49% – 51%)	1.06 (1.04 – 1.08) (p<0.001)		
	URTI	90,295 (68%)	42,998 (32%)	2.10	34% (34% – 34%)	36% (35% – 36%)	0.96 (0.94 – 0.97) (p<0.001)		
	URTI with comorbidity	22,995 (65%)	12,515 (35%)	1.84	45% (45% – 46%)	45% (44% – 46%)	1.00 (0.98 – 1.02) (p=0.96)		
184		, ,			,	,			
185									
186	These gender differences in prescribing were broadly similar among adults with								
187	comorbidity.	Women w	vith comor	bidity were s	ubstantially les	s likely than m	en with		
188	comorbidity to receive antibiotic prescriptions when consulting with acne (RR 0.73, Cl 0.68 –								
189	0.78) or impetigo (RR 0.86, CI 0.80 – 0.94) (Table 1), and also ILI (RR 0.87, CI 0.78 – 0.97), but								
190	for all other conditions the difference between the proportions of men and women that								
191	received prescriptions when consulting was ≤3%. Again, among patients with comorbidity,								
192	the proportions of antibiotics prescribed to women for each condition correlate strongly								
193	with the proportions of consultations made by women (Spearman's ρ =0.78; p=0.005), but								
194	not with the proportion of women that received prescriptions when consulting with those								

- 195 conditions (Spearman's ρ =0.41, p=0.19).

- 197 Patients with comorbidity were generally more likely than those without comorbidity to
- 198 receive antibiotic prescriptions when consulting (see online supplementary appendix). In
- 199 both men and women the greatest of these differences were in URTI, cough and ILI, where
- 200 the proportion of patients that received antibiotics when consulting was approximately 6-

BMJ Open

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10 19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
20 29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
40 41	
41	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
55 54	
55	
55 56	
57	
58	
59	
60	

12% higher among patients with comorbidity. Patients with comorbidity were also more
likely to receive a prescription when consulting with bronchitis, gastroenteritis and sinusitis.
However, among women consulting with sore throat and LRTI, and among men consulting
with sore throat, LRTI and acne, the proportions of patients that received antibiotics when
consulting was significantly lower among patients with comorbidity than among otherwise
healthy patients.

- 207
- 208 Discussion

209 This study affirms that there is still a substantial gender gap in antibiotic prescribing in 210 English primary care, and shows that this gap is in large part unexplained by biased 211 prescribing behaviour and gender differences in UTI and comorbidity. The prescribing gap is 212 most pronounced in adults, with women receiving approximately twice as many antibiotic 213 prescriptions as men, and 70% more when excluding antibiotics used to treat UTI. These 214 differences in prescribing are proximate to differences in health-seeking behaviour, with 215 healthy adult women consulting primary care approximately 80% more than healthy adult 216 men across the 12 conditions included in this study. Accordingly, men and women are just 217 as likely to be prescribed antibiotics when consulting with most common RTIs. These 218 findings provide strong support for the hypothesis that higher antibiotic prescribing in adult 219 women is primarily driven by a higher consultation rate. 220

- 221 This study has a number of strengths. First, THIN is a robust data source that is
- representative of the English primary care patient population.[23] Second, the extensive
- 223 mapping of Read codes to clinical conditions made it possible to analyse prescribing across a
- range of conditions and to account for comorbidities, which differ between men and

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 12 of 26

BMJ Open

3 4	
5 6	
/ 8 9	
10 11	
12 13	
14 15	
16 17 18	
19 20	
21 22	
23 24	
25 26 27	
28 29	
30 31	
32 33 34	
35 36	
37 38	
39 40 41	
41 42 43	
44 45	
46 47	
48 49 50	
51 52	
53 54	
55 56 57	
58 59	
60	

225	women and influence whether or not a practitioner prescribes. Third, since UTI in English
226	primary care is almost always treated with trimethoprim or nitrofurantoin, and since these
227	antibiotics are rarely used to treat other conditions in primary care,[11] it was possible to
228	approximate total prescribing for UTI despite incomplete diagnostic coding. There were also
229	limitations to this work, the largest being that the clinical appropriateness of prescribing
230	could not be determined, and so it was not possible to evaluate whether consulting men
231	and women are differently indicated for antibiotics, and hence whether equal prescribing
232	proportions in RTIs are clinically justified. Further, other patient characteristics that may co-
233	vary with gender and consultation behaviour, such as socioeconomic status, could not be
234	considered. Finally, the quality of diagnostic coding varies within and between practices,
235	which may bias estimates of consultation and prescribing.
236	
237	It is well observed that rates of primary care consultation and antibiotic prescribing are
238	substantially higher in adult women than in adult men, [6-9,16-18] but previous studies have
239	been unable to show that the gender gap in antibiotic prescribing can primarily be
240	attributed to consultation, as opposed to other relevant factors such as UTI, comorbidity
241	and other patient and prescriber behaviours. These findings builds on a previous study of
242	prescribing in UK primary care between 1997 and 2006, which found similar male and
243	female prescribing proportions in a selection of RTIs, but was conducted in a limited subset
244	of patients, did not consider prescribing for UTI, and did not account for comorbidities, non-
245	respiratory conditions, or patients consulting outside of their registered practice.[24]
246	
247	Antibiotic prescribing was proportionate to consultation for most conditions, but skin
248	conditions were notable exceptions: men consulted much less with acne and impetigo but
	12

Page 13 of 26

BMJ Open

1 2 3 4 5 6 7 8	
9 10 11 12 13 14 15 16	
17 18 19 20 21 22 23 24 25	
26 27 28 29 30 31 32 33	
34 35 36 37 38 39 40 41	
42 43 44 45 46 47 48 49 50	
50 51 52 53 54 55 56 57 58 59 60	

249	were substantially more likely than women to receive an antibiotic prescription when
250	consulting (although acne is unique in that women but not men can be treated with
251	combination oral contraceptives, confounding gender comparisons in antibiotic prescribing).
252	Although women consult more frequently, they are not known to suffer from greater
253	incidence or severity of disease in the conditions included here.[12,13] Studies have also
254	shown that men tend to consult later in the course of their illness and may have a higher
255	threshold to seeking care.[17,25,26] When prescribing is truly reflective of patient need
256	(e.g., as in skin conditions, due to low diagnostic uncertainty), a higher prescribing
257	proportion in men may be expected if, on average, less frequent and/or delayed
258	consultation is coupled with more severe clinical presentation. Yet, for the remaining
259	conditions in this study – predominantly RTIs – prescribing proportions in male and female
260	patients were strikingly similar despite vast differences in consultation. This may be
261	indicative of imprudent prescribing. In non-skin conditions there is often (i) considerable
262	diagnostic uncertainty (e.g., difficulty in differentiating acute bronchitis and pneumonia in
263	primary care) and (ii) uncertainty around subjective, insensitive or unspecific clinical severity
264	markers (e.g., reliance on patient symptom reporting and other clinical features that poorly
265	predict benefit from antibiotic treatment).[27,28] Faced by these uncertainties, GPs may
266	prescribe antibiotics precautiously – and imprudently – to a large proportion of patients
267	with RTI, regardless of disease severity, resulting in high prescribing proportions in all
268	patients.
269	
270	Although imprudent prescribing has been the target of numerous antimicrobial stewardship
271	interventions, it remains obstinate in English primary care,[29] and the combination of high
272	consultation rates among female patients and overly precautious antibiotic prescribing
	13

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

4 5	
6 7	
8 9	
10 11	
12 13	
14	
15 16	
17 18	
19 20	
21 22	
23 24	
25 26	
27 28	
29 30	
31 32	
33 34	
35 36	
37 38	
39 40	
41 42	
43 44	
45 46	
40 47 48	
49	
50 51	
52 53	
54 55	
56 57	
58 59	
60	

273	behaviour among GPs could result in a disproportionate share of inappropriate (i.e.,
274	unnecessary) antibiotic prescriptions in women. However, previous studies of gender
275	differences in inappropriate prescribing have found mixed results,[6,30] and it remains to be
276	shown whether men and women in UK primary care differ in their objective clinical need for
277	antibiotics when consulting with RTIs and other common conditions. Yet, regardless of
278	whether or not women are more likely to receive an inappropriate prescription per
279	consultation, it is likely that a higher level of antibiotic prescribing in women is accompanied
280	by a greater total number of inappropriate prescriptions.
281	
282	Conclusions
283	This study reaffirms known gender gaps in health-seeking behaviour and antibiotic
284	prescribing, and shows that, with exceptions, adult men and women in English general
285	practice are equally likely to receive an antibiotic prescription when seeking care for
286	common conditions, and that gender differences in the number of antibiotics prescribed are
287	largely driven by differences in consultation behaviour. Equal prescribing proportions may
288	seem to indicate relative parity in how men and women are treated when they consult, but
289	women consult vastly more than men yet have not been shown to suffer from more
290	frequent or severe infection in the conditions included in this study. It is thus plausible that
291	a higher rate of consultation in women is coupled with a milder average clinical
292	presentation, but that overly precautious GPs prescribe even when antibiotics are not
293	clinically necessary, resulting in high rates of prescribing in all patients. Given the urgent
294	need to reduce unnecessary antibiotic prescribing, it is crucial to more deeply understand
295	how and to whom antibiotics are overprescribed. To this end, future work should further
	14

1		
2 3	296	investigate the clinical (in)appropriateness of gender differences in antibiotic prescribing in
4		······································
5	297	primary care.
6 7		
8	298	
9	299	Figure continue
10	299	Figure captions
11 12	300	Figure 1. All systemic antibiotic prescriptions recorded in THIN between 2013 and 2015,
13	301	stratified by gender and age group. Antibiotics used to treat UTI (trimethoprim and
14	302	nitrofurantoin) are identified separately from all other antibiotics.
15 16		
10	303	Figure 2. For common conditions in general practice, the proportions all consultations
18	304	(circles) and antibiotic prescriptions (triangles) attributed to women (red) and men (blue).
19	305	Consultations and prescriptions include all adult patients (aged 19-64) without comorbidity
20 21	306	consulting at their primary registered practice. Conditions are ordered by consultation
22	307	proportion.
23		
24 25	308	
25 26	309	Additional information
27		
28	310	Contributors : KP and DS conceived and designed the study. KP extracted the data from The
29 30		
31	311	Health Improvement Network database. CD and KP conducted the analyses. DS, JR, KP and
32	312	TS carried out interpretation of the data. DS drafted the manuscript. CD, JR, KP and TS
33 34	512	is carried out interpretation of the data. Do drafted the manuscript. CD, 3N, NF and 15
34 35	313	critically revised the manuscript for important intellectual content. All authors approved the
36		
37	314	final version prior to submission.
38 39		
40	315	Funding: This work was funded internally by Public Health England.
41	24.6	
42 43	316	Competing interests: None.
44	317	Ethics approval: This study received approval from THIN's Scientific Review Committee
45		
46	318	(reference number 16THIN-071-A2).
47 48		
49	319	Data sharing statement: This analysis is based on a large sample from The Health
50		
51 52	320	Improvement Network, provided by IMS Health. The authors' license for using these data
53	321	procludes the sharing of raw data with third parties
54	321	precludes the sharing of raw data with third parties.
55 56	322	
56 57		
58		15
59		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60		For peer review only - http://binjopen.binj.com/site/about/guidennes.xhtml

1		
2 3	323	References:
4	010	
5	324	1. Chief Medical Officer. UK Five Year Antimicrobial Resistance Strategy 2013 to 2018. London:
6 7	325	Department of Health, 2013.
7 8	326	2 Shalleross II. Davies SC. Antibiatic averyces a key driver of antimicrobial resistance. Br / Can Brast
9	320 327	 Shallcross LJ, Davies SC. Antibiotic overuse: a key driver of antimicrobial resistance. Br J Gen Pract 2014;64:604-5.
10	527	2017,04.004 5.
11	328	3. Butler CC, Rollnick S, Pill R et al. Understanding the culture of prescribing: qualitative study of general
12	329	practitioners' and patients' perceptions of antibiotics for sore throats. BMJ 1998;317:637.
13 14	330	4 - Cadiaux C. Tarabha D. Daughings D. et al. Desdictors of inconventiate antibiatic preservicing among
15	331	 Cadieux G, Tamblyn R, Dauphinee D <i>et al</i>. Predictors of inappropriate antibiotic prescribing among primary care physicians. <i>CMAJ</i> 2007;177:877-83.
16	551	
17	332	5. Pouwels KB, Dolk FCK, Smith DRM et al. Antibiotics in English primary care IV: explaining variation in
18	333	antibiotic prescribing between general practices. J Antimicrob Chemother. Submitted.
19		
20	334	6. Schröder W, Sommer H, Primrose Gladstone B <i>et al</i> . Gender differences in antibiotic prescribing in the
21 22	335	community: a systematic review and meta-analysis. <i>J Antimicrob Chemother</i> 2016;71:1800-6.
22	226	7 Maired A Marca // Are and any marific antiking a second in a second anaptical in Factor d
24	336 337	 Majeed A, Moser K. Age- and sex-specific antibiotic prescribing patterns in general practice in England and Wales in 1996. Br J Gen Pract 1999;49:735-6.
25	557	and wales in 1990. <i>Bi</i> 9 den <i>Huct</i> 1999,49.759-0.
26	338	8. Hayward GN, Fisher RE, Spence GT et al. Increase in antibiotic prescriptions in out-of-hours primary
27	339	care in contrast to in-hours primary care prescriptions: service evaluation in a population of 600 000
28	340	patients. J Antimicrob Chemother 2016;71:2612-9.
29		
30 31	341	9. Schneider-Lindner V, Quach C, Hanley JA <i>et al</i> . Secular trends of antibacterial prescribing in UK
32	342	paediatric primary care. J Antimicrob Chemother 2011;66:424-33.
33	343	10. Foxman B. The epidemiology of urinary tract infection. <i>Nat Rev Urol</i> 2010;7:653-60.
34	545	
35	344	11. Dolk FCK, Pouwels KB, Smith DRM et al. Antibiotics in English primary care I: which antibiotics are
36	345	prescribed and for which conditions? J Antimicrob Chemother. Submitted.
37 38		
39	346	12. Gutiérrez F, Masiá M, Mirete C <i>et al</i> . The influence of age and gender on the population-based
40	347 348	incidence of community-acquired pneumonia caused by different microbial pathogens. <i>J Infect</i> 2006;53:166-74.
41	540	2000,55.100-74.
42	349	13. Falagas M, Mourtzoukou EG, Vardakas KZ. Sex differences in the incidence and severity of respiratory
43	350	tract infections. Resp ir Med 2007;101:1845-63.
44		
45 46	351	14. Pinkhasov RM, Wong J, Kashanian J et al. Are men shortchanged on health? Perspective on health
40 47	352	care utilization and health risk behavior in men and women in the United States. Int J Clin Pract
48	353	2010;64:475-87.
49	354	15. Vos HM, Schellevis FG, van den Berkmortel H et al. Does prevention of risk-behaviour in primary care
50	355	require a gender-specific approach? A cross-sectional study. <i>Fam Pract</i> 2013;30:179-84.
51	-	
52	356	16. Wang Y, Hunt K, Nazareth I et al. Do men consult less than women? An analysis of routinely collected
53 54	357	UK general practice data. BMJ Open 2013;3:e003320.
54 55	250	
56	358 359	17. Galdas PM, Cheater F, Marshall P. Men and health help-seeking behaviour: literature review. J Adv
57	222	Nurs 2005;49:616-23.
58		16
59		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60		r or peer review only - http://binjopen.binj.com/site/about/guidennes.xhtml

Page 17 of 26

60

1			
2			
3	360	18.	Keene J, Li X. Age and gender differences in health service utilization. J Public Health 2005;27:74-9.
4			
5	361	19.	Alspach JG. Is there gender bias in critical care? Crit Care Nurse 2012;32:8-14.
6			
7	362	20.	Bertakis KD. The influence of gender on the doctor-patient interaction. Patient Educ Couns
8	363		2009;76:356-60.
9			
10	364	21.	National Institute for Health and Care Excellence. British National Formulary: Antibacterial drugs.
11	365		London: National Institute for Health and Care Excellence, 2017.
12			
13	366	22.	Public Health England. Influenza: the green book, chapter 19. London: Public Health England, 2015.
14			
15	367	23.	Blak BT, Thompson M, Dattani H <i>et al</i> . Generalisability of The Health Improvement Network (THIN)
16	368		database: demographics, chronic disease prevalence and mortality rates. <i>Inform Prim Care</i>
17	369		2011;19:251-5.
18			
19	370	24	Gulliford M, Latinovic R, Charlton J et al. Selective decrease in consultations and antibiotic prescribing
20	371	27.	for acute respiratory tract infections in UK primary care up to 2006. <i>J Public Health</i> 2009;31:512-20.
20	571		
22	372	25	Briscoe ME. Why do people go to the doctor? Sex differences in the correlates of GP consultation. Soc
23	372	25.	Sci Med 1987;25:507-13.
23	575		Schwed 1987,25.507-15.
24	274	20	Dealer I. No. manufallen di manufilla sur di the NUIC DAV 2004 222 4050 CO
	374	26.	Banks I. No man's land: men, illness and the NHS. BMJ 2001;323:1058-60.
26			
27	375	27.	Cals J, Hopstaken R. Lower respiratory infections: treating patients or diagnoses? J Fam Pract
28	376		2006;55:545-6.
29			
30	377	28.	Jakobsen KA, Melbye H, Kelly MJ et al. Influence of CRP testing and clinical findings on antibiotic
31	378		prescribing in adults presenting with acute cough in primary care. Scand J Prim Health Care
32	379		2010;28:229-36.
33			
34	380	29.	Pouwels KB, Dolk FCK, Smith DRM et al. Antibiotics in English primary care III: actual versus 'ideal'
35	381		antibiotic prescribing for common conditions in primary care. J Antimicrob Chemother. Submitted.
36			
37	382	30.	Bagger K, Nielsen AB, Siersma V et al. Inappropriate antibiotic prescribing and demand for antibiotics
38	383		in patients with upper respiratory tract infections is hardly different in female versus male patients as
39	384		seen in primary care. Eur J Gen Pract 2015;21:118-23.
40			
41			
42			
43			
44			
45			
46			
47			
48			
49			
50			
51			
52			
53			
54			
55			
56			
57			
58			17
59			17

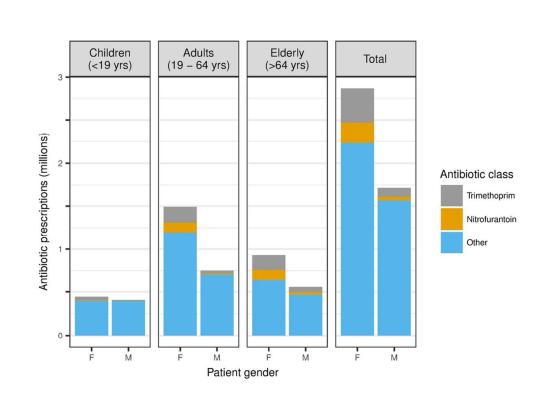
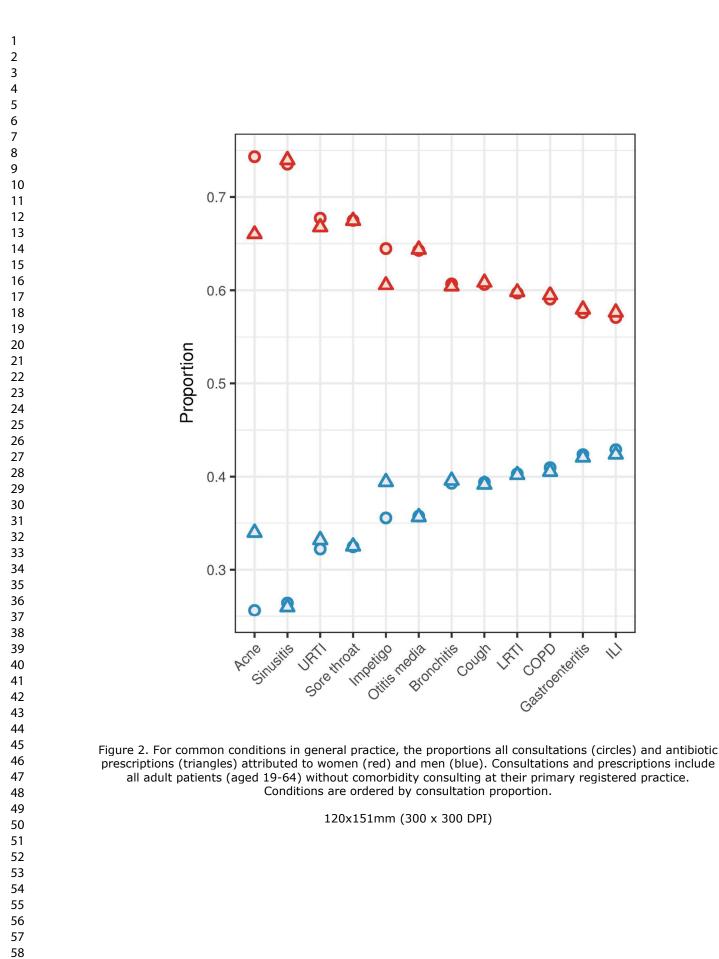



Figure 1. All systemic antibiotic prescriptions recorded in THIN between 2013 and 2015, stratified by gender and age group. Antibiotics used to treat UTI (trimethoprim and nitrofurantoin) are identified separately from all other antibiotics.

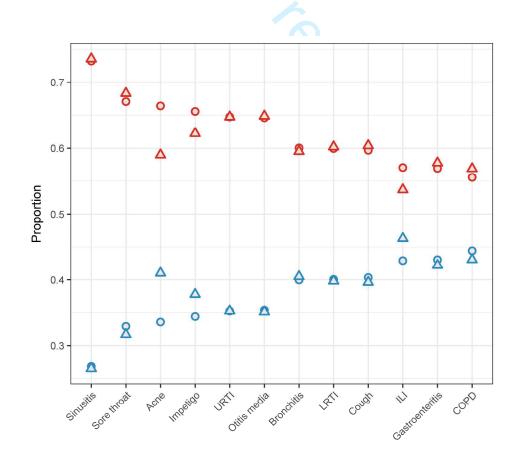
89x63mm (300 x 300 DPI)

Online supplementary appendix

Table S1. Primary care consultations and antibiotic prescribing proportions per consultation in adult men and women (aged 19 – 64 years) with and without comorbidities for 12 different conditions. Consultations from all practices in THIN are included, regardless of whether or not patients were registered there.

Number of consultations (% of total)			Ratio of female:male consultation	Proportion of pat prescription when (95% CI)		Relative risk of receiving antibiotic prescription when consulting as female (95% CI)
	Women	Men		Women	Men	
Acne	46,041 (74%)	16,456 (26%)	2.80	41% (40% – 41%)	60% (59% – 61%)	0.67 (0.67 – 0.69) (p<0.001)
Acne with comorbidity	3,938 (66%)	1,993 (34%)	1.98	42% (40% – 44%)	55% (53% – 58%)	0.76 (0.72 – 0.80) (p<0.001)
Bronchitis	12,318 (61%)	7,977 (39%)	1.54	83% (82% – 84%)	84% (83% – 85%)	0.99 (0.98 – 1.00) (p=0.09)
Bronchitis with comorbidity	4,916 (59%)	3,375 (41%)	1.46	87% (86% – 88%)	89% (88% – 90%)	0.98 (0.96 – 1.00) (p=0.01)
COPD	5,263 (59%)	3,688 (41%)	1.43	71% (70% – 73%)	69% (67% – 71%)	1.03 (1.00 – 1.06) (p=0.04)
COPD with non-RTI comorbidity	2,050 (54%)	1,718 (46%)	1.19	70% (67% – 72%)	67% (64% – 70%)	1.04 (1.00 – 1.09) (p=0.08)
Cough	255,587 (60%)	166,899 (40%)	1.53	49% (49% – 50%)	49% (49% – 49%)	1.01 (1.00 – 1.02) (p<0.001)
Cough with comorbidity	104,317 (59%)	71,401 (41%)	1.46	58% (58% – 58%)	56% (56% – 57%)	1.03 (1.02 – 1.04) (p<0.001)
Gastroenteri tis	70,835 (57%)	52,796 (43%)	1.34	6% (6% – 6%)	6% (6% – 6%)	0.98 (0.93 – 1.02) (p=0.32)
Gastroenteri tis with comorbidity	19,636 (56%)	15,118 (44%)	1.30	7% (7% – 7%)	8% (7% – 8%)	0.91 (0.85 – 0.99) (p=0.02)
ILI	17,050 (58%)	12,546 (42%)	1.36	20% (19% – 20%)	20% (19% – 20%)	1.01 (0.96 – 1.05) (p=0.83)
ILI with comorbidity	3,034 (56%)	2,336 (44%)	1.30	26% (24% – 27%)	28% (26% – 30%)	0.93 (0.85 – 1.01) (p=0.09)

Page 21 of 26


BMJ Open

Impetigo	8,707 (64%)	4,803 (36%)	1.81	52% (51% – 53%)	61% (59% – 62%)	0.85 (0.83 – 0.88) (p<0.001)
Impetigo with comorbidity	1,686 (65%)	925 (35%)	1.82	51% (49% – 54%)	61% (58% – 65%)	0.84 (0.78 – 0.90) (p<0.001)
LRTI	89,644 (59%)	61,550 (41%)	1.46	88% (88% – 89%)	87% (87% – 87%)	1.01 (1.01 – 1.02) (p<0.001)
LRTI with comorbidity	57,609 (59%)	39,687 (41%)	1.45	88% (87% – 88%)	86% (85% – 86%)	1.02 (1.02 – 1.03) (p<0.001)
Otitis media	19,440 (64%)	10,985 (36%)	1.77	82% (81% – 82%)	81% (80% – 82%)	1.01 (1.00 – 1.03) (p = 0.05)
Otitis media with comorbidity	3,935 (64%)	2,246 (36%)	1.75	83% (82% – 84%)	82% (80% – 83%)	1.02 (0.99 – 1.04) (p=0.13)
Sinusitis	74,863 (73%)	27,339 (27%)	2.74	87% (87% – 88%)	86% (85% – 86%)	1.02 (1.02 – 1.03) (p<0.001)
Sinusitis with comorbidity	18,475 (73%)	6,865 (27%)	2.69	90% (89% – 90%)	88% (87% – 89%)	1.02 (1.01 – 1.03) (p<0.001)
Sore throat	224,537 (67%)	109,975 (33%)	2.04	57% (56% – 57%)	57% (57% – 57%)	0.99 (0.99 – 1.00) (p=0.03)
Sore throat with comorbidity	37,446 (66%)	18,973 (34%)	1.97	53% (53% – 54%)	50% (50% – 51%)	1.06 (1.04 – 1.08) (p<0.001)
URTI	148,959 (68%)	71,244 (32%)	2.09	35% (34% – 35%)	36% (36% – 37%)	0.96 (0.95 – 0.97) (p<0.001)
URTI with comorbidity	35,450 (64%)	19,630 (36%)	1.81	45% (45% – 46%)	46% (45% – 47%)	0.99 (0.97 – 1.01) (p=0.46)

Table S2. The relative risk of receiving an antibiotic prescription when consulting with comorbidity.All adult patients consulting at their primary registered practice are included.

	Relative Risk (95% Confidence Interval) (p-value)			
	Women	Men		
Acne	0.99 (0.94 – 1.05) (p=0.80)	0.91 (0.87 – 0.97) (p<0.001)		

Bronchitis	1.05 (1.03 – 1.06) (p<0.001)	1.06 (1.04 – 1.08) (p<0.001)
COPD (non- respiratory comorbidity)	1.02 (0.98 – 1.05) (p=0.32)	0.98 (0.94 – 1.03) (p=0.42)
Cough	1.19 (1.18 – 1.20) (p<0.001)	1.17 (1.16 – 1.18) (p<0.001)
Gastroenteritis	1.27 (1.18 – 1.40) (p<0.001)	1.24 (1.14 – 1.35) (p<0.001)
ILI	1.29 (1.18 – 1.40) (p<0.001)	1.51 (1.38 – 1.65) (p<0.001)
Impetigo	1.04 (0.98 – 1.10) (p=0.24)	1.02 (0.95 – 1.09) (p=0.68)
LRTI	0.99 (0.99 – 1.00) (p=0.002)	0.99 (0.98 – 0.99) (p<0.001)
Otitis media	1.01 (0.99 – 1.03) (p=0.18)	1.00 (0.98 – 1.03) (p=0.76)
Sinusitis	1.02 (1.02 – 1.03) (p<0.001)	1.03 (1.02 – 1.04) (p<0.001)
Sore throat	0.94 (0.93 – 0.95) (p<0.001)	0.88 (0.87 – 0.90) (p<0.001)
URTI	1.32 (1.30 – 1.35) (p<0.001)	1.27 (1.24 – 1.30) (p<0.001)

BMJ Open

Figure S1. For common conditions in general practice, the proportions of all consultations (circles) and prescriptions (triangles) attributed to women (red) and men (blue). Consultations and prescriptions include all adult patients (aged 19-64) with comorbidity who consulted at their primary registered practice. Conditions are ordered by consultation proportion.



Figure S2. For common conditions in general practice, the proportions of all consultations (circles) and prescriptions (triangles) attributed to women (red) and men (blue). Consultations and prescriptions include all adult patients (aged 19-64) without comorbidity, including those who consulted outside their primary registered practice. Conditions are ordered by consultation proportion.

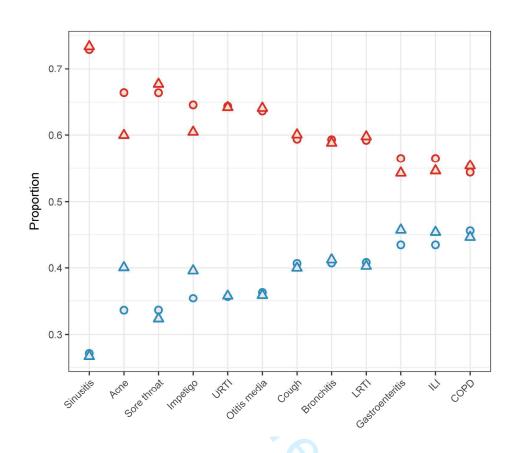


Figure S3. For common conditions in general practice, the proportions of all consultations (circles) and prescriptions (triangles) attributed to women (red) and men (blue). Consultations and prescriptions include all adult patients (aged 19-64) with comorbidity, including those who consulted outside their primary registered practice. Conditions are ordered by consultation proportion.

	Item No	Recommendation
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abst
		Provided in title 'cross-sectional analysis' and further detail in abstract
		(b) Provide in the abstract an informative and balanced summary of what was do
		and what was found
		Provided
Introduction		
Background/rationale	2	Explain the scientific background and rationale for the investigation being report
C		Background provided, including studies in English primary care and broad
		meta-analyses of gender bias in prescribing
Objectives	3	State specific objectives, including any prespecified hypotheses
5		Objectives and four potential causes of the gender gap stated
Methods		
Study design	4	Present key elements of study design early in the paper
Brady debigit	·	Throughout methods
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitme
	C	exposure, follow-up, and data collection
		Methods paragraph 1.
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of
I I I I I I		participants
		Methods paragraph 1.
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and eff
		modifiers. Give diagnostic criteria, if applicable
		Methods paragraphs 3-4
Data sources/	8*	For each variable of interest, give sources of data and details of methods of
measurement		assessment (measurement). Describe comparability of assessment methods if the
		more than one group
		Methods paragraph 1
Bias	9	Describe any efforts to address potential sources of bias
		Throughout methods
Study size	10	Explain how the study size was arrived at
		Implicit: all eligible patients in database were included
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,
		describe which groupings were chosen and why
		Methods paragraphs 2 - 4
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confoundi
		(b) Describe any methods used to examine subgroups and interactions
		(c) Explain how missing data were addressed
		(d) If applicable, describe analytical methods taking account of sampling strategy
		(<u>e</u>) Describe any sensitivity analyses
		Methods paragraphs 2 - 4
Results		
Participants	13*	(a) Report numbers of individuals at each stage of study-eg numbers potentially
		eligible, examined for eligibility, confirmed eligible, included in the study,
		completing follow-up, and analysed

		(b) Give reasons for non-participation at each stage
		(c) Consider use of a flow diagram
		Results paragraph 1
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and
1		information on exposures and potential confounders
		(b) Indicate number of participants with missing data for each variable of interest
		Results paragraph 1
Outcome data	15*	Report numbers of outcome events or summary measures
		Table 1
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and
		their precision (eg, 95% confidence interval). Make clear which confounders were
		adjusted for and why they were included
		(b) Report category boundaries when continuous variables were categorized
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a
		meaningful time period
		Table 1 and throughout results
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and
		sensitivity analyses
		See figures and supplementary file
Discussion		0
Key results	18	Summarise key results with reference to study objectives
-		Discussion paragraph 1
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or
		imprecision. Discuss both direction and magnitude of any potential bias
		Discussion paragraphs 2 and 5
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,
		multiplicity of analyses, results from similar studies, and other relevant evidence
		Discussion paragraphs 4 and 5
Generalisability	21	Discuss the generalisability (external validity) of the study results
-		Discussion paragraph 2
Other information		0,
Funding	22	Give the source of funding and the role of the funders for the present study and, if
-		applicable, for the original study on which the present article is based
		Provided; study funded internally by Public Health England

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Understanding the gender gap in antibiotic prescribing: a cross-sectional analysis of English primary care

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-020203.R1
Article Type:	Research
Date Submitted by the Author:	05-Jan-2018
Complete List of Authors:	Smith, David; Public Health England, Modelling and Economics Unit, National Infection Service Dolk, Christiaan; University of Groningen, PharmacoTherapy, - Epidemiology & -Economics, Department of Pharmacy Smieszek, Timo; Public Health England, Modelling and Economics Unit, National Infection Service Robotham, Julie; Public Health England, Modelling and Economics Unit, National Infection Service Pouwels, Koen; Public Health England, Modelling and Economics Unit, National Infection Service; Pouwels, Koen; Public Health England, Modelling and Economics Unit, National Infection Service; Imperial College School of Public Helath, MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology
Primary Subject Heading :	General practice / Family practice
Secondary Subject Heading:	Health services research, Public health
Keywords:	anti-bacterial agents, prescriptions, electronic health records, antibiotic prescribing, consultation, gender bias

SCHOLARONE[™] Manuscripts

1

1		
2 3	1	Understanding the gender gap in antibiotic prescribing: a cross-sectional analysis of
4	-	onderstanding the gender gap in antisiotic presenting, a cross sectional analysis of
5 6	2	English primary care
7 8	3	David RM Smith ¹ * [†] , F Christiaan K Dolk ^{1,2} *, Timo Smieszek ^{1,3} , Julie V Robotham ¹ , Koen B
9 10 11	4	Pouwels ^{1,2,3}
12 13	5	1. Modelling and Economics Unit, National Infection Service, Public Health England, London,
14 15	6	United Kingdom.
16 17 18	7	2. PharmacoTherapy, -Epidemiology & -Economics, Department of Pharmacy, University of
19 20	8	Groningen, Groningen, The Netherlands.
21 22	9	3. MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease
23 24 25	10	Epidemiology, Imperial College School of Public Health, London, United Kingdom.
26 27	11	* contributed equally
28 29 20	12	+ corresponding author: <u>davidrobertmundysmith@gmail.com</u> ; +44 20 8327 6651; 61
30 31 32	13	Colindale Ave, London UK, NW9 5EQ
33 34	14	Crown Copyright. Word count: 2720
35 36 27	15	Word count: 2720
37 38 39		
40 41		
42 43 44		
44 45		
46		
47		
48 49		
50		
51		
52		
53		
54 55		
55 56		
57		
58		1

16	Abstract
17	Objectives: To explore causes of the gender gap in antibiotic prescribing, and to determine
18	whether women are more likely than men to receive an antibiotic prescription per
19	consultation.
20	Design: Cross-sectional analysis of routinely collected electronic medical records from The
21	Health Improvement Network (THIN).
22	Setting: English primary care.
23	Participants: Patients who consulted general practices registered with THIN between 2013
24	and 2015.
25	Primary and secondary outcome measures: Total antibiotic prescribing was measured in
26	children (<19 years), adults (19 – 64) and the elderly (65+). For twelve common conditions,
27	the number of adult consultations was measured, and the relative risk (RR) of being
28	prescribed antibiotics when consulting as female or with comorbidity was estimated.
29	Results: Among 4.57 million antibiotic prescriptions observed in the data, female patients
30	received 67% more prescriptions than males, and 43% more when excluding antibiotics
31	used to treat urinary tract infection (UTI). These gaps were more pronounced in adult
32	women (99% more prescriptions than males; 69% more when excluding UTI) than in
33	children (9%; 0%) or the elderly (67%; 38%). Among adults, women accounted for 64% of
34	consultations (61% among patients with comorbidity), but were not substantially more likely
35	than men to receive an antibiotic prescription when consulting with common conditions
36	such as cough (RR 1.01; Cl 1.00 – 1.02), sore throat (RR 1.01, Cl 1.00 – 1.01) and lower
37	respiratory tract infection (RR 1.00, CI 1.00 – 1.01). Exceptions were skin conditions: women
38	were less likely to be prescribed antibiotics when consulting with acne (RR 0.67, CI 0.66 –
39	0.69) or impetigo (RR 0.85, CI 0.81 – 0.88).
	2

2 3	40	Conclusions: The gender gap in antibiotic prescribing can largely be explained by
4 5 6	41	consultation behaviour. Although in most cases adult men and women are equally likely to
7 8	42	be prescribed an antibiotic when consulting primary care, it is unclear whether or not they
9 10	43	are equally indicated for antibiotic therapy.
11 12 13	44	
14 15	45	Strengths and limitations of this study:
16 17	46	• This study is one of the first to explore the underlying causes of the large gap in the
18 19 20	47	number of antibiotics prescribed to men and women in primary care.
21 22	48	• Findings are derived from a large, representative sample of primary care patients in
23 24	49	England.
25 26 27	50	• Extensive mapping of diagnostic codes to clinical conditions made it possible to
28 29	51	analyse prescribing across a range of conditions and to account for comorbidity.
30 31 22	52	Identification of antibiotics that are used to treat UTI but rarely other conditions in
32 33 34	53	this setting (trimethoprim and nitrofurantoin) allowed for approximation of UTI
35 36	54	prescribing despite incomplete diagnostic coding.
37 38 20	55	• The data do not include indicators of antibiotic appropriateness, such as severity of
39 40 41	56	illness, and so the clinical appropriateness of gender differences in prescribing could
42 43	57	not be evaluated.
44 45		
46 47 48		
49		
50 51		
52 53		
54		
55		
56 57		
58		3
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

ļ	58	Introduction
ļ	59	Reducing the unnecessary use of antibiotics is as an essential means of mitigating the
(60	emergence of antimicrobial resistance and its associated costs,[1,2] but prescribing
(61	reductions are not without risk. The causes and magnitudes of prescribing vary substantially
(62	between practices and prescribers,[3-5] and sweeping, uncalibrated interventions could
(63	jeopardise some patients while failing to prevent unnecessary prescribing in others. In order
(64	to safely and effectively reduce antibiotic use, it is imperative to understand how and to
(65	whom antibiotics are prescribed.
(66	
(67	Gender is a key determinant of antibiotic prescribing. A recent meta-analysis across primary
(68	care in nine high-income countries found that females received more antibiotics than males
(69	in all age groups except those >75, with women aged 16 to 54 receiving 36% to 40% more
-	70	antibiotics than men of the same age.[6] Similarly, across English and Welsh primary care,
-	71	the rate of antibiotic prescribing has been found to be 40% higher in female than in male
-	72	patients.[7] Although the latter figure dates from 1996, gender disparities in England have
-	73	more recently been observed in out-of-hours and paediatric care, with women and girls
-	74	receiving more antibiotic prescriptions than men and boys.[8,9]
-	75	
-	76	There are several proposed explanations for this gender gap. First, some infectious diseases
-	77	affect men and women differently. In particular, urinary tract infection (UTI) is more
-	78	common in adult women than in men and accounts for over 20% of antibiotic prescriptions
-	79	in English primary care.[10,11] However, respiratory tract infections (RTIs) account for more
8	80	than twice as many prescriptions as UTI,[11] and women are not more susceptible to these
8	81	conditions than men,[12-14] although gender differences in comorbidity may underlie some
		4

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 5 of 28

1 2

2 3 4	82	variation in prescribing. Second, as in many countries,[15,16] women in the UK consult their
5 6	83	general practitioner (GP) more often than men,[17-19] and consultation rate is linked to
7 8	84	antibiotic prescribing.[5] Previous studies of relatively small samples of patients with RTI
9 10	85	have found that gender differences in consultation are proportionate to differences in
11 12 13	86	prescribing [20,21], but it is unclear whether or not this is true across a greater range of
14 15	87	conditions, when taking comorbidity into account, and using a more recent, nationally
16 17	88	representative sample of patients. Finally, other social and behavioural factors may also play
18 19	89	a role. For example, men and women communicate differently with health professionals,
20 21 22	90	and prescribers may have biases that affect their willingness to prescribe antibiotics during
23 24	91	consultations with women versus men.[22,23] Ultimately, it remains unknown to what
25 26	92	extent these and other factors combine to explain the gender gap in antibiotic
27 28 29	93	prescribing.[6]
30 31	94	prescribing.[6]
32 33	95	Here, gender differences in antibiotic prescribing were analysed using a large,
34 35 26	96	representative sample of primary care patients in England. Antibiotic prescribing in male
36 37 38	97	and female children, adults and the elderly was compared at the population level. The
39 40	98	influence of gender on prescribing was assessed by controlling for consultation and
41 42	99	comorbidity, and calculating the proportions of adult men and women that received
43 44 45	100	systemic antibiotic prescriptions when presenting to primary care with a suite of common
46 47	101	conditions. These prescribing proportions facilitate a deeper understanding of the causes of
48 49	102	the gender gap in antibiotic prescribing, and may inform prescribing intervention design.
50 51 52	103	
52 53 54 55 56	104	Methods
57 58		5
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

105	This study used data from English general practices registered with The Health Improvement
106	Network (THIN), a UK-based primary care electronic medical record database. Practices
107	were included that provided data for at least one full calendar year between January 1,
108	2013 and December 31, 2015; there were 349 such practices in 2013, 285 in 2014 and 191 in
109	2015. Anonymised patient data were extracted from these practices that met acceptable
110	standards for research data collection. All systemic antibiotic prescriptions (antibiotics from
111	British National Formulary chapter 5.1,[24] excluding antituberculosis and antileprosy drugs)
112	recorded in THIN were analysed by patient gender and age. Patient age at the time of
113	consultation was used to classify patients as children (aged 0-18 years), adults (19-64 years)
114	and the elderly (65+ years). Due to a very large sample size, proportions of antibiotics
115	prescribed to male versus female patients are reported without confidence intervals.
116	
117	Read codes (the diagnostic codes used in THIN) were analysed to quantify the number of
118	male and female consultations for acute presentations of 12 common conditions that are
119	treated with antibiotics to varying degrees: acne, bronchitis, chronic obstructive pulmonary
120	disease (COPD), cough, gastroenteritis, impetigo, influenza-like illness (ILI), lower respiratory
121	tract infection (LRTI), otitis media, sinusitis, sore throat and upper respiratory tract infection
122	(URTI). A vast number of Read codes are used in THIN, and the methods used to assign
123	specific Read codes to different conditions and to link Read codes to acute antibiotic
124	prescriptions are described elsewhere.[11] The ratio of female to male consultations (F:M)
125	was then calculated to quantify gender differences in consultation for each of these
126	conditions.
127	
	6
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3 4	128	In THIN, a large proportion of UTI consultations are poorly coded, particularly in patients
5	129	consulting for UTI prophylaxis or chronic/recurrent UTI. However, between 2013-2015 in
7 8	130	English primary care, the antibiotics used to prevent and treat the vast majority of UTIs –
9 10 11	131	trimethoprim and nitrofurantoin – were rarely used for other conditions.[11, 25]
12 13	132	Prescriptions of trimethoprim and nitrofurantoin were thus used as a proxy measure for
14 15	133	prescribing for UTI.
16 17 18	134	
19 20	135	Prescribing proportions were then calculated by dividing the total number of prescriptions
21 22	136	for a given condition by the number of consultations for that condition. To account for
23 24 25	137	patients that consulted more than once, robust standard errors were used when calculating
26 27	138	prescribing proportions. These data were also used to calculate the relative risk (RR) of
28 29	139	being prescribed an antibiotic when consulting as female as opposed to male. In the main
30 31 32	140	analysis, consultations were included if they occurred at a patient's primary registered
33 34	141	practice, but in a sensitivity analysis all patient consultations recorded in THIN were
35 36	142	included. Patients with comorbidity were analysed separately from otherwise 'healthy'
37 38 39	143	patients (i.e., those without comorbidity) to minimise potential biases in consultation and
40 41	144	prescribing due to gender differences in background health status. Further, the RR of being
42 43	145	prescribed an antibiotic when consulting with comorbidity was also calculated for each
44 45 46	146	condition and gender. Comorbidities were identified by the Read codes that indicate
47 48	147	qualification for the free seasonal influenza vaccination programme: asthma, chronic heart
49 50	148	disease, chronic kidney disease, chronic liver disease, chronic neurological disease and
51 52 53	149	immunosuppressive disease.[26] Patients who received at least two prescriptions of
54 55	150	systemic or inhaled corticosteroids or immunosuppressive drugs in the 365 days prior to
56 57		
58 59		7
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

151	their consultation were also included in this group, since these drugs indicate an increased
152	risk of serious complications after (respiratory tract) infections.[26]
153	
154	All data were analysed using STATA 13.1 and R version 3.1.
155	
156	Results
157	Of all antibiotic prescriptions observed in THIN between 2013 and 2015 (n=4,574,363), the
158	majority (62.6%) were in female patients (Figure 1). Adult women received approximately
159	twice (99.0%) as many antibiotic prescriptions as adult men, whereas elderly women and
160	girls received 67.4% and 9.2% more prescriptions, respectively, than elderly men and boys.
161	Nitrofurantoin and trimethoprim accounted for 17.1% of all prescriptions, 81.3% of which
162	were prescribed to female patients. The prescribing gender gap narrowed in all age groups
163	when these antibiotics were removed, and became negligible in children (0.3%), but adult
164	and elderly women still received, respectively, 69.2% and 37.7% more antibiotic
165	prescriptions than adult and elderly men.
166	
167	Healthy adult women consulted primary care more than men for all 12 of the conditions
168	included in this study, accounting for 64.3% of all consultations (61.9% among patients with
169	comorbidity). The biggest gender gaps in consultation were in acne (F:M 2.90) and sinusitis
170	(F:M 2.78). However, there was little gender difference in the proportions of healthy adult
171	patients that received antibiotic prescriptions when consulting (Table 1). The greatest gaps
172	were in acne, where 60% of consulting men received systemic antibiotics compared to 41%
173	of women (RR 0.67; Cl 0.66 – 0.69), and in impetigo, where, respectively, 62% and 52% of
174	men and women received prescriptions (RR 0.85, Cl 0.81 – 0.88). In all other conditions, the
	8

BMJ Open

- 3 4	175	difference between the proportions of men and women that received antibiotic
5	176	prescriptions when consulting was \leq 2%, although these gaps were statistically significant in
7 8	177	cough (F>M, p=0.02), LRTI (F>M, p=0.02), sinusitis (F>M, p<0.001) and URTI (M>F, p<0.001).
9 10	178	These results held in a sensitivity analysis when consultations and prescriptions outside of
11 12 12	179	patients' primary registered practice were included (see online supplementary appendix).
13 14 15	180	Further, with the exception of acne and impetigo, the proportions of all antibiotics
16 17	181	prescribed to men and women for different conditions were proportionate to the
18 19	182	proportions of all consultations made by men and women for those conditions (Figure 2).
20 21	183	Accordingly, the proportions of all antibiotics prescribed to women for each condition
22 23 24	184	correlate strongly with the proportions of consultations made by women (Spearman's
25 26	185	ρ =0.92; p<0.001), but not with the proportions of women that received prescriptions when
27 28	186	consulting with those conditions (Spearman's $\rho=0.28$, $p=0.38$).
29 30	187	
31	187	Table 1 . Primary care consultations and antibiotic prescribing proportions per consultation

Table 1. Primary care consultations and antibiotic prescribing proportions per consultation

in adult men and women (aged 19 - 64 years) with and without comorbidity for 12 different

190	conditions. Only consultations from patients	s' primary registered practices are included.
-----	--	---

	Number of consultations (% of total)		F:M consultation ratio	Proportion of p prescription wh (95% Cl)	atients receiving en consulting	Relative risk of receiving antibiotic prescription when consulting as female (95% CI) (p-value)
	Women	Men		Women	Men	
Acne	25,676 (74%)	8,864 (26%)	2.90	41% (40% – 41%)	60% (59% – 61%)	0.67 (0.66 – 0.69) (p<0.001)
Acne with comorbidity	2,344 (66%)	1,185 (34%)	1.98	40% (38% – 42%)	55% (52% – 58%)	0.73 (0.68 – 0.78) (p<0.001)
Bronchitis	7,085 (61%)	4,584 (39)%	1.55	83% (83% – 84%)	84% (83% – 86%)	0.99 (0.97 – 1.00) (p=0.14)
Bronchitis with comorbidity	3,101 (60%)	2,065 (40%)	1.50	87% (86% – 89%)	89% (88% – 91%)	0.98 (0.96 – 1.00) (p=0.03)
COPD	3,274 (59%)	2,271 (41%)	1.44	76% (74% – 78%)	75% (73% – 77%)	1.02 (0.99 – 1.05) (p=0.25)
COPD with non- respiratory comorbidity	1,287 (56%)	1,029 (44%)	1.25	73% (70% – 76%)	70% (69% – 72%)	1.06 (1.01 – 1.11) (p=0.02)
Cough	158,614 (61%)	103,058 (39%)	1.54	48% (48% – 49%)	48% (48% – 48%)	1.01 (1.00 – 1.02) (p=0.02)
Cough with	68,353	46,210	1.48	58% (57% –	56% (56% –	1.03 (1.02 – 1.04) (p<0.001)

	comorbidity	(60%)	(40%)		58%)	57%)	
	Gastroenter	41,870	30,810	1.36	6% (6% – 6%)	6% (6% – 6%)	1.01 (0.96 – 1.08) (p=0.65)
	itis	(58%)	(42%)				
	Gastroenter	12,184	9,216	1.32	8% (7% – 8%)	7% (7% – 8%)	1.03 (0.94 – 1.14) (p=0.49)
	itis with comorbidity	(57%)	(43%)				
	ILI	10,569 (57%)	7,946 (43%)	1.33	20% (19% – 20%)	19% (18% – 20%)	1.02 (0.96 – 1.09) (p=0.47)
	ILI with	1,951	1,468	1.33	25% (23% –	29% (27% –	0.87 (0.78 – 0.97) (p=0.02)
	comorbidity Impetigo	(57%) 5,272	(43%) 2,907	1.81	27%) 52% (51% –	31%) 62% (60% –	0.85 (0.81 – 0.88) (p<0.001)
		(64%)	(36%)	1.01	54%)	63%)	
	Impetigo	1,139	598	1.90	54% (51% –	63% (58% –	0.86 (0.80 - 0.94) (p<0.001)
	with comorbidity	(66%)	(34%)		57%)	66%)	
	LRTI	52,996 (60%)	35,777 (40%)	1.48	91% (91% – 92%)	91% (91% – 91%)	1.00 (1.00 – 1.01) (p=0.02)
	LRTI with	36,693	24,519	1.50	91% (90% –	90% (89% –	1.01 (1.01 – 1.02) (p<0.001)
	comorbidity	(60%)	(40%)		91%)	90%)	/
	Otitis	11,773	6,545	1.80	84% (84% –	84% (83% –	1.00 (0.99 – 1.02) (p=0.58)
	media Otitis	(64%) 2,556	(36%) 1,400	1.83	85%) 85% (84% –	85%) 84% (82% –	1.01 (0.98 – 1.04) (p=0.41)
	media with comorbidity	(65%)	(35%)	1.05	87%)	86%)	1.01 (0.50 1.04) (p-0.41)
	Sinusitis	46,221 (74%)	16,625 (26%)	2.78	88% (88% – 89%)	86% (86% – 87%)	1.02 (1.02 – 1.03) (p<0.001)
	Sinusitis with comorbidity	12,013 (73%)	4,394 (27%)	2.73	90% (90% – 91%)	89% (88% – 90%)	1.02 (1.00 – 1.03) (p=0.006)
	Sore throat	136,117 (68%)	65,531 (32%)	2.08	57% (56% – 57%)	57% (56% – 57%)	1.00 (0.99 – 1.01) (p=0.67)
	Sore throat with comorbidity	24,376 (67%)	11,968 (33%)	2.04	53% (52% – 54%)	50% (49% – 51%)	1.06 (1.04 – 1.08) (p<0.001)
	URTI	90,295 (68%)	42,998 (32%)	2.10	34% (34% – 34%)	36% (35% – 36%)	0.96 (0.94 – 0.97) (p<0.001)
	URTI with comorbidity	22,995	12,515 (35%)	1.84	45% (45% – 46%)	45% (44% – 46%)	1.00 (0.98 – 1.02) (p=0.96)
191	comorbidity	(05/0)	(5570)		4076)	40%)	
192							
193	These gende	r differenc	es in preso	cribing were b	proadly similar	among adults	with
194	comorbidity. Women with comorbidity were substantially less likely than men with						
195	comorbidity to receive antibiotic prescriptions when consulting with acne (RR 0.73, CI 0.68 –						
196	0.78) or impetigo (RR 0.86, Cl 0.80 – 0.94) (Table 1), and also ILI (RR 0.87, Cl 0.78 – 0.97), but						
197						ons of men and	
198	received pres	scriptions	when cons	sulting was ≤3	3%. Again, amo	ing patients wit	h comorbidity,
					0		
				1	.0		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 11 of 28

1

1		
2 3 4	199	the proportions of antibiotics prescribed to women for each condition correlate strongly
5 6	200	with the proportions of consultations made by women (Spearman's ρ =0.78; p=0.005), but
7 8	201	not with the proportion of women that received prescriptions when consulting with those
9 10 11	202	conditions (Spearman's ρ=0.41, p=0.19).
12 13	203	
14 15	204	Patients with comorbidity were generally more likely than those without comorbidity to
16 17 18	205	receive antibiotic prescriptions when consulting (see online supplementary appendix). In
19 20	206	both men and women the greatest of these differences were in URTI, cough and ILI, where
21 22	207	the proportion of patients that received antibiotics when consulting was approximately 6-
23 24 25	208	12% higher among patients with comorbidity. Patients with comorbidity were also more
25 26 27	209	likely to receive a prescription when consulting with bronchitis, gastroenteritis and sinusitis.
28 29	210	However, among women consulting with sore throat and LRTI, and among men consulting
30 31	211	with sore throat, LRTI and acne, the proportions of patients that received antibiotics when
32 33 34	212	consulting was significantly lower among patients with comorbidity than among otherwise
35 36	213	healthy patients.
37 38	214	
39 40 41	215	Discussion
42 43	216	This study affirms that there is still a substantial gender gap in antibiotic prescribing in
44 45	217	English primary care, and shows that this gap is in large part unexplained by gender
46 47 48	218	differences in UTI and comorbidity. The prescribing gap is most pronounced in adults, with
49 50	219	women receiving approximately twice as many antibiotic prescriptions as men, and 70%
51 52	220	more when excluding antibiotics used to treat UTI. These differences in prescribing are
53 54 55	221	proximate to differences in health-seeking behaviour, with healthy adult women consulting
55 56 57	222	primary care approximately 80% more than healthy adult men across the 12 conditions
58		11
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
00		

223	included in this study. Accordingly, men and women are just as likely to be prescribed
224	antibiotics when consulting with most common RTIs. These findings provide strong support
225	for the hypothesis that higher antibiotic prescribing in adult women is primarily driven by a
226	higher consultation rate.
227	
228	This study has a number of strengths. First, THIN is a robust data source that is
229	representative of the English primary care patient population.[27] Second, the extensive
230	mapping of Read codes to clinical conditions made it possible to analyse prescribing across a
231	range of conditions and to account for comorbidities, which differ between men and
232	women and influence whether or not a practitioner prescribes. Third, since UTI in English
233	primary care was almost always treated with trimethoprim or nitrofurantoin during the
234	years of this study, and since these antibiotics were rarely used to treat other conditions in
235	primary care,[11, 25] it was possible to approximate total prescribing for UTI despite
236	incomplete diagnostic coding. There were also limitations to this work, the largest being
237	that the clinical appropriateness of prescribing could not be determined, and so it was not
238	possible to evaluate whether consulting men and women were differently indicated for
239	antibiotics, and hence whether equal prescribing proportions in RTIs are clinically justified.
240	Further, other patient characteristics that may co-vary with gender and consultation
241	behaviour, such as socioeconomic status, could not be considered. Finally, the quality of
242	diagnostic coding varies within and between practices, which may bias estimates of
243	consultation and prescribing.
244	
245	It is well observed that rates of primary care consultation and antibiotic prescribing are
246	substantially higher in adult women than in adult men,[6-8,17-19] but previous studies have
	12
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2 3 4	247	been unable to show that the gender gap in antibiotic prescribing can primarily be
5 6	248	attributed to consultation, as opposed to other relevant factors such as UTI, comorbidity
7 8	249	and other patient and prescriber behaviours. These findings build on two previous studies of
9 10	250	antibiotic prescribing in primary care between 1997-2006 and 2007-2008,
11 12 13	251	respectively.[20,21] Both studies found similar male and female prescribing proportions in a
14 15	252	selection of RTIs, but were conducted in a limited subset of patients and did not account for
16 17	253	comorbidities, non-respiratory conditions, patients consulting outside of their registered
18 19	254	practice, or gender differences in gross antibiotic prescribing at the population level.
20 21 22	255	
23 24	256	Antibiotic prescribing was proportionate to consultation for most conditions, but skin
25 26	257	conditions were notable exceptions: men consulted much less with acne and impetigo but
27 28 29	258	were substantially more likely than women to receive an antibiotic prescription when
30 31	259	consulting (although acne is unique in that women but not men can be treated with
32 33	260	combination oral contraceptives, confounding gender comparisons in antibiotic prescribing).
34 35 26	261	Although women consult more frequently, they are not known to suffer from greater
36 37 38	262	incidence or severity of disease in the conditions included here.[12,13] Studies have also
39 40	263	shown that men tend to consult later in the course of their illness and may have a higher
41 42	264	threshold to seeking care.[18,28,29] When prescribing is truly reflective of patient need
43 44 45	265	(e.g., as in skin conditions, due to low diagnostic uncertainty), a higher prescribing
46 47	266	proportion in men may be expected if, on average, less frequent and/or delayed
48 49	267	consultation is coupled with more severe clinical presentation. Yet, for the remaining
50 51 52	268	conditions in this study – predominantly RTIs – prescribing proportions in male and female
53 54	269	patients were strikingly similar despite vast differences in consultation. This may be
55 56	270	indicative of imprudent prescribing. In non-skin conditions there is often (i) considerable
57 58		13
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	
2 3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13 14	
15	
16	
17	
18	
19	
20	
21 22	
22 23	
23 24	
25	
26	
27	
28	
29 30	
31	
32	
33	
34	
35	
36 37	
38	
39	
40	
41	
42	
43	
44 45	
46	
47	
48	
49	
50	
51 52	
52 53	
54	
55	
56	
57	
58 59	
59 60	
55	

271	diagnostic uncertainty (e.g., difficulty in differentiating acute bronchitis and pneumonia in
272	primary care) and (ii) uncertainty around subjective, insensitive or unspecific clinical severity
273	markers (e.g., reliance on patient symptom reporting and other clinical features that poorly
274	predict benefit from antibiotic treatment).[30,31] Faced by these uncertainties, GPs may
275	prescribe antibiotics precautiously – and imprudently – to a large proportion of patients
276	with RTI, regardless of disease severity, resulting in high prescribing proportions in all
277	patients.
278	
279	Although imprudent prescribing has been the target of numerous antimicrobial stewardship
280	interventions, it remains obstinate in English primary care,[32] and the combination of high
281	consultation rates among female patients and overly precautious antibiotic prescribing
282	behaviour among GPs could result in a disproportionate share of inappropriate (i.e.,
283	unnecessary) antibiotic prescriptions in women. However, previous studies of gender
284	differences in inappropriate antibiotic prescribing have found mixed results,[21,33] and it
285	remains to be shown whether men and women in UK primary care differ in their objective
286	clinical need for antibiotics when consulting with RTIs and other common conditions. Yet,
287	regardless of whether or not women are more likely to receive an inappropriate prescription
288	per consultation, it is likely that a higher level of antibiotic prescribing in women is
289	accompanied by a greater total number of inappropriate prescriptions.
290	
291	Conclusions
292	This study reaffirms known gender gaps in health-seeking behaviour and antibiotic
293	prescribing, and shows that, with exceptions, adult men and women in English general
294	practice are equally likely to receive an antibiotic prescription when seeking care for
	14
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2 3 4	295	common conditions, and that gender differences in the number of antibiotics prescribed are
5	296	largely driven by differences in consultation behaviour. Equal prescribing proportions may
7 8	297	seem to indicate relative parity in how men and women are treated when they consult, but
9 10	298	women consult vastly more than men yet have not been shown to suffer from more
11 12 13	299	frequent or severe infection in the conditions included in this study. It is thus plausible that
14 15	300	a higher rate of consultation in women is coupled with a milder average clinical
16 17	301	presentation, but that overly precautious GPs prescribe even when antibiotics are not
18 19 20	302	clinically necessary, resulting in high rates of prescribing in all patients. Given the urgent
20 21 22	303	need to reduce unnecessary antibiotic prescribing, it is crucial to more deeply understand
23 24	304	how and to whom antibiotics are overprescribed. To this end, future work should further
25 26 27	305	investigate gender differences in the clinical (in)appropriateness of antibiotic prescribing in
27 28 29	306	primary care.
30 31	307	
32 33	308	Figure captions
34 25	309	Figure 1. All systemic antibiotic prescriptions recorded in THIN between 2013 and 2015,
35 36	310	stratified by gender and age group. Antibiotics used to treat UTI (trimethoprim and
37 38	311	nitrofurantoin) are identified separately from all other antibiotics.
39	312	Figure 2. For common conditions in general practice, the proportions all consultations
40	313	(circles) and antibiotic prescriptions (triangles) attributed to women (red) and men (blue).
41 42	314	Consultations and prescriptions include all adult patients (aged 19-64) without comorbidity
43	315	consulting at their primary registered practice. Conditions are ordered by consultation
44	316	proportion.
45 46 47	317	
48 49	318	Additional information
50		
51 52	319	Contributors : DS and KP conceived and designed the study. KP extracted the data from The
53 54	320	Health Improvement Network database. CD and KP conducted the analyses. DS, JR, KP and
55 56 57	321	TS carried out interpretation of the data. DS drafted the manuscript. CD, JR, KP and TS
58		15
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	
2 3	322
4 5 6	323
7 8	324
9 10	325
11 12	326
13 14	327
15 16	328
17 18 19	
19 20 21	329
22 23	330
24 25	331
26 27	
28 29	
30 31	
32 33 34	
34 35 36	
37 38	
39 40	
41 42	
43 44	
45 46	
47 48	
49 50 51	
52 53	
54 55	
56 57	
58 59	
60	

- 22 critically revised the manuscript for important intellectual content. All authors approved the
 - 23 final version prior to submission.
 - 24 Funding: This work was funded internally by Public Health England.
- 25 Competing interests: None.
 - Ethics approval: This study received approval from THIN's Scientific Review Committee 26
- 27 (reference number 16THIN-071-A2).
- 28 **Data sharing statement:** This analysis is based on a large sample from The Health
- 29 Improvement Network, provided by IMS Health. The authors' license for using these data
- precludes the sharing of raw data with third parties. 30

1		
2		
3	332	References:
4		
5	333	1. Chief Medical Officer. <i>UK Five Year Antimicrobial Resistance Strategy 2013 to 2018</i> . London:
6 7	334	Department of Health, 2013.
8	335	2. Challenges II. Device CC. Antibiotic evenues a level driver of entimicrohial registeries. Dr. / Con Drast
9	335 336	 Shallcross LJ, Davies SC. Antibiotic overuse: a key driver of antimicrobial resistance. Br J Gen Pract 2014;64:604-5.
10	330	2014,04.004-5.
11	337	3. Butler CC, Rollnick S, Pill R et al. Understanding the culture of prescribing: qualitative study of general
12	338	practitioners' and patients' perceptions of antibiotics for sore throats. <i>BMJ</i> 1998;317:637.
13	000	
14	339	4. Cadieux G, Tamblyn R, Dauphinee D et al. Predictors of inappropriate antibiotic prescribing among
15	340	primary care physicians. CMAJ 2007;177:877-83.
16		
17	341	5. Pouwels KB, Dolk FCK, Smith DRM et al. Explaining variation in antibiotic prescribing between general
18	342	practices in the UK. J Antimicrob Chemother. In press. doi:10.1093/jac/dkx501
19		
20	343	6. Schröder W, Sommer H, Primrose Gladstone B et al. Gender differences in antibiotic prescribing in the
21	344	community: a systematic review and meta-analysis. J Antimicrob Chemother 2016;71:1800-6.
22		
23	345	7. Majeed A, Moser K. Age- and sex-specific antibiotic prescribing patterns in general practice in England
24	346	and Wales in 1996. Br J Gen Pract 1999;49:735-6.
25 26		
26 27	347	8. Hayward GN, Fisher RE, Spence GT et al. Increase in antibiotic prescriptions in out-of-hours primary
	348	care in contrast to in-hours primary care prescriptions: service evaluation in a population of 600 000
28 29	349	patients. J Antimicrob Chemother 2016;71:2612-9.
29 30		
31	350	9. Schneider-Lindner V, Quach C, Hanley JA <i>et al</i> . Secular trends of antibacterial prescribing in UK
32	351	paediatric primary care. J Antimicrob Chemother 2011;66:424-33.
33	252	10. Former D. The endeminister of unions to set infortion. Net Day, Unit 2010, 7:552, 50
34	352	10. Foxman B. The epidemiology of urinary tract infection. <i>Nat Rev Urol</i> 2010;7:653-60.
35	353	11. Delly FCK, Deuwyels KD, Creith DDM et al. Antibiotics in primery serve in England, which entibiotics are
36	353 354	 Dolk FCK, Pouwels KB, Smith DRM et al. Antibiotics in primary care in England: which antibiotics are prescribed and for which conditions? J Antimicrob Chemother. In press. doi:10.1093/jac/dkx504
37	554	prescribed and for which conditions? J Antimicrob Chemother. In press. doi.10.1095/jac/dx304
38	355	12. Gutiérrez F, Masiá M, Mirete C et al. The influence of age and gender on the population-based
39	356	incidence of community-acquired pneumonia caused by different microbial pathogens. J Infect
40	357	2006;53:166-74.
41		
42	358	13. Falagas M, Mourtzoukou EG, Vardakas KZ. Sex differences in the incidence and severity of respiratory
43	359	tract infections. Respir Med 2007;101:1845-63.
44		
45	360	14. Sue K. The science behind "man flu". BMJ 2017;359:j5560.
46		
47	361	15. Pinkhasov RM, Wong J, Kashanian J et al. Are men shortchanged on health? Perspective on health
48	362	care utilization and health risk behavior in men and women in the United States. Int J Clin Pract
49 50	363	2010;64:475-87.
50		
51 52	364	16. Vos HM, Schellevis FG, van den Berkmortel H et al. Does prevention of risk-behaviour in primary care
52 53	365	require a gender-specific approach? A cross-sectional study. <i>Fam Pract</i> 2013;30:179-84.
55 54		
54 55	366	17. Wang Y, Hunt K, Nazareth I et al. Do men consult less than women? An analysis of routinely collected
56	367	UK general practice data. <i>BMJ Open</i> 2013;3:e003320.
57		
58		17
59		17
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2			
3	368	18. Galdas PM, Cheater F, Marshall P. Men and health help-seeking behaviour: literature review. J Adv	
4	369	Nurs 2005;49:616-23.	
5			
6	370	19. Keene J, Li X. Age and gender differences in health service utilization. J Public Health 2005;27:74-9.	
7			
	371	20. Gulliford M, Latinovic R, Charlton J et al. Selective decrease in consultations and antibiotic prescrib	inσ
8	371		-
9	372	for acute respiratory tract infections in UK primary care up to 2006. J Public Health 2009;31:512-20	•
10			
11	373	21. Bagger K, Nielsen AB, Siersma V et al. Inappropriate antibiotic prescribing and demand for antibioti	
12	374	in patients with upper respiratory tract infections is hardly different in female versus male patients	as
13	375	seen in primary care. Eur J Gen Pract 2015;21:118-23.	
14			
15	376	22. Alspach JG. Is there gender bias in critical care? Crit Care Nurse 2012;32:8-14.	
16			
	377	22 Partalis KD The influence of conder on the dector nation interaction. Patient Educ Cours	
17	378	23. Bertakis KD. The influence of gender on the doctor-patient interaction. <i>Patient Educ Couns</i>	
18	5/8	2009;76:356-60.	
19			
20	379	24. National Institute for Health and Care Excellence. <i>British National Formulary: Antibacterial drugs</i> .	
21	380	London: National Institute for Health and Care Excellence, 2017.	
22			
23	381	25. Rosello A, Pouwels KB, Domenech de Cellès M et al. Seasonality of urinary tract infections in the	
24	382	United Kingdom in different age groups: longitudinal analysis of The Health Improvement Network	
25	383	(THIN). <i>Epidemiol Infect</i> . Published online: 23 November 2017. doi:10.1017/S095026881700259X	
26	303		
	204		
27	384	26. Public Health England. Influenza: the green book, chapter 19. London: Public Health England, 2015.	
28			
29	385	27. Blak BT, Thompson M, Dattani H et al. Generalisability of The Health Improvement Network (THIN)	
30	386	database: demographics, chronic disease prevalence and mortality rates. Inform Prim Care	
31	387	2011;19:251-5.	
32			
33	388	28. Briscoe ME. Why do people go to the doctor? Sex differences in the correlates of GP consultation.	Soc
34	389	Sci Med 1987;25:507-13.	
35	000		
36	200	20. Depts J. Ne man/a lands man, illinger and the NUIC DM4/2004/222/4050-00	
	390	29. Banks I. No man's land: men, illness and the NHS. BMJ 2001;323:1058-60.	
37			
38	391	30. Cals J, Hopstaken R. Lower respiratory infections: treating patients or diagnoses? J Fam Pract	
39	392	2006;55:545-6.	
40			
41	393	31. Jakobsen KA, Melbye H, Kelly MJ <i>et al</i> . Influence of CRP testing and clinical findings on antibiotic	
42	394	prescribing in adults presenting with acute cough in primary care. Scand J Prim Health Care	
43	395	2010;28:229-36.	
44	000		
45	396	22. Sminstok T. Douwals KB. Dolk ECK at al. Dotantial for reducing incontrantiate antihistic proceeding i	n
45 46	396 397	32. Smieszek T, Pouwels KB, Dolk FCK <i>et al</i> . Potential for reducing inappropriate antibiotic prescribing i	11
	597	English primary care. J Antimicrob Chemother. In press. doi:10/1093/jac/dkx500	
47			
48	398	33. Barlam TF, Morgan JR, Wetzler LM et al. Antibiotics for respiratory tract infections: a comparison o	f
49	399	prescribing in an outpatient setting. Infect Control Hosp Epidemiol 2015;36:153-9.	
50			
51			
52			
53			
54			
55			
56			
57			
58		18	
59		For poor roviou only http://broiopon.http://sto/ahout/swidelings.ukturl	
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	
1			

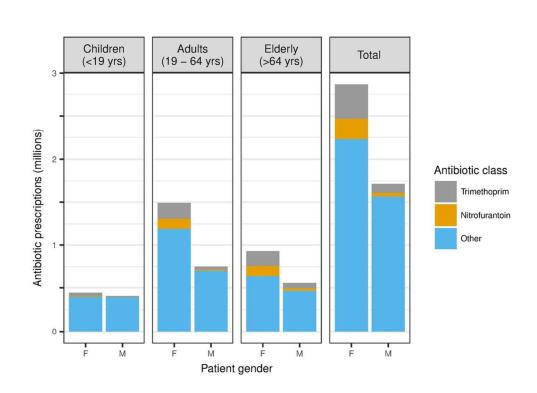
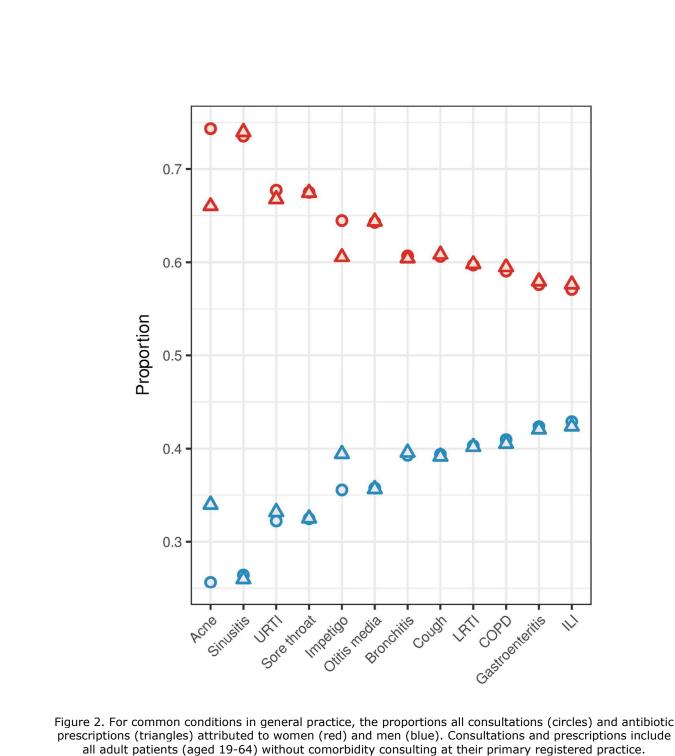



Figure 1. All systemic antibiotic prescriptions recorded in THIN between 2013 and 2015, stratified by gender and age group. Antibiotics used to treat UTI (trimethoprim and nitrofurantoin) are identified separately from all other antibiotics.

89x63mm (300 x 300 DPI)

Conditions are ordered by consultation proportion.

120x151mm (300 x 300 DPI)

Understanding the gender gap in antibiotic prescribing: a cross-sectional analysis of English primary care

Smith DRM, Dolk FCK, Smieszek T, Robotham JV, Pouwels KB

Online supplementary appendix

Table S1. Primary care consultations and antibiotic prescribing proportions per consultation in adult men and women (aged 19 – 64 years) with and without comorbidities for 12 different conditions. Consultations from all practices in THIN are included, regardless of whether or not patients were registered there.

	Number o consultatio total)		Ratio of female:male consultation	Proportion of pat prescription whe (95% Cl)		Relative risk of receiving antibiotic prescription when consulting as female (95% CI) (p-value)
	Women	Men		Women	Men	
Acne	46,041 (74%)	16,456 (26%)	2.80	41% (40% - 41%)	60% (59% – 61%)	0.67 (0.67 – 0.69) (p<0.001)
Acne with comorbidity	3,938 (66%)	1,993 (34%)	1.98	42% (40% – 44%)	55% (53% – 58%)	0.76 (0.72 – 0.80) (p<0.001)
Bronchitis	12,318 (61%)	7,977 (39%)	1.54	83% (82% – 84%)	84% (83% – 85%)	0.99 (0.98 – 1.00) (p=0.09)
Bronchitis with comorbidity	4,916 (59%)	3,375 (41%)	1.46	87% (86% – 88%)	89% (88% – 90%)	0.98 (0.96 – 1.00) (p=0.01)
COPD	5,263 (59%)	3,688 (41%)	1.43	71% (70% – 73%)	69% (67% – 71%)	1.03 (1.00 – 1.06) (p=0.04)
COPD with non-RTI comorbidity	2,050 (54%)	1,718 (46%)	1.19	70% (67% – 72%)	67% (64% – 70%)	1.04 (1.00 – 1.09) (p=0.08)
Cough	255,587 (60%)	166,899 (40%)	1.53	49% (49% – 50%)	49% (49% – 49%)	1.01 (1.00 – 1.02) (p<0.001)
Cough with comorbidity	104,317 (59%)	71,401 (41%)	1.46	58% (58% – 58%)	56% (56% – 57%)	1.03 (1.02 – 1.04) (p<0.001)
Gastroenteri tis	70,835 (57%)	52,796 (43%)	1.34	6% (6% – 6%)	6% (6% – 6%)	0.98 (0.93 – 1.02) (p=0.32)
Gastroenteri tis with	19,636 (56%)	15,118 (44%)	1.30	7% (7% – 7%)	8% (7% – 8%)	0.91 (0.85 – 0.99) (p=0.02)

comorbidity						
ILI	17,050 (58%)	12,546 (42%)	1.36	20% (19% – 20%)	20% (19% – 20%)	1.01 (0.96 – 1.05) (p=0.83)
ILI with comorbidity	3,034 (56%)	2,336 (44%)	1.30	26% (24% – 27%)	28% (26% – 30%)	0.93 (0.85 – 1.01) (p=0.09)
Impetigo	8,707 (64%)	4,803 (36%)	1.81	52% (51% – 53%)	61% (59% – 62%)	0.85 (0.83 – 0.88) (p<0.001)
Impetigo with comorbidity	1,686 (65%)	925 (35%)	1.82	51% (49% – 54%)	61% (58% – 65%)	0.84 (0.78 – 0.90) (p<0.001)
LRTI	89,644 (59%)	61,550 (41%)	1.46	88% (88% – 89%)	87% (87% – 87%)	1.01 (1.01 – 1.02) (p<0.001)
LRTI with comorbidity	57,609 (59%)	39,687 (41%)	1.45	88% (87% – 88%)	86% (85% – 86%)	1.02 (1.02 – 1.03) (p<0.001)
Otitis media	19,440 (64%)	10,985 (36%)	1.77	82% (81% – 82%)	81% (80% – 82%)	1.01 (1.00 – 1.03) (p = 0.05)
Otitis media with comorbidity	3,935 (64%)	2,246 (36%)	1.75	83% (82% – 84%)	82% (80% – 83%)	1.02 (0.99 – 1.04) (p=0.13)
Sinusitis	74,863 (73%)	27,339 (27%)	2.74	87% (87% – 88%)	86% (85% – 86%)	1.02 (1.02 – 1.03) (p<0.001)
Sinusitis with comorbidity	18,475 (73%)	6,865 (27%)	2.69	90% (89% – 90%)	88% (87% – 89%)	1.02 (1.01 – 1.03) (p<0.001)
Sore throat	224,537 (67%)	109,975 (33%)	2.04	57% (56% – 57%)	57% (57% – 57%)	0.99 (0.99 – 1.00) (p=0.03)
Sore throat with comorbidity	37,446 (66%)	18,973 (34%)	1.97	53% (53% – 54%)	50% (50% – 51%)	1.06 (1.04 – 1.08) (p<0.001)
URTI	148,959 (68%)	71,244 (32%)	2.09	35% (34% – 35%)	36% (36% – 37%)	0.96 (0.95 – 0.97) (p<0.001)
URTI with comorbidity	35,450 (64%)	19,630 (36%)	1.81	45% (45% – 46%)	46% (45% – 47%)	0.99 (0.97 – 1.01) (p=0.46)

Table S2. The relative risk of receiving an antibiotic prescription when consulting with comorbidity. All adult patients consulting at their primary registered practice are included.

	Relative Risk (95% Confidence	e Interval) (p-value)
	Women	Men
Acne	0.99 (0.94 – 1.05) (p=0.80)	0.91 (0.87 – 0.97) (p<0.001)
Bronchitis	1.05 (1.03 – 1.06) (p<0.001)	1.06 (1.04 – 1.08) (p<0.001)
COPD (non- respiratory comorbidity)	1.02 (0.98 – 1.05) (p=0.32)	0.98 (0.94 – 1.03) (p=0.42)
Cough	1.19 (1.18 – 1.20) (p<0.001)	1.17 (1.16 – 1.18) (p<0.001)
Gastroenteritis	1.27 (1.18 – 1.40) (p<0.001)	1.24 (1.14 – 1.35) (p<0.001)
ILI	1.29 (1.18 – 1.40) (p<0.001)	1.51 (1.38 – 1.65) (p<0.001)
Impetigo	1.04 (0.98 – 1.10) (p=0.24)	1.02 (0.95 – 1.09) (p=0.68)
LRTI	0.99 (0.99 – 1.00) (p=0.002)	0.99 (0.98 – 0.99) (p<0.001)
Otitis media	1.01 (0.99 – 1.03) (p=0.18)	1.00 (0.98 – 1.03) (p=0.76)
Sinusitis	1.02 (1.02 – 1.03) (p<0.001)	1.03 (1.02 – 1.04) (p<0.001)
Sore throat	0.94 (0.93 – 0.95) (p<0.001)	0.88 (0.87 – 0.90) (p<0.001)
URTI	1.32 (1.30 – 1.35) (p<0.001)	1.27 (1.24 – 1.30) (p<0.001)

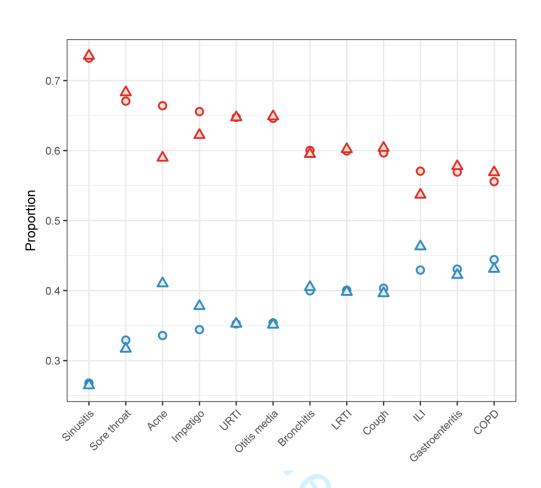


Figure S1. For common conditions in general practice, the proportions of all consultations (circles) and prescriptions (triangles) attributed to women (red) and men (blue). Consultations and prescriptions include all adult patients (aged 19-64) with comorbidity who consulted at their primary registered practice. Conditions are ordered by consultation proportion.

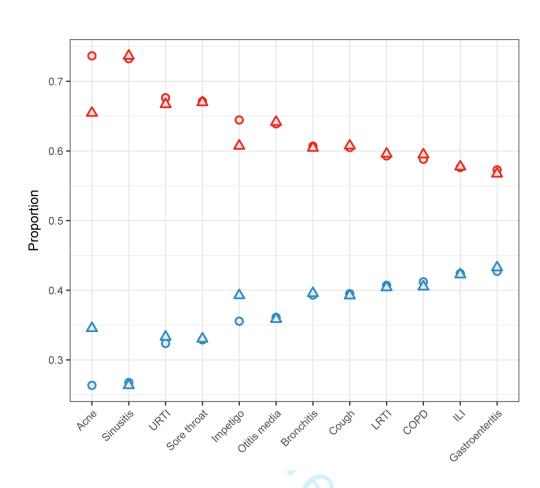


Figure S2. For common conditions in general practice, the proportions of all consultations (circles) and prescriptions (triangles) attributed to women (red) and men (blue). Consultations and prescriptions include all adult patients (aged 19-64) without comorbidity, including those who consulted outside their primary registered practice. Conditions are ordered by consultation proportion.

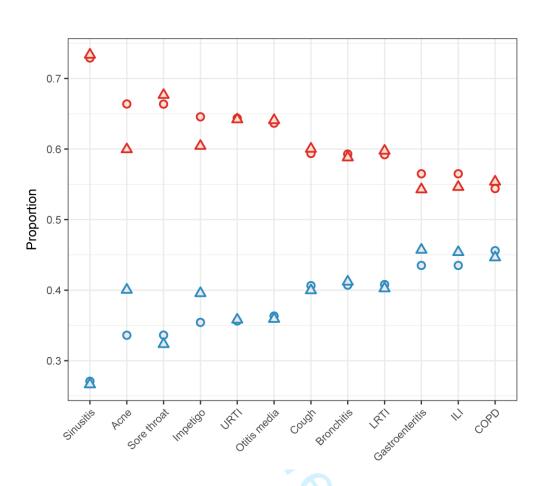


Figure S3. For common conditions in general practice, the proportions of all consultations (circles) and prescriptions (triangles) attributed to women (red) and men (blue). Consultations and prescriptions include all adult patients (aged 19-64) with comorbidity, including those who consulted outside their primary registered practice. Conditions are ordered by consultation proportion.

	Item No	Recommendation
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abs
		Provided, page 1
		(b) Provide in the abstract an informative and balanced summary of what was do
		and what was found
		Provided, pages 2-3
Introduction		
Background/rationale	2	Explain the scientific background and rationale for the investigation being repor
		Introduction paragraphs 1-3, pages 4-5
Objectives	3	State specific objectives, including any prespecified hypotheses
		Introduction paragraph 4, page 5
Methods		
Study design	4	Present key elements of study design early in the paper
		Throughout methods, pages 6-8
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment
		exposure, follow-up, and data collection
		Methods paragraph 1, page 6
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of
		participants
		Methods paragraphs 1-2, page 6
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and et
		modifiers. Give diagnostic criteria, if applicable
		Methods paragraphs 3-4, pages 7-8
Data sources/	8*	For each variable of interest, give sources of data and details of methods of
measurement		assessment (measurement). Describe comparability of assessment methods if the
		more than one group
		Methods paragraphs 1-2, page 6
Bias	9	Describe any efforts to address potential sources of bias
		Throughout methods, pages 6-8
Study size	10	Explain how the study size was arrived at
		Methods paragraph 1, page 6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,
		describe which groupings were chosen and why
		Methods paragraphs 2-4, pages 6-8
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confound
		(b) Describe any methods used to examine subgroups and interactions
		(c) Explain how missing data were addressed
		(d) If applicable, describe analytical methods taking account of sampling strateg
		(<u>e</u>) Describe any sensitivity analyses
		Methods paragraphs 2-4, pages 6-8
Results		
Participants	13*	(a) Report numbers of individuals at each stage of study-eg numbers potential
		eligible, examined for eligibility, confirmed eligible, included in the study,
		completing follow-up, and analysed
		(b) Give reasons for non-participation at each stage

1
2
3
4
5
6
7
8
9
9 10
10
11
12
13
14 15
15 16 17 18
16
17
18
18 19
20
20
21
20 21 22 23 24 25 26 27 28 29 30
23
24
25
26
27
28
20
29
31
32
33
34 35
35
36
37
37 38
39
40
40 41
42
43
44
45
46
47
48
49
50
51
52
52
53
54
55
56
57
58
59
60
00

		(c) Consider use of a flow diagram
		Results paragraph 1, page 8
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and
		information on exposures and potential confounders
		(b) Indicate number of participants with missing data for each variable of interest
		Results paragraph 1, page 8; Table 1, pages 9-10
Outcome data	15*	Report numbers of outcome events or summary measures
		Table 1, pages 9-10; online supplementary appendix Table S2, page 3
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and
		their precision (eg, 95% confidence interval). Make clear which confounders were
		adjusted for and why they were included
		(b) Report category boundaries when continuous variables were categorized
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a
		meaningful time period
		Table 1 and throughout results, pages 8-11
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and
		sensitivity analyses
		Results paragraphs 2-4, pages 8-11; online supplementary appendix Table S1
		and Figures S1-S3, pages 1-2 and 4-6
Discussion		0
Key results	18	Summarise key results with reference to study objectives
		Discussion paragraph 1, pages 11-12
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or
		imprecision. Discuss both direction and magnitude of any potential bias
		Discussion paragraphs 2 and 5, pages 12 and 14
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,
I		multiplicity of analyses, results from similar studies, and other relevant evidence
		Discussion paragraphs 4-6, pages 13-15
Generalisability	21	Discuss the generalisability (external validity) of the study results
		Discussion paragraph 2, page 12
Other information		
Funding	22	Give the source of funding and the role of the funders for the present study and, if
rununig	22	applicable, for the original study on which the present article is based
		Funding statement provided page 16
		running statement provided page 10

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.