BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>editorial.bmjopen@bmj.com</u>

BMJ Open

Inter-tester reliability of clinical shoulder instability and laxity tests in subjects with and without self-reported shoulder problems

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-018472
Article Type:	Research
Date Submitted by the Author:	30-Jun-2017
Complete List of Authors:	Eshoj, Henrik; Syddansk Universitet Det Sundhedsvidenskabelige Fakultet, Department of Sports Science and Clinical Biomechanics; Odense Universitetshospital, Quality of Life Research Center, Department of Haematology Ingwersen, Kim Gordon; Hospital Lillebaelt - Vejle Hospital, Vejle, Denmark, Research Unit at Department of Physical- and Occupational Therapy,; Syddansk Universitet Det Sundhedsvidenskabelige Fakultet, Department of Sports Science and Clinical Biomechanics Larsen, Camilla; Research Unit for Musculoskeletal Function and Physiotherapy, Institute of Sports Science and Clinical Biomechanics Kjær, Birgitte; Bispebjerg and Frederiksberg University Hospital, Copenhagen, Denmark, Research Unit at Department of Physical- and Occupational Therapy, ; Syddansk Universitet Det Sundhedsvidenskabelige Fakultet, Department of Sports Science and Clinical Biomechanics Juul-Kristensen, Birgit; Research Unit for Musculoskeletal Function and Physiotherapy, Institute of Sports Science and Clinical Biomechanics
Primary Subject Heading :	Evidence based practice
Secondary Subject Heading:	Sports and exercise medicine
Keywords:	Reliability, Shoulder < ORTHOPAEDIC & TRAUMA SURGERY, Instability, Laxity, Clinical test

SCHOLARONE[™] Manuscripts

1 2						
3						
4 5	1	Inter-tester reliability of clinical shoulder instability and laxity tests in subjects				
6 7 8	7 2 with and without self-reported shoulder problems					
9 10 11						
12 13	4	Henrik Eshoj ¹ , PhD ^{a,b} Kim Gordon Ingwersen, PhD ^{a,c} , Camilla Marie Larsen, PhD ^{a,d} Birgitte Hougs				
14 15	5	Kjær, Msc ^{a,e} , Birgit Juul-Kristensen, PhD ^{a,f}				
16 17 18	6					
19	7	Affiliations				
20 21	8	^a Department of Sports Science and Clinical Biomechanics, University of Southern Denmark,				
22	9	Odense, Denmark				
23 24	10	^b Quality of Life Research Center, Department of Haematology, Odense University Hospital,				
25	11	Odense, Denmark				
26	12	^c Research Unit at Department of Physical- and Occupational Therapy, Hospital Lillebaelt - Vejle				
27	13	Hospital, Vejle, Denmark				
28 29	14	^d Health Sciences Research Centre, University College Lillebaelt, Odense, Denmark				
30	15					
31	16	Frederiksberg University Hospital, Copenhagen, Denmark				
32 33	17	^f Institute of Occupational Therapy, Physiotherapy and Radiography, Department of Health				
33 34	18	ences, Bergen University College, Norway				
35 36	19					
37 38 39	20	Correspondence:				
40 41	21	Birgit Juul-Kristensen				
42 43 44	22	Department of Sports Science and Clinical Biomechanics University of Southern Denmark, Campusvej 55, 5230 Odense M, DK				
45 46	23	University of Southern Denmark, Campusvej 55, 5230 Odense M, DK				
47 48	24	Tel.: +45 2942 3335				
49 50 51	25	Email: <u>bjuul-kristensen@health.sdu.dk</u>				
52 53	26	Word counts: 2866				
54 55 56 57 58 59	27					
60						

Inter-tester reliability of clinical shoulder instability and laxity tests

Abstract

29	Objective: Firstly, to investigate the inter-tester reliability of clinical shoulder instability and laxity
30	tests, and secondly, to describe the mutual dependency of each of the individual tests for
31	identifying self-reported shoulder problems.
32	
33	Method: A standardized protocol for conducting reliability studies was used to test the inter-
34	tester reliability of the six clinical shoulder instability and laxity tests; apprehension, relocation,
35	surprise, load-and-shift, sulcus sign and Gagey. Cohens kappa (k) with 95% confidence intervals
36	(CI) besides Prevalence-Adjusted-Bias-Adjusted-Kappa (PABAK), accounting for insufficient
37	prevalence and bias, were computed to establish the inter-tester reliability and mutual
38	dependency.
39	
40	Results: Forty individuals (13 with instability and laxity related shoulder problems and 27 shoulder
41	healthy individuals) aged 18-60 were included. Fair (relocation), moderate (load-and-shift, sulcus
42	sign) and substantial (apprehension, surprise, Gagey) inter-tester reliability were observed across
43	
	tests (<i>k</i> 0.39-0.73; 95% CI: 0.00-1.00). PABAK improved reliability across tests, resulting in
44	tests (<i>k</i> 0.39-0.73; 95% CI: 0.00-1.00). PABAK improved reliability across tests, resulting in substantial to almost perfect inter-tester reliability for the apprehension, surprise, load-and-shift
44 45	
	substantial to almost perfect inter-tester reliability for the apprehension, surprise, load-and-shift
45	substantial to almost perfect inter-tester reliability for the apprehension, surprise, load-and-shift and Gagey tests (<i>k</i> 0.65-0.90). Mutual dependencies between each test and self-reported shoulder
45 46	substantial to almost perfect inter-tester reliability for the apprehension, surprise, load-and-shift and Gagey tests (<i>k</i> 0.65-0.90). Mutual dependencies between each test and self-reported shoulder problem showed apprehension, relocation and surprise to be the most often used tests to
45 46 47	substantial to almost perfect inter-tester reliability for the apprehension, surprise, load-and-shift and Gagey tests (<i>k</i> 0.65-0.90). Mutual dependencies between each test and self-reported shoulder problem showed apprehension, relocation and surprise to be the most often used tests to

BMJ Open

		Inter-tester reliability of clinical shoulder instability and laxity tests
1 2 3		
3 4 5	51	standardization before acceptable evidence. Furthermore, the validity of the tests for instability
6 7	52	and laxity needs to be studied.
8 9 10	53	
11 12	54	Article summary section
13	55	
14	56	Strengths and limitations of this study
15	57	
16 17	58	• The strength of the study is the use of a three-phased standardized study protocol
18 19 20	59	Presentation of raw findings increases transparency and interpretation of study findings
20 21 22	60	No valid gold standard for including shoulder instability and laxity subjects was used
23 24 25	61	• A 50/50 prevalence of positive and negative tests for all six tests was not accomplished
25 26 27	62	
28 29	63	Keywords
30 31 32	64	Reliability, Shoulder instability, laxity, clinical tests
33 34	65	
35 36 37	66	Acknowledgements
38 39	67	We would like to thank Physiotherapists Rasmus Fitzner, Pernille Madsen and Jacob Hansen from
40 41	68	Metropolitan University College, Copenhagen, Denmark for recruitment and testing of study
42 43 44	69	participants. Furthermore, a special thanks to Bispebjerg Frederiksberg University Hospital,
45 46 47	70	Copenhagen, Denmark for providing facilities for data collection.
48 49	71	
50 51 52 53 54 55 56 57 58 59 60	72	

Inter-tester reliability of clinical shoulder instability and laxity tests

1
3
4
5
0 7
8
9
10
11
12
14
15
16
17
19
20
2 3 4 5 6 7 8 9 10 1 12 3 4 15 16 7 8 9 20 1 22 3 4 5 6 7 8 9 10 1 23 4 15 16 7 8 9 20 1 22 3 24 25 6 7 8 9 30 1 32 33 4 5 6 7 8 9 30 1 32 3 3 4 5 6 7 8 9 30 1 32 3 3 4 5 6 7 8 9 30 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1
22
23 24
25
26
27
28
29 30
31
32
33
34 35
36
37
38
39 40
40 41
42
43
44 45
45 46
40 47
48
49
50 51
51 52
53
54
55
56 57
58
59
60

1

73

Introduction

74	Shoulder complaints, affecting shoulder-related quality of life (QoL), are frequent and may be
75	caused by shoulder instability and/or laxity ¹ due to traumatic or non-traumatic injuries to the
76	shoulder joint. ² The traumatic shoulder instability is mainly prompted by a high impact injury
77	during sports participation, resulting in a shoulder dislocation, predominantly in anterior
78	direction. ³ The non-traumatic shoulder instability is usually related to repetitive overhead
79	activities and/or patients with generalised joint hypermobility or glenohumeral hyperlaxity, often
80	refered to as multidirectional shoulder instability. ^{2,4,5}
81	Irrespectively of aetiology, shoulder instability and laxity is often accompanied by a variety of
82	symptoms including shoulder discomfort, pain besides glenohumeral subluxations and/or
83	repeated dislocations. ^{6,7,8} Clinically, shoulder instability and laxity, is diagnosed and verified by a
84	group of shoulder pain and instability provoking/relieving tests, supplemented by shoulder laxity
85	tests. ^{9,10} The former tests usually include the anterior shoulder instability and laxity tests;
86	apprehension, relocation and surprise, and the laxity tests consisting of the load-and-shift, sulcus
87	sign and Gagey tests. ^{11,12,13} An ongoing discussion is the use of pain as diagnostic criterion in
88	diagnosing anterior shoulder instability with the shoulder-provoking tests apprehension,
89	relocation and surprise. In one way, it may be a confounding factor, since pain has shown to be
90	less predictive and reliable as a diagnostic criterion. ¹⁴ On the contrary though, others have
91	suggested that unrecognized and underlying glenohumeral instability may lead to repetitive
92	microtrauma and painful shoulder conditions, ^{15,16} justifying pain as diagnostic criterion when
93	testing for anterior shoulder instability.
94	Nonetheless, symptoms may become chronic, and lead to reduced work and sports
95	capability, ^{17,18,19} and with exercise-based management as the most often recommended first-

BMJ Open

2 3		
3 4 5	96	choice treatment. ^{20,21} Hence, early diagnosis using reliable and accurate clinical tests to guide
6 7	97	focused treatment is essential. Few studies though, have investigated the reliability of clinical
8 9	98	shoulder instability and laxity tests showing large variations in reliability and with limited
10 11	99	methodological quality, hampering interpretation and comparison with other studies. ^{14,22,23}
12 13	100	
14 15		
16 17	101	Therefore, the objective of this study was to investigate the inter-tester reliability of commonly
18 19	102	used clinical shoulder instability and laxity tests in a group of sports-active individuals with and
20 21	103	without self-reported shoulder problems.
22 23	104	without self-reported shoulder problems.
24 25	105	
26 27	105	
28		
29 30		
31		
32		
33 34		
35		
36		
37		
38 39		
40		
41 42		
42 43		
44		
45		
46 47		
48		
49		
50		
50 51 52		
53		
54		
55 56		
56 57		
58		
50		

Inter-tester reliability of clinical shoulder instability and laxity tests

106 Materials and methods

107 Study design

An inter-tester reliability study was conducted involving two physiotherapists as inter-tester examiners. A third physiotherapist (study coordinator), not involved in the actual inter-tester reliability study, managed all practical aspects during the study period. The Guidelines for Reporting Reliability and Agreement Studies (GRASS) were followed.²⁴ A standardized protocol for reliability studies, consisting of three phases: preparation and training of clinical tests, overall agreement, and study phase (the actual reliability study) were applied.²⁵ Two early career physiotherapists with six months clinical experience were involved in the inter-tester reliability study. A test-protocol describing each clinical test was developed and subsequently used by the two testers to practice all tests in order to reach uniformity and mutual agreement in performing and interpreting each test. In the overall agreement phase, the two testers examined 19 individuals (eight shoulder cases and 11 shoulder healthy). The two testers were mutually blinded to the health status of the individuals (shoulder cases vs. shoulder healthy) and also to each other's test results. Before proceeding to the final study phase, the two testers needed an overall agreement of at least 80% based on findings from the six clinical shoulder tests.²⁵ In the actual inter-tester reliability study phase, the two testers examined a new group of shoulder cases and shoulder healthy individuals with the six clinical shoulder tests. The procedure was the same as in the agreement phase, meaning that testers were blinded to the health status of the individuals and each other's test results.

Study subjects

BMJ Open

Inter-tester reliability of clinical shoulder instability and laxity tests

	130	A sample size of at least 40 individuals was targeted based on recommendations for performing
	131	clinical reliability studies. ²⁵ Sixty-five (women and men (aged 18-60 years)) were recruited and
	132	screened for eligibility from Metropolitan University College, Copenhagen, and Bispebjerg
	133	Frederiksberg University Hospital, Copenhagen resulting in an included number of 13 individuals
, ,	134	with instability and/or laxity related shoulder problems (hereinafter referred to as cases) vs. 27
	135	shoulder healthy individuals, respectively.
)	136	Cases answering yes to at least one of two questions ('Do you have a sense of shoulder instability?'
	137	and 'Have you ever had a shoulder injury?') were eligible for a clinical shoulder examination
	138	performed by the study coordinator. Cases were then included if they present with at least one
	139	positive clinical shoulder test out of the following; apprehension, relocation, surprise, load-and-
)	140	shift, sulcus sign or Gagey. The shoulder healthy individuals were included if they present with no
	141	self-reported shoulder pathology or complaints. In general, any individuals with prior shoulder
	142	surgery were excluded. In the actual study phase, individuals completed a short questionnaire
	143	with basic demographic details (age, gender, weight, height), in addition to the following: pain
)	144	level during rest and activity (numeric pain rating scale, NPRS), ²⁶ shoulder injury ever (yes/no),
	145	subjective shoulder instability (yes/no) and sports-related activity (hours/week). Further, all
	146	individuals filled in the patient-reported Western Ontario Shoulder Instability (WOSI)
	147	questionnaire designed to measure shoulder function and quality of life in patients with shoulder
	148	instability and laxity symptoms. ²⁷ The study was exempted for notification to the Danish Health
	149	Research Study Board due to the non-invasive/-non-treating study design. However, oral and
	150	written consent was provided from all individuals and, ethical guidelines were followed according
)) ,	151	to the Helsinki declaration. ²⁸

The clinical shoulder tests consisted of three shoulder joint-provoking tests for anterior shoulder

instability (apprehension, relocation and surprise) besides three shoulder laxity tests (load and

The apprehension and surprise tests were positive if glenohumeral apprehension and/or pain

a positive test. The load and shift test was rated on a four-point scale ranging from 0-3 (best to

worst; 0= little glenohumeral movement; 3=humeral head moves beyond the glenoid rim and

load-and-shift test, only the direction (anterior vs. posterior) with most glenohumeral head

remains dislocated).¹² Also, to enhance mutual agreement between testers when performing the

translation was rated. Sulcus sign was objectively measured in centimeter (continuous scale) by

use of a small ruler according to previously used grading scales as follows; I (<1 cm translation), II

(1 to 2.0 cm) or III (>2.0 cm).²⁹ Finally, Gagey test was rated as positive with passive abduction

Demographics and descriptive data were tested for normality by visual inspection of histograms

and Shapiro-Wilk's test. Group differences (shoulder cases vs. shoulder healthy) were tested by

Fisher's Exact test for categorical variables, whereas student's t-test and Mann-Whitney U-test

Apprehension, relocation, surprise and Gagey test were dichotomous variables whereas the load

and shift and sulcus sign test were dichotomized to also allow for nominal statistics. Thus, load-

and-shift was rated positive when scored 2 or 3, while for sulcus sign a positive rating was equal to

was used for parametric, respectively non-parametric distributed data.

were evoked during testing whereas relieve of symptoms with the relocation test was regarded as

1	
2	
3	
4 5	
6	
7	
8	
9	
2 3 4 5 6 7 8 9 10 11 12 13 14	
11 12	
12	
14	
15	
16	
17	
16 17 18 19	
20	
20 21 22 23 24 25 26 27	
22	
23	
24	
20 26	
27	
28	
27 28 29 30 31	
30	
31 32	
32 33 34 35 36 37	
34	
35	
36	
37 38	
30 39	
40	
41	
42 43	
43	
44 45	
46	
47	
48	
49	
50 51	
51 52	
53	
54	
55	
56	
57 58	
58 59	
60	

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

above 105 degrees.¹³

Statistics

Clinical tests

shift, sulcus sign and Gagey) (Table 1).^{11,13,14,22,23,29}

BMJ Open

Inter-tester reliability of clinical shoulder instability and laxity tests

175	measurements exceeding one centimeter. ²⁹ For transparency, data from each test is presented by
176	2 x 2 contingency tables besides the use of McNemar's test for significant between-tester
177	differences. Furthermore, observed and expected agreements are presented along with
178	prevalence and bias ³⁰ indexes. Reliability was evaluated with the use of Cohen's kappa (k)
179	coefficients including 95% confidence intervals (CI). ²⁵ Also, since kappa is sensitive to imbalances
180	in prevalence and bias (e.g. the number of positive and negative tests not close to 50%) a
181	Prevalence-Adjusted-Bias-Adjusted Kappa (PABAK) was calculated. ^{30,31} By definition, PABAK
182	reflects the ideal situation, thereby accounting for variation of prevalence and bias between
183	testers (as presented in the "real" world). ³² The relationship between the individual tests and the
184	classification (mutual dependency) by self-reported shoulder problems was tested by Cohen's
185	kappa (k) coefficients and the characterization of the groups was tested with Fischer's exact tests.
186	The classification system proposed by Landis and Koch was used to interpret reliability as follows:
187	0.00-0.20 (Slight); 0.21-0.40 (Fair); 0.41-0.60 (Moderate); 0.61-0.80 (Substantial) and 0.81-1.00
188	(Almost perfect). ³³
189	Statistical Package for the Social Sciences (SPSS inc., Chicago, IL, USA), version 22, was used for all
190	statistical analyses, with p-value of <0.05 interpreted as significant.

Inter-tester reliability of clinical shoulder instability and laxity tests

Table 1. Performance and evaluation of the clinical shoulder instability and laxity tests

Verbal introduction:

 1. I am going to perform six clinical shoulder tests on you

2. I will ask if you experience any symptoms (apprehension and/or pain) during the three first tests.

3. I will guide you through each test

Clinical tests	Description	Placing of hands, etc.	Evaluation
Apprehension	Individuals placed supine with the shoulder being tested close to the edge of the examination table.	One hand around the wrist of the individual with the other hand gently placed in front of the shoulder.	Subjective or objective presence of apprehension and/or pain?
Alle	Shoulder positioned in 90° of abduction, elbow flexed to 90°.	Elbow supported at the examiners thigh.	Rated as either positive or negative.
	Examiner moves the shoulder into maximal external rotation.		(Nominal, dichotome data)
Relocation	From the end position of the apprehension test the humeral head is gently forced posteriorly	Examiners fifth finger placed close to the lateral part of the acromion with the wrist positioned anteriorly of the humeral head.	Diminish of apprehension symptoms and/or pain? Rated as either positive or negative. (Nominal, dichotome data)

BMJ Open

Surprise	From end position of the relocation test the posteriorly directed force at the humeral head is quickly removed.	Removal of examiners wrist from the anterior part of the shoulder.	Subjective or objective reproduction of apprehension symptoms and/or pain? Rated as either positive or negative. (Nominal, dichotome data)
Load-and-shift	Individual placed supine with scapula resting at the examination table. Humeral head is loaded gently into the glenoid through axial pressure at the elbow.	Examiners one hand placed at the olecranon with the individual's hand positioned between the examiners torso and elbow.	Humeral head movement evaluated by the use of a four- level laxity scale. 0 = little to almost no movement
Anterior test	Anterior load-and-shift: Shoulder positioned in the scapular plane in 90° of abduction with elbow flexed. Humeral head gently shifted in anterior direction.	Anterior load-and-shift: Examiners hand placed on top of the shoulder with the fingers on the backside of the glenohumeral head to move it anteriorly.	 1 = humeral head moves up onto the glenoid 2 = humeral head moves beyond the glenoid, but relocates spontaneously once pressure is released
Posterior test	<i>Posterior load-and-shift:</i> Shoulder positioned in the scapular plane in 20° of abduction with elbow flexed. Humeral head gently shifted in posterior direction.	<i>Posterior load-and-shift:</i> Examiners wrist placed at the anterior part of the humeral head to move it posteriorly.	3 = humeral head moves beyond the glenoid and remains dislocated Rated as positive when scored 2 or 3.

Inter-tester reliability of clinical shoulder instability and laxity tests

			(Nominal, dichotome data)
Sulcus sign	Individual sitting upright. Examiner pulls the distal part of the humerus in a caudal direction. Distance from the top of the humeral head and the acromion is measured with a ruler.	One hand placed above the epicondyles of humerus. Other hand is used to measure the subacromial distance with a ruler	Rated as positive with measurements exceeding 1 centimeter. (Nominal, dichotome data)
Gagey.	Individual sitting upright. The shoulder girdle is gently depressed with the arm passively moved into end range in horizontal abduction. A mirror in front of the individual is used to evalate shoulder abduction angle.	Forearm placed on top of the shoulder girdle with the other hand placed around the elbow joint.	Rated as positive with abduction exceeding 105 degrees. (Nominal, dichotome data)

BMJ Open

Inter-tester reliability of clinical shoulder instability and laxity tests

191 Results

- 192 Characteristics of the participating individuals are presented in Table 2. Demographics
- 193 showed no difference between the shoulder cases (n=13) and shoulder healthy (n=27)
- 194 individuals. Further, both groups (92 and 74%; p=0.18) were relatively active with a
- 195 weekly participation in sports-related activity for more than four hours per week.
- 196 However, as expected due to the design, shoulder cases had significantly higher pain
- during activity (4.23 vs. 1.44; p=0.02), higher frequency of shoulder injury ever (62% vs.
- 198 <1%; p<0.001), higher subjective shoulder instability (69 vs. 11%; p<0.001) and worse
- 199 total WOSI score (506 vs. 136; p=0.001) (Table 2).
- **Table 2.** Study phase. Participant characteristics.

	Shoulder cases (n=13)	Shoulder healthy (n=27)	P-value
Sex (women/men)	8/5	21/6	0.28
Age (years) mean (SD)	28 (9)	29 (7)	0.72
Weight (kg)* mean (SD)	71.0 (12.8)	74.9 (23.4)	0.59
Height (cm) mean (SD)	174.0 (8.6)	173.4 (7.9)	0.82
Pain, rest (NRS 0-10) mean (SD)	1.08 (1.44)	0.41 (1.15)	0.12
Pain, activity (NRS 0-10) mean (SD)	4.23 (2.92)	1.44 (2.12)	<0.05
Shoulder injury ever, n (%)	8 (62)	1 (<1)	< 0.001
Subjective shoulder instability, n (%)	9 (69)	3 (11)	< 0.001
Sports-related activity (>4 hours/week), n (%)	12 (92)	20 (74)	0.18
WOSI domains, mean (SD)			
- Physical symptoms (0-1000)	225 (165)	60 (78)	<0.05
- Sports, recreation, work (0-400)	103 (93)	24 (47)	<0.05
- Lifestyle (0-400)	58 (57)	13 (21)	<0.05
- Emotions (0-300)	121 (94)	39 (49)	<0.05
WOSI total score (0-2100) mean (SD)	506 (362)	136 (174)	< 0.001

Inter-tester reliability of clinical shoulder instability and laxity tests

- 205 Prevalence of positive tests was especially low for the load-and-shift test (table 3), and
- 206 significant between-tester differences were found for relocation and sulcus sign tests
- 207 (p=0.021) (not shown in tables).

Table 3. Contingency tables with findings from tester A and B.

Α

No

Yes

Apprehe	nsion	1	4
		Yes	No
В	Yes	14	4
Б	No	3	19

Yes

No

Load-and-shift

В

Reloc	ation	Α				
		Yes	No			
	Yes	6	2			
В	No	8	24			

Sulcus		Α				
		Yes	No			
	Yes	7	1			
В	No	9	23			

Surpris	se 🛛		4
		Yes	No
	Yes	14	4
В	No	3	19

Gagey		Α		
		Yes	No	
	Yes	8	3	
В	No	1	28	

Reliability varied between k: 0.39-0.73 (95% CI: 0.00-1.00), indicating fair (relocation; k 0.39), moderate (load-and-shift, sulcus sign; k 0.43 and 0.48) and substantial (apprehension, surprise, Gagey; k 0.65-0.73) reliability (Table 4). The prevalence index of all six tests ranged from 0.05-0.44, (lowest for load-and-shift, relocation and sulcus; 0.05, 0.28 and 0.30), whereas the bias index ranged from and 0.03-0.20 (highest for relocation and sulcus). PABAK improved reliability for relocation, load-and-shift, sulcus sign and Gagey test, now corresponding to moderate (relocation and sulcus sign; k (0.50), substantial (Gagey; k: 0.80) and almost perfect (load and shift; k: 0.90) reliability (Table 4).

Inter-tester reliability of clinical shoulder instability and laxity tests

	Observed	Expected	Prevalence	Bias	Карра	PABAK
	agreement	agreement	index	index	(95% CI)	
Apprehension	0.83	0.51	0.44	0.03	0.65 (0.38; 0.85)	0.65
Relocation*	0.75	0.59	0.28	0.15	0.39 (0.07; 0.68)	0.50
Surprise	0.83	0.51	0.44	0.03	0.65 (0.38; 0.85)	0.65
Load and Shift	0.95	0.90	0.05	0.05	0.48 (0.00; 1.00)	0.90
Sulcus sign*	0.75	0.56	0.30	0.20	0.43 (0.17; 0.72)	0.50
Gagey	0.90	0.62	0.40	0.05	0.73 (0.46; 0.94)	0.80

Table 4. Study phase. Reliability of six clinical shoulder instability and laxity tests.

*Significant inter-tester differences, CI Confidence intervals, PABAK prevalence-and-bias-adjusted
 kappa

226 The *k* values for mutual dependency indicate that apprehension, relocation and

227 surprise tests for both examiners were the most frequently used tests for

228 characterizing self-reported shoulder problems (Table 5). This was further confirmed

by the significant group difference in the presence of positive tests.

Table 5. Kappa statistics for mutual dependency of the individual tests and self-

reported shoulder problems.

	Observed	Expected	Prevalence	Карра	p-value
	agreement	agreement	index		(cases/controls)
Apprehension			9		
Examiner A	0.75	0.53	0.38	0.47	0.003
Examiner B	0.68	0.52	0.40	0.33	0.04
Relocation*					
Examiner A	0.83	0.55	0.35	0.61	<0.001
Examiner B	0.73	0.63	0.25	0.27	0.08
Surprise					
Examiner A	0.75	0.53	0.38	0.47	0.003
Examiner B	0.68	0.52	0.40	0.33	0.04
Load and Shift					
Examiner A	0.75	0.65	0.20	0.29	0.03
Examiner B	0.70	0.67	0.18	0.10	0.33
Sulcus sign*					
Examiner A	0.63	0.61	0.28	0.05	0.52
Examiner B	0.63	0.54	0.38	0.19	0.19
Gagey					
Examiner A	0.70	0.60	0.28	0.26	0.10
Examiner B	0.70	0.58	0.30	0.29	0.08


~~~	-	٠						•			
233	11		C			C	C	1	0	n	
233			3	u	u	Э	э		υ		

234	The inter-tester reliability across the selected six clinical shoulder instability and laxity
235	tests ranged from fair to substantial. Use of PABAK calculations improved inter-tester
236	reliability to substantial and almost perfect across most tests, except for the relocation
237	and sulcus sign tests. The tests most often used to characterize self-reported shoulder
238	problems (mutual dependency) were apprehension, relocation and surprise tests.
239	
240	The inter-tester reliability for the apprehension, relocation and surprise was higher

	Inter-tester reliability of clinical shoulder instability and laxity tests
233	Discussion
234	The inter-tester reliability across the selected six clinical shoulder instability and laxity
235	tests ranged from fair to substantial. Use of PABAK calculations improved inter-tester
236	reliability to substantial and almost perfect across most tests, except for the relocation
237	and sulcus sign tests. The tests most often used to characterize self-reported shoulder
238	problems (mutual dependency) were apprehension, relocation and surprise tests.
239	
240	The inter-tester reliability for the apprehension, relocation and surprise was higher
241	than, or equivocal, to previously reported results of these tests using the same
242	diagnostic procedures (apprehension and/or pain). ²³ Specifically for the apprehension
243	and surprise test, the present k values were somewhat higher than previously reported
244	(0.65 vs. 0.44-0.45). The reason for this may be that the current study included both
245	shoulder cases and shoulder healthy individuals as opposed to only including
246	symptomatic subjects. ²³ This may have increased subject variation, known to affect
247	reliability positively. Also, PABAK calculations did not affect the overall reliability of the
248	apprehension and surprise tests, probably due to an optimal prevalence index of
249	positive and negative tests (close to 0.50). For the relocation test, the existing inter-
250	tester reliability was almost similar to previously reported ( $k$ 0.39 vs. 0.44), ²³ however,
251	fairly lower. Apparently, the primary reason for the current poor reliability in
252	relocation was presence of systematic bias between testers, as indicated by the actual
253	raw data (contingency tables) and the statistical significant inter-examiner difference.
254	Likewise, systematic bias between testers was also fund for the sulcus sign test in the
255	present study. Hypothetically, this may be explained by inter-tester variability in the
	17

#### **BMJ Open**

256	force produced to relocate, respectively inferiorly translate the glenohumeral head
257	during the relocation and sulcus sign tests in the current study. This is, however, only
258	speculative and further studies are needed to standardize these tests.
259	Reliability for the present sulcus sign test was slightly lower than previously reported ( $k$
260	0.39 vs. >0.50). ^{$22,23$} The discrepancy in reliability observed may be due to the use of
261	different test positions with participants in the current study sitting upright ²⁹ as
262	opposed to a previous lying test position. ²² Although, using PABAK it applies for both
263	the relocation and sulcus sign test that overall reliability was not affected much, due to
264	the presence of systematic bias.
265	For the load-and-shift test, reliability was relatively low (including wide CI). This may be
266	due to the current poor prevalence index. However, the present dichotomous rating of
267	the load-and-shift test (meaning that only individuals that could either subluxate or
268	dislocate the shoulder during testing was deemed positive) may have influenced the
269	prevalence of positive tests largely. Therefore, using PABAK, reliability of the load-and-
270	shift test improved considerably (from moderate to almost perfect). Nevertheless,
271	different statistics (kappa vs. Intra-class-Correlation Coefficients), different scoring
272	systems (dichotomous rating (positive yes/no) vs. four point grading scale (0-3) ²³ and
273	inclusion of shoulder asymptomatic athletes only ²² make comparison across studies
274	difficult.
275	Finally, reliability of the Gagey test was substantial and PABAK did not affect reliability
276	much due to a nearly optimal prevalence and low bias between testers. Unfortunately,
277	there is no other study to compare with.

278	Although the current study was designed to investigate reliability, and not diagnostic
279	accuracy, the mutual dependency between the individual tests and self-reported
280	shoulder problems was analysed. It revealed that the tests most often used to
281	characterize those with and without self-reported shoulder problems (mutual
282	dependency) proved to be the apprehension, relocation and surprise tests. This may
283	indicate a relationship between these tests, which may come as no surprise, since
284	these tests are a continuum of the apprehension test and, thus, closely related. ⁹
285	Nevertheless, for clinicians it is of interest to specify the clinical characteristics of
286	patients with self-reported shoulder problems. Thus, the current prevalence of
287	positive tests may mirror these characteristics of the included patients and should be
288	taken into consideration in the management of such musculoskeletal conditions. It
289	could be suggested to develop and test the clinimetric properties of a more
290	comprehensive test battery for evaluating self-reported shoulder problems. No prior
291	studies were found addressing mutual dependency of the current tests for shoulder
292	instability and laxity, which hampers comparison.
293	The present study has several limitations. First, despite the use of a standardized test
294	protocol, including training and an overall agreement phase, two of the tests
295	(relocation and sulcus sign tests) failed to reach recommendable reliability values.
296	Further standardization in both performance and interpretation are therefore needed.
297	Secondly, no valid gold standard for classifying shoulder instability/laxity was used. To
298	compensate for this, self-reported confirmation of shoulder-related problems was
299	applied, but this was not reflected in the current WOSI scores, which were relatively

#### **BMJ Open**

Inter-tester reliability of clinical shoulder instability and laxity tests

300	low. Lack of a more objective gold standard may have decreased diagnostic accuracy,
301	however, not reliability, which was the primary objective of the present study-
302	Thirdly, although the recommended prevalence of 0.50 in reliability studies ²⁵ in all six
303	tests was not accomplished, use of PABAK calculations was able to represent a valid
304	alternative for the original kappa values. Nevertheless, future studies should use
305	inclusion criteria of more established shoulder instability and laxity conditions, and, if
306	possible, verified by objective criteria as surrogate for a gold standard of shoulder
307	instability and laxity. This may optimize prevalence as well as diagnostic accuracy in
308	studies where this is a further aim.
309	The strengths of the study are the use of standardized procedures (including blinding
310	to patient status and the use of a three-phased protocol for conducting reliability
311	studies). Also, presentation of raw data, using contingency tables, along with kappa
312	and PABAK values, increases data transparency and improves interpretation of the
313	reliability study.
314	Conclusions
315	This study showed acceptable inter-tester reliability for four of six clinical shoulder
316	instability and laxity tests in relatively sports active individuals with and without self-
317	reported shoulder disability. However, relocation and sulcus sign tests need further
318	standardisation before being recommended for use in clinical practice. Based on the
319	frequency and mutual dependency of the current tests, especially apprehension and

320 surprise tests seem important in the characterisation of self-reported shoulder

#### Inter-tester reliability of clinical shoulder instability and laxity tests

#### **BMJ Open**

328	Author statement: HE, KGI, CML and BJK conceived and designed the study. HE and
329	BHK recruited study participants and collected data. HE performed the statistical
330	analysis. HE, KGI, CML, BJK interpreted the results. HE drafted the manuscript with
331	KGI, CML, BHK and BJK contributing to the manuscript. All authors have read and
332	approved the final manuscript. HE is the guarantor.
333	
334	Funding: This work was supported by Region of Southern Denmark's Research fund
335	and The Danish Rheumatism Association.
336	
337	Competing interest: None declared
338	
339	Data sharing statement: No additional data are available
340	

#### Inter-tester reliability of clinical shoulder instability and laxity tests

341	References
342	1. Luime, J. J., B. W. Koes, I. J. Hendriksen, A. Burdorf, A. P. Verhagen, H. S. Miedem
343	and J. A. Verhaar. 2004. 'Prevalence and incidence of shoulder pain in the general
344	population; a systematic review', Scandinavian Journal of Rheumatology, 33: 73-8
345	
346	2. Farrar, N. G., J. J. Malal, J. Fischer, and M. Waseem. 2013. 'An overview of
347	shoulder instability and its management', <i>Open Orthopaedics Journal</i> , 7: 338-46.
348	
349	3. Goss, T. P. 1988. 'Anterior glenohumeral instability', <i>Orthopedics</i> , 11: 87-95.
350	
351	4. Cameron, K. L., M. L. Duffey, T. M. DeBerardino, P. D. Stoneman, C. J. Jones, and I
352	D. Owens. 2010. 'Association of generalized joint hypermobility with a history of
353	glenohumeral joint instability', <i>J Athl Train,</i> 45: 253-8.
354	
355	5. Chahal, J., J. Leiter, M. D. McKee, and D. B. Whelan. 2010. 'Generalized
356	ligamentous laxity as a predisposing factor for primary traumatic anterior
357	shoulder dislocation', J Shoulder Elbow Surg, 19: 1238-42.
358	
359	6. Dodson, C. C., and F. A. Cordasco. 2008. 'Anterior glenohumeral joint
360	dislocations', <i>Orthop Clin North Am</i> , 39: 507-18, vii.
361	
362	7. Jaggi, A., and S. Lambert. 2010. 'Rehabilitation for shoulder instability', <i>Br J</i>
363	Sports Med, 44: 333-40.
364	
365	8. Wilk, K. E., L. C. Macrina, and M. M. Reinold. 2006. 'Non-operative rehabilitation
366	for traumatic and atraumatic glenohumeral instability', N Am J Sports Phys Ther, 1
367	16-31.
368	
369	9. Hegedus, E. J., A. P. Goode, C. E. Cook, L. Michener, C. A. Myer, D. M. Myer, and A.
370	A. Wright. 2012. 'Which physical examination tests provide clinicians with the
371	most value when examining the shoulder? Update of a systematic review with
372	meta-analysis of individual tests', <i>Br J Sports Med</i> , 46: 964-78.
373	
374	10. Ann Ganestam, Mikkel L. Attrup, Per Hølmich and Kristoffer W Barfoed. 2015.
375	'Evaluation of Clinical Practice of Shoulder Examination amon Ten Experienced
376	Shoulder Surgeons', Journal of Orthopaedic Research and Physiotherapy, 1.
377	
378	11. Luime, J. J., A. P. Verhagen, H. S. Miedema, J. I. Kuiper, A. Burdorf, J. A. Verhaar,
379	and B. W. Koes. 2004. 'Does this patient have an instability of the shoulder or a
380	labrum lesion?', <i>JAMA</i> , 292: 1989-99.
381	
382	12. Tzannes, A., and G. A. Murrell. 2002. 'Clinical examination of the unstable
383	shoulder', Sports Medicine, 32: 447-57.
384	
385	13. Gagey, O. J., and N. Gagey. 2001. 'The hyperabduction test', <i>J Bone Joint Surg Bi</i>
386	83: 69-74.
387	

60

# **BMJ Open**

2		
3		
4	388	14. Lo, I. K., B. Nonweiler, M. Woolfrey, R. Litchfield, and A. Kirkley. 2004. 'An
5	389	evaluation of the apprehension, relocation, and surprise tests for anterior shoulder
6	390	instability', <i>Am J Sports Med</i> , 32: 301-7.
7	391	
8	392	15. Silliman, J. F., and R. J. Hawkins. 1993. 'Classification and physical diagnosis of
9		
10	393	instability of the shoulder', <i>Clin Orthop Relat Res</i> : 7-19.
11	394	
12	395	16. Cavallo, R. J., and K. P. Speer. 1998. 'Shoulder instability and impingement in
13	396	throwing athletes', <i>Med Sci Sports Exerc</i> , 30: S18-25.
14	397	
15	398	17. Matsen, F. A., 3rd, and J. D. Zuckerman. 1983. 'Anterior glenohumeral
16 17	399	instability', <i>Clin Sports Med</i> , 2: 319-38.
18	400	
19	401	18. Robinson, C. M., J. Howes, H. Murdoch, E. Will, and C. Graham. 2006. 'Functional
20	402	outcome and risk of recurrent instability after primary traumatic anterior shoulder
21	403	dislocation in young patients', <i>J Bone Joint Surg Am</i> , 88: 2326-36.
22	403	disiocation in young patients , j bone joint surg Am, oo. 2320-30.
23		10 mm Kammer D. A. Theorem In James de Marada D. M. Castalaia C. D.
24	405	19. van Kampen, D. A., T. van den Berg, H. J. van der Woude, R. M. Castelein, C. B.
25	406	Terwee, and W. J. Willems. 2013. 'Diagnostic value of patient characteristics,
26	407	history, and six clinical tests for traumatic anterior shoulder instability', J Shoulder
27	408	Elbow Surg, 22: 1310-9.
28	409	
29	410	20. Warby, S. A., T. Pizzari, J. J. Ford, A. J. Hahne, and L. Watson. 2014. 'The effect of
30	411	exercise-based management for multidirectional instability of the glenohumeral
31	412	joint: a systematic review', <i>J Shoulder Elbow Surg</i> , 23: 128-42.
32	413	
33	414	21. Gibson, K., A. Growse, L. Korda, E. Wray, and J. C. MacDermid. 2004. 'The
34	415	effectiveness of rehabilitation for nonoperative management of shoulder
35	416	instability: a systematic review', <i>J Hand Ther</i> , 17: 229-42.
36 37	417	instability. a systematic review, j nana mer, 17. 225-42.
38		22 Lours A.C. C. Lintman K. Konton and K.D. Chaon 1000 Untre and interchaomics
38 39	418	22. Levy, A. S., S. Lintner, K. Kenter, and K. P. Speer. 1999. 'Intra- and interobserver
40	419	reproducibility of the shoulder laxity examination', <i>Am J Sports Med</i> , 27: 460-3.
41	420	
42	421	23. Tzannes, A., A. Paxinos, M. Callanan, and G. A. Murrell. 2004. 'An assessment of
43	422	the interexaminer reliability of tests for shoulder instability', J Shoulder Elbow
44	423	<i>Surg</i> , 13: 18-23.
45	424	
46	425	24. Kottner, J., L. Audige, S. Brorson, A. Donner, B. J. Gajewski, A. Hrobjartsson, C.
47	426	Roberts, M. Shoukri, and D. L. Streiner. 2011. 'Guidelines for Reporting Reliability
48	427	and Agreement Studies (GRRAS) were proposed', Int J Nurs Stud, 48: 661-71.
49	428	
50	429	25. Patijn J, Remvig L 2007. "Reproducibility And Validity 2007-Protocol Formats
51	430	For Diagnostics Procedures In Manual/Musculoskeletal Medicine." In.
52	430	i or Biagnostics i roccuures in manual/musculoskeretai meutenie. In.
53 54		26 Downia W W D A Lootham V M Dhind V Wright I A Drongo and I A
54 55	432	26. Downie, W. W., P. A. Leatham, V. M. Rhind, V. Wright, J. A. Branco, and J. A.
55 56	433	Anderson. 1978. 'Studies with pain rating scales', <i>Annals of the Rheumatic Diseases</i> ,
50 57	434	37: 378-81.
58		
59		
60		

#### Inter-tester reliability of clinical shoulder instability and laxity tests

2 3		
3		
4	435	
5 6	436	27. Kirkley, A., S. Griffin, H. McLintock, and L. Ng. 1998. 'The development and
6 7	437	evaluation of a disease-specific quality of life measurement tool for shoulder
8	438	instability. The Western Ontario Shoulder Instability Index (WOSI)', Am J Sports
9	439	Med, 26: 764-72.
10	440	
11	441	28. 'World Medical Association Declaration of Helsinki: ethical principles for
12	442	medical research involving human subjects'. 2000. JAMA, 284: 3043-5.
13	443	
14	444	29. Bahk, M., E. Keyurapan, A. Tasaki, E. L. Sauers, and E. G. McFarland. 2007.
15	445	'Laxity testing of the shoulder: a review', <i>Am J Sports Med</i> , 35: 131-44.
16	446	
17	447	30. Sim, J., and C. C. Wright. 2005. 'The kappa statistic in reliability studies: use,
18	448	interpretation, and sample size requirements', <i>Phys Ther</i> , 85: 257-68.
19 20	449	interpretation, and sample size requirements, rings filer, 05. 257-00.
20 21	449	31. Byrt, T., J. Bishop, and J. B. Carlin. 1993. 'Bias, prevalence and kappa', J Clin
21	450 451	<i>Epidemiol</i> , 46: 423-9.
23		Epidemioi, 46: 423-9.
24	452	22 Hackley F. K. 2000 'Bigger diversion of a first on house signed in terms of
25	453	32. Hoehler, F. K. 2000. 'Bias and prevalence effects on kappa viewed in terms of
26	454	sensitivity and specificity', <i>J Clin Epidemiol</i> , 53: 499-503.
27	455	
28	456	33. Landis, J. R., and G. G. Koch. 1977. 'The measurement of observer agreement for
29	457	categorical data', <i>Biometrics</i> , 33: 159-74.
30		
31 32		
33		
34		Categorical data , <i>Biometrics</i> , 53: 159-74.
35		
36		
37		
38		
39 40		
40 41		
42		
43		
44		
45		
46		
47		
48		
49 50		
50 51		
52		
53		
54		
55		
56		
57		
58		
59 60		
60		24

1

# **BMJ Open**

# Inter-tester reliability of clinical shoulder instability and laxity tests in subjects with and without self-reported shoulder problems

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-018472.R1
Article Type:	Research
Date Submitted by the Author:	06-Oct-2017
Complete List of Authors:	Eshoj, Henrik; Syddansk Universitet Det Sundhedsvidenskabelige Fakultet, Department of Sports Science and Clinical Biomechanics; Odense Universitetshospital, Quality of Life Research Center, Department of Haematology Ingwersen, Kim Gordon; Hospital Lillebaelt - Vejle Hospital, Vejle, Denmark, Research Unit at Department of Physical- and Occupational Therapy,; Syddansk Universitet Det Sundhedsvidenskabelige Fakultet, Department of Sports Science and Clinical Biomechanics Larsen, Camilla; Research Unit for Musculoskeletal Function and Physiotherapy, Institute of Sports Science and Clinical Biomechanics Kjær, Birgitte; Bispebjerg and Frederiksberg University Hospital, Copenhagen, Denmark, Research Unit at Department of Physical- and Occupational Therapy, ; Syddansk Universitet Det Sundhedsvidenskabelige Fakultet, Department of Sports Science and Clinical Biomechanics Juul-Kristensen, Birgit; Research Unit for Musculoskeletal Function and Physiotherapy, Institute of Sports Science and Clinical Biomechanics
<b>Primary Subject Heading</b> :	Evidence based practice
Secondary Subject Heading:	Sports and exercise medicine
Keywords:	Reliability, Shoulder < ORTHOPAEDIC & TRAUMA SURGERY, Instability, Laxity, Clinical test

SCHOLARONE[™] Manuscripts

Inter-tester reliability of clinical shoulder instability and laxity tests

1 2		
2 3		
4 5	1	Inter-tester reliability of clinical shoulder instability and laxity tests in subjects
6 7 8	2	with and without self-reported shoulder problems
9 10 11	3	
12 13	4	Henrik Eshoj, PhD ^a Kim Gordon Ingwersen, PhD ^{b,c} , Camilla Marie Larsen, PhD ^{b,d} Birgitte Hougs
14 15 16	5	Kjær, Msc ^{b,e} , Birgit Juul-Kristensen, PhD ^{b,f}
17 18	6	
19 20	7	Affiliations
20 21 22	8 9	^a Quality of Life Research Center, Department of Haematology, Odense University Hospital, Odense, Denmark
23	10	^b Department of Sports Science and Clinical Biomechanics, University of Southern Denmark,
24	11	Odense, Denmark
25 26	12	^c Research Unit at Department of Physical- and Occupational Therapy, Hospital Lillebaelt - Vejle
27	13	Hospital, Vejle, Denmark
28	14	^d Health Sciences Research Centre, University College Lillebaelt, Odense, Denmark
29	14	^e Research Unit at Department of Physical- and Occupational Therapy, Bispebjerg and
30 31		
32	16	Frederiksberg University Hospital, Copenhagen, Denmark
33	17	^f Institute of Occupational Therapy, Physiotherapy and Radiography, Department of Health
34	18	Sciences, Bergen University College, Norway
35 36 37	19	
38 39	20	Correspondence:
40 41 42	21	Birgit Juul-Kristensen
43 44	22 23	Department of Sports Science and Clinical Biomechanics University of Southern Denmark, Campusvej 55, 5230 Odense M, DK
45 46 47	23	Tel.: +45 2942 3335
48 49	25	Email: bjuul-kristensen@health.sdu.dk
50 51 52	26	
53 54 55	27	Word counts: 3001
56 57 58 59 60	28	
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Inter-tester reliability of clinical shoulder instability and laxity tests

Abstract

30	Objective: Firstly, to investigate the inter-tester reliability of clinical shoulder instability and laxity
31	tests, and secondly, to describe the mutual dependency of each test evaluated by each tester for
32	identifying self-reported shoulder instability and laxity.
33	
34	Method: A standardized protocol for conducting reliability studies was used to test the inter-
35	tester reliability of the six clinical shoulder instability and laxity tests; apprehension, relocation,
36	surprise, load-and-shift, sulcus sign and Gagey. Cohens kappa (k) with 95% confidence intervals
37	(CI) besides Prevalence-Adjusted-Bias-Adjusted-Kappa (PABAK), accounting for insufficient
38	prevalence and bias, were computed to establish the inter-tester reliability and mutual
39	dependency.
40	
41	Results: Forty individuals (13 with self-reported shoulder instability and laxity related shoulder
41 42	<b>Results:</b> Forty individuals (13 with self-reported shoulder instability and laxity related shoulder problems and 27 normal shoulders individuals) aged 18-60 were included. Fair (relocation),
42	problems and 27 normal shoulders individuals) aged 18-60 were included. Fair (relocation),
42 43	problems and 27 normal shoulders individuals) aged 18-60 were included. Fair (relocation), moderate (load-and-shift, sulcus sign) and substantial (apprehension, surprise, Gagey) inter-tester
42 43 44	problems and 27 normal shoulders individuals) aged 18-60 were included. Fair (relocation), moderate (load-and-shift, sulcus sign) and substantial (apprehension, surprise, Gagey) inter-tester reliability were observed across tests ( <i>k</i> 0.39-0.73; 95% CI: 0.00-1.00). PABAK improved reliability
42 43 44 45	problems and 27 normal shoulders individuals) aged 18-60 were included. Fair (relocation), moderate (load-and-shift, sulcus sign) and substantial (apprehension, surprise, Gagey) inter-tester reliability were observed across tests ( <i>k</i> 0.39-0.73; 95% CI: 0.00-1.00). PABAK improved reliability across tests, resulting in substantial to almost perfect inter-tester reliability for the apprehension,
42 43 44 45 46	problems and 27 normal shoulders individuals) aged 18-60 were included. Fair (relocation), moderate (load-and-shift, sulcus sign) and substantial (apprehension, surprise, Gagey) inter-tester reliability were observed across tests ( <i>k</i> 0.39-0.73; 95% CI: 0.00-1.00). PABAK improved reliability across tests, resulting in substantial to almost perfect inter-tester reliability for the apprehension, surprise, load-and-shift and Gagey tests ( <i>k</i> 0.65-0.90). Mutual dependencies between each test
42 43 44 45 46 47	problems and 27 normal shoulders individuals) aged 18-60 were included. Fair (relocation), moderate (load-and-shift, sulcus sign) and substantial (apprehension, surprise, Gagey) inter-tester reliability were observed across tests ( <i>k</i> 0.39-0.73; 95% CI: 0.00-1.00). PABAK improved reliability across tests, resulting in substantial to almost perfect inter-tester reliability for the apprehension, surprise, load-and-shift and Gagey tests ( <i>k</i> 0.65-0.90). Mutual dependencies between each test and self-reported shoulder problem showed apprehension, relocation and surprise to be the most
42 43 44 45 46 47 48	problems and 27 normal shoulders individuals) aged 18-60 were included. Fair (relocation), moderate (load-and-shift, sulcus sign) and substantial (apprehension, surprise, Gagey) inter-tester reliability were observed across tests ( <i>k</i> 0.39-0.73; 95% CI: 0.00-1.00). PABAK improved reliability across tests, resulting in substantial to almost perfect inter-tester reliability for the apprehension, surprise, load-and-shift and Gagey tests ( <i>k</i> 0.65-0.90). Mutual dependencies between each test and self-reported shoulder problem showed apprehension, relocation and surprise to be the most
42 43 44 45 46 47 48 49	problems and 27 normal shoulders individuals) aged 18-60 were included. Fair (relocation), moderate (load-and-shift, sulcus sign) and substantial (apprehension, surprise, Gagey) inter-tester reliability were observed across tests ( <i>k</i> 0.39-0.73; 95% CI: 0.00-1.00). PABAK improved reliability across tests, resulting in substantial to almost perfect inter-tester reliability for the apprehension, surprise, load-and-shift and Gagey tests ( <i>k</i> 0.65-0.90). Mutual dependencies between each test and self-reported shoulder problem showed apprehension, relocation and surprise to be the most often used tests to characterize self-reported shoulder instability conditions.

# **BMJ Open**

1 2		
2 3 4	52	standardization before acceptable evidence. Furthermore, the validity of the tests for instability
5 6		
7	53	and laxity needs to be studied.
8 9 10	54	
11	55	Article summary section
12	56	
13 14	57	Strengths and limitations of this study
15	58	
16 17	59	• The strength of the study is the use of a three-phased standardized study protocol
18 19	60	• Presentation of raw findings increases transparency and interpretation of study findings
20 21 22	61	No valid gold standard for including shoulder instability and laxity subjects was used
23 24 25	62	• A 50/50 prevalence of positive and negative tests for all six tests was not accomplished
25 26 27	63	
28 29	64	Keywords
30 31 32	65	Reliability, Shoulder instability, laxity, clinical tests
33 34	66	
35 36 27	67	Acknowledgements
37 38 39	68	We would like to thank Physiotherapists Rasmus Fitzner, Pernille Madsen and Jacob Hansen from
40 41	69	Metropolitan University College, Copenhagen, Denmark for recruitment and testing of study
42 43 44	70	participants. Furthermore, a special thanks to Bispebjerg Frederiksberg University Hospital,
45 46 47	71	Copenhagen, Denmark for providing facilities for data collection.
48 49	72	
50 51 52 53 54 55 56 57 58 59	73	
60		

#### Inter-tester reliability of clinical shoulder instability and laxity tests

Introduction

75	
10	Shoulder complaints, affecting shoulder-related quality of life (QoL), are frequent and may be
76	caused by shoulder instability and/or laxity ¹ due to traumatic or non-traumatic injuries to the
77	shoulder joint. ² The traumatic shoulder instability is mainly prompted by a high impact injury
78	during sports participation, resulting in a shoulder dislocation, predominantly in anterior
79	direction. ³ The non-traumatic shoulder instability is usually related to repetitive overhead
80	activities and/or patients with generalised joint hypermobility or glenohumeral hyperlaxity, often
81	refered to as multidirectional shoulder instability. ^{2,4,5}
82	Irrespectively of aetiology, shoulder instability and laxity is often accompanied by a variety of
83	symptoms including shoulder discomfort, pain besides glenohumeral subluxations and/or
84	repeated dislocations. ^{6,7,8} Clinically, shoulder instability and laxity, are diagnosed and verified by a
85	group of shoulder pain and instability provoking/relief tests, supplemented by shoulder laxity
86	tests. ^{9,10} The former tests usually include the anterior shoulder instability and laxity tests;
87	apprehension, relocation and surprise, and the laxity tests consisting of the load-and-shift, sulcus
88	sign and Gagey tests. ^{11,12,13} An ongoing discussion is the use of pain as diagnostic criterion in
89	diagnosing anterior shoulder instability with the clinical tests apprehension, relocation and
90	surprise. ^{14,15,16} In one way, it may be a confounding factor, since pain has shown to be less
91	predictive and reliable as a diagnostic criterion. ¹⁴ On the contrary though, others have suggested
	that unrecognized and underlying glenohumeral instability may lead to repetitive microtrauma
92	
92 93	and painful shoulder conditions, ^{15,16} justifying pain as diagnostic criterion when testing for anterior
93	and painful shoulder conditions, ^{15,16} justifying pain as diagnostic criterion when testing for anterior

#### **BMJ Open**

2		
3		
4 5	97	choice treatment. ^{20,21} Hence, early diagnosis using reliable and accurate clinical tests to guide
6 7	98	focused treatment is essential. Few studies though, have investigated the reliability of clinical
8 9	99	shoulder instability and laxity tests showing large variations in reliability and with limited
10 11 12	100	methodological quality, hampering interpretation and comparison with other studies. ^{14,22,23}
12 13 14	101	
15		
16 17	102	Therefore, the objective of this study was to investigate the inter-tester reliability of commonly
18 19	103	used clinical shoulder instability and laxity tests and secondly to describe the mutual dependency
20 21	104	for each test evaluated by each tester, in a group of sports-active individuals with and without
22 23	105	self-reported shoulder problems.
24 25 26	106	self-reported shoulder problems.
20 27		
28		
29		
30 31		
32		
33		
34 35		
36		
37		
38 39		
40		
41		
42 43		
44		
45		
46 47		
48		
49		
50 51		
52		
53		
54 55		
56		
57		

#### Inter-tester reliability of clinical shoulder instability and laxity tests

107	Materials	and	methods

## 108 Study design

An inter-tester reliability study was conducted involving two physiotherapists as inter-tester examiners. A third physiotherapist (study coordinator), not involved in the actual inter-tester reliability study (test phase), managed all practical aspects during the study period. The Guidelines for Reporting Reliability and Agreement Studies (GRASS), a consensus document on how to report reliability and agreement studies, were followed.²⁴ A standardized protocol for reliability studies, consisting of three phases: preparation and training of clinical tests, overall agreement, and test phase (the actual reliability study) were applied.²⁵ Two early career physiotherapists with six months clinical experience were involved in the inter-tester reliability study. A test-protocol describing each clinical test was developed and subsequently used by the two testers to practice all tests in order to reach uniformity and mutual agreement in performing and interpreting each test. In the overall agreement phase, the two testers examined 19 individuals (eight affected shoulders and 11 normal shoulders). The two testers were mutually blinded to the health status of the individuals (affected shoulders vs. normal shoulders) and also to each other's test results. Before proceeding to the final study phase, the two testers needed an overall agreement of at least 80% based on findings from the six clinical shoulder tests.²⁵ In the actual inter-tester reliability test phase, the two testers examined a new group of individuals with affected, respectively normal shoulders with the six clinical shoulder tests. The procedure was the same as in the agreement phase, meaning that testers were blinded to the health status of the individuals and each other's test results. 

Study subjects

#### **BMJ Open**

Inter-tester reliability of clinical shoulder instability and laxity tests

131	A sample size of at least 40 individuals was targeted based on recommendations for performing
132	clinical reliability studies. ²⁵ Sixty-five individuals (women and men (aged 18-60 years)) were
133	recruited and screened for eligibility from Metropolitan University College, Copenhagen, and
134	Bispebjerg Frederiksberg University Hospital, Copenhagen resulting in an included number of 13
135	individuals with instability and/or laxity related shoulder problems (hereinafter referred to as
136	shoulder affected) vs. 27 normal shoulder individuals, respectively.
137	Shoulder affected individuals answering yes to at least one of two questions ('Do you have a sense
138	of shoulder instability?' and 'Have you ever had a shoulder injury?') were eligible for a clinical
139	shoulder examination performed by the study coordinator. The shoulder affected individuals were
140	then included if they present with at least one positive clinical shoulder test out of the following;
141	apprehension, relocation, surprise, load-and-shift, sulcus sign or Gagey. Individuals with normal
142	shoulders were recruited through public advertisements followed by a telephone interview and
143	included if they present with no self-reported shoulder pathology or complaints. In general, any
144	individuals with prior shoulder surgery were excluded. In the actual test phase, individuals
145	completed a short questionnaire with basic demographic details (age, gender, weight, height), in
146	addition to the following: pain level during rest and activity (numeric pain rating scale, NPRS), ²⁶
147	shoulder injury ever (yes/no), subjective shoulder instability (yes/no) and sports-related activity
148	(hours/week). Further, all individuals completed the patient-reported Western Ontario Shoulder
149	Instability (WOSI) questionnaire designed to measure shoulder function and quality of life in
150	patients with shoulder instability and laxity symptoms. ²⁷ The time period between each test phase
151	was approximately 2 weeks, and new subjects were included for each phase. Only the study phase
152	is reported in the current manuscript. The study was exempted for notification to the Danish

Inter-tester reliability of clinical shoulder instability and laxity tests

Health Research Study Board due to the non-invasive and non-treating study design. However,

oral and written consent was provided from all individuals and, ethical guidelines were followed according to the Helsinki declaration.²⁸ **Clinical tests** The clinical shoulder tests consisted of three shoulder joint-provoking tests for anterior shoulder instability (apprehension, relocation and surprise) besides three shoulder laxity tests (load and shift, sulcus sign and Gagey) (Table 1). ^{11,13,14,22,23,29} The apprehension test (Table 1, Figure 1) was positive if glenohumeral apprehension and/or pain were evoked during testing whereas relief of symptoms with the relocation test (Table 1, Figure 2) was regarded as a positive test. As for the apprehension, the surprise test (Table 1, Figure 3) was positive if glenohumeral apprehension and/or pain were evoked during testing. The load and shift test (Table 1, Figure 4 & 5) was rated on a four-point scale ranging from 0-3 (best to worst; 0= little glenohumeral movement; 3=humeral head moves beyond the glenoid rim and remains dislocated).¹² Also, to enhance mutual agreement between testers when performing the load-and-shift test, only the direction (anterior vs. posterior) with most glenohumeral head translation was scored. Sulcus sign (Table 1, Figure 6) was objectively measured in centimeter (continuous scale) by use of a small ruler according to previously used grading scales as follows; I (<1 cm translation), II (1 to 2.0 cm translation) or III (>2.0 cm translation).²⁹ Finally, Gagey test (Table 1, Figure 7) was rated as positive with passive abduction above 105 degrees.¹³ **Statistics** Demographics and descriptive data were tested for normality by visual inspection of histograms

#### **BMJ Open**

Inter-tester reliability of clinical shoulder instability and laxity tests

2		
4 5	176	and Shapiro-Wilk's test. Group differences (affected shoulders vs. normal shoulders) were tested
6 7	177	by Fisher's Exact test for categorical variables, whereas student's t-test and Mann-Whitney U-test
8 9 10	178	was used for parametric, respectively non-parametric distributed data.
11 12	179	Apprehension, relocation, surprise and Gagey tests were dichotomous variables whereas the load
13 14	180	and shift and sulcus sign tests were dichotomized to also allow for nominal statistics. Thus, load-
15 16 17	181	and-shift was rated positive when scored 2 or 3, while for sulcus sign a positive rating was equal to
18 19	182	measurements exceeding one centimeter. ²⁹ For transparency, data from each test is presented by
20 21 22	183	2 x 2 contingency tables besides the use of McNemar's test for significant between-tester
23 24	184	differences. Furthermore, observed and expected agreements are presented along with
25 26	185	prevalence and bias ³⁰ indexes. Reliability was evaluated with the use of Cohen's kappa ( $k$ )
27 28 29	186	coefficients including 95% confidence intervals (CI). ²⁵ Also, since kappa is sensitive to imbalances
30 31	187	in prevalence and bias (e.g. if a 50/50 distribution of positive and negative tests cannot be
32 33	188	accomplished) the use of PABAK calculation is a valid supplement to the original kappa values. ^{30,31}
34 35 36	189	By definition, PABAK reflects the ideal situation, thereby accounting for variation of prevalence
37 38	190	and bias between testers (as presented in the "real" world). ³² PABAK calculation is performed by
39 40 41	191	adjusting for high or low prevalence by computing the average of cells a and d in a cross table,
41 42 43	192	substituting this value for the actual values in those cells. Similarly, an adjustment for bias is
44 45	193	achieved by substituting the mean of cells b and c for those actual cell values. ³⁰ Finally, the
46 47 48	194	relationship for each tester between the individual tests and the classification (mutual
49 50	195	dependency) by self-reported shoulder problems was tested by Cohen's kappa ( $k$ ) coefficients and
51 52	196	the characterization of the groups was tested with Fischer's exact tests.
53 54 55	197	The classification system proposed by Landis and Koch was used to interpret reliability as follows:
56 57	198	0.00-0.20 (Slight); 0.21-0.40 (Fair); 0.41-0.60 (Moderate); 0.61-0.80 (Substantial) and 0.81-1.00
58 59		

Inter-tester reliability of clinical shoulder instability and laxity tests

(Almost perfect).³³

Statistical Package for the Social Sciences (SPSS inc., Chicago, IL, USA), version 22, was used for all

statistical analyses, with p-value of <0.05 interpreted as significant.

 **BMJ Open** 

Inter-tester reliability of clinical shoulder instability and laxity tests

# Table 1. Performance and evaluation of the clinical shoulder instability and laxity tests

#### Verbal introduction:

1. I am going to perform six clinical shoulder tests on you

2. I will ask if you experience any symptoms (apprehension and/or pain) during the three first tests.

3. I will guide you through each test

Clinical tests	Description	Placing of hands, etc.	Evaluation
Figure 1	Individuals placed supine with the shoulder being tested close to the edge of the examination table.	One hand around the wrist of the individual with the other hand gently placed in front of the shoulder.	Subjective or objective presence of apprehension and/o pain?
	Shoulder positioned in 90° of abduction, elbow flexed to 90°.	Elbow supported at the examiners thigh.	Rated as either positive or negative.
	Examiner moves the shoulder into maximal external rotation.		(Nominal, dichotome data)
Figure 2	From the end position of the apprehension test the humeral head is gently forced posteriorly	Examiners fifth finger placed close to the lateral part of the acromion with the wrist positioned anteriorly at the humeral head.	Relief of apprehension and/or pain?
	postenony	positioned antenony at the numeral nead.	Rated as either positive or negative.
			(Nominal, dichotome data)
Figure 3	From end position of the relocation test the posteriorly directed force at the humeral head is quickly removed.	Removal of examiners wrist from the anterior part of the shoulder.	Subjective or objective reproduction of apprehension and/or pain?
			Rated as either positive or

			negative.
			(Nominal, dichotome data)
	Individual placed supine with scapula resting at the examination table. Humeral head is loaded gently into the glenoid through axial pressure at the elbow.	Examiners one hand placed at the olecranon with the individual's hand positioned between the examiners torso and elbow.	Humeral head movement evaluated by the use of a four- level laxity scale.
			0 = little to almost no movemen
Figure 4	Anterior load-and-shift test: Shoulder positioned in the scapular plane in	Anterior load-and-shift: Examiners hand placed on top of the shoulder with the	1 = humeral head moves up ont the glenoid
	90° of abduction with elbow flexed. Humeral head gently shifted in anterior direction.	fingers on the backside of the glenohumeral head to move it anteriorly.	2 = humeral head moves beyond the glenoid, but relocates spontaneously once pressure is released
Figure 5	<i>Posterior load-and-shift test:</i> Shoulder positioned in the scapular plane in 20° of abduction with elbow flexed.	<i>Posterior load-and-shift:</i> Examiners wrist placed at the anterior part of the humeral head to move it posteriorly.	3 = humeral head moves beyond the glenoid and remains dislocated
	Humeral head gently shifted in posterior direction.		Rated as positive when scored 2 or 3.
			(Nominal, dichotomous data)
Figure 6	Individuals sitting upright. Shoulder in neutral position (0 degree rotation).	One hand placed above the epicondyles of humerus.	Rated as positive with measurements exceeding 1 centimeter.

# **BMJ Open**

	Examiner pulls the distal part of the humerus in a caudal direction.	Other hand is used to evaluate the subacromial distance with a ruler.	(Nominal, dichotome data)
	Distance from the top of the humeral head and the acromion is evaluated with a ruler.		
Figure 7	Individuals sitting upright.	Forearm placed on top of the shoulder girdle with the other hand placed around	Rated as positive with abductic exceeding 105 degrees.
	The shoulder girdle is stabilized by examiners forearm preventing the shoulder girdle to elevate while the individuals arm is passively moved into end range in horizontal abduction.	the elbow joint.	(Nominal, dichotomous data)
	A mirror in front of the individual is used to evaluate the shoulder abduction angle.		

### 

# **Results**

203	Characteristics of the participating individuals are presented in Table 2. Demographics
-----	-----------------------------------------------------------------------------------------

- showed no difference between the individuals with affected shoulders (n=13) and
- 205 normal shoulders (n=27). Furthermore, both groups (92 and 74%; p=0.18) were

206 relatively active with a weekly participation in sports-related activity for more than

207 four hours per week. However, as expected due to the design, affected shoulders had

significantly higher pain during activity (4.23 vs. 1.44; p=0.02), higher frequency of

209 shoulder injury ever (62% vs. <1%; p<0.001), higher subjective shoulder instability (69

210 vs. 11%; p<0.001) and worse total WOSI score (506 vs. 136; p=0.001) (Table 2).

## **Table 2.** Study phase. Participant characteristics.

	Affected shoulders (n=13)	Normal shoulders (n=27)	P-value
Sex (women/men)	8/5	21/6	0.28
Age (years) mean (SD)	28 (9)	29 (7)	0.72
Weight (kg)* mean (SD)	71.0 (12.8)	74.9 (23.4)	0.59
Height (cm) mean (SD)	174.0 (8.6)	173.4 (7.9)	0.82
Pain, rest (NRS 0-10) mean (SD)	1.08 (1.44)	0.41 (1.15)	0.12
Pain, activity (NRS 0-10) mean (SD)	4.23 (2.92)	1.44 (2.12)	<0.05
Shoulder injury ever, n (%)	8 (62)	1 (4)	<0.001
Subjective shoulder instability, n (%)	9 (69)	3 (11)	<0.001
Sports-related activity (>4 hours/week), n (%)	12 (92)	20 (74)	0.18
WOSI domains, mean (SD)			
- Physical symptoms (0-1000)	225 (165)	60 (78)	<0.05
- Sports, recreation, work (0-400)	103 (93)	24 (47)	<0.05
- Lifestyle (0-400)	58 (57)	13 (21)	<0.05
- Emotions (0-300)	121 (94)	39 (49)	<0.05
WOSI total score (0-2100) mean (SD)	506 (362)	136 (174)	< 0.001

## **BMJ Open**

Inter-tester reliability of clinical shoulder instability and laxity tests

- 216 Prevalence of positive tests was especially low for the load-and-shift test (table 3), and
  - 217 significant between-tester differences were found for relocation and sulcus sign tests
  - 218 (p=0.021) (not shown in tables).

# **Table 3.** Contingency tables with findings from tester A and B.

Α

No

Yes

Apprehe	nsion	Α				
		Yes	No			
в	Yes	14	4			
В	No	3	19			

Yes

No

Load-and-shift

В

Relocation		ŀ	4
		Yes	No
	Yes	6	2
В	No	8	24

Sulcus	;	4	4
		Yes	No
	Yes	7	1
В	No	9	23

Surprise			4
		Yes	No
	Yes	14	4
В	No	3	19

Gagey			4
		Yes	No
	Yes	8	3
В	No	1	28

Reliability varied between k: 0.39-0.73 (95% CI: 0.00-1.00), indicating fair (relocation; k 0.39), moderate (load-and-shift, sulcus sign; k 0.43 and 0.48) and substantial (apprehension, surprise, Gagey; k 0.65-0.73) reliability (Table 4). The prevalence index of all six tests ranged from 0.05-0.44, (lowest for load-and-shift, relocation and sulcus; 0.05, 0.28 and 0.30), whereas the bias index ranged from and 0.03-0.20 (highest for relocation and sulcus). PABAK improved reliability for relocation, load-and-shift, sulcus sign and Gagey test, now corresponding to moderate (relocation and sulcus sign; k 0.50), substantial (Gagey; k: 0.80) and almost perfect (load and shift; k: 0.90) reliability (Table 4). 

Inter-tester reliability of clinical shoulder instability and laxity tests

	Observed	Expected	Prevalence	Bias	Карра	PABAK
	agreement	agreement	index	index	(95% CI)	
Apprehension	0.83	0.51	0.44	0.03	0.65 (0.38; 0.85)	0.65
Relocation*	0.75	0.59	0.28	0.15	0.39 (0.07; 0.68)	0.50
Surprise	0.83	0.51	0.44	0.03	0.65 (0.38; 0.85)	0.65
Load and Shift	0.95	0.90	0.05	0.05	0.48 (0.00; 1.00)	0.90
Sulcus sign*	0.75	0.56	0.30	0.20	0.43 (0.17; 0.72)	0.50
Gagey	0.90	0.62	0.40	0.05	0.73 (0.46; 0.94)	0.80

# Table 4. Reliability of six clinical shoulder instability and laxity tests.

*Significant inter-tester differences, CI Confidence intervals, PABAK prevalence-and-bias-adjusted
 kappa

237 The *k* values for mutual dependency indicate that apprehension, relocation and

238 surprise tests for both examiners were the most frequently used tests for

239 characterizing self-reported shoulder problems (Table 5). This was further confirmed

240 by the significant group difference in the presence of positive tests.

**Table 5.** Kappa statistics for mutual dependency of the individual tests and self-

242 reported shoulder problems for each tester.

	Observed	Expected	Prevalence	Карра	p-value
	agreement	agreement	index		(AS/NS)
Apprehension					
Examiner A	0.75	0.53	0.38	0.47	0.003
Examiner B	0.68	0.52	0.40	0.33	0.04
Relocation*					
Examiner A	0.83	0.55	0.35	0.61	< 0.001
Examiner B	0.73	0.63	0.25	0.27	0.08
Surprise					
Examiner A	0.75	0.53	0.38	0.47	0.003
Examiner B	0.68	0.52	0.40	0.33	0.04
Load and Shift					
Examiner A	0.75	0.65	0.20	0.29	0.03
Examiner B	0.70	0.67	0.18	0.10	0.33
Sulcus sign*					
Examiner A	0.63	0.61	0.28	0.05	0.52
Examiner B	0.63	0.54	0.38	0.19	0.19
Gagey					
Examiner A	0.70	0.60	0.28	0.26	0.10
Examiner B	0.70	0.58	0.30	0.29	0.08

AS affected shoulders; NS normal shoulder; *Significant inter-tester differences

Discussion

### **BMJ Open**

Inter-tester reliability of clinical shoulder instability and laxity tests

244	The inter-tester reliability across the selected six clinical shoulder instability and laxity
245	tests ranged from fair to substantial. Use of PABAK calculations improved inter-tester
246	reliability to substantial and almost perfect across most tests, except for the relocation
247	and sulcus sign tests. The tests most often used to characterize self-reported shoulder
248	instability and laxity (mutual dependency) were apprehension, relocation and surprise
249	tests.
250	
251	The inter-tester reliability for the apprehension, relocation and surprise was higher
252	than, or equivalent, to previously reported results of these tests using the same
253	diagnostic procedures (apprehension and/or pain). ²³ Specifically for the apprehension
254	and surprise test, the present k values were somewhat higher than previously reported
255	(0.65 vs. 0.44-0.45). The reason for this may be that the current study included both
256	affected and normal shoulder individuals as opposed to only including symptomatic
257	subjects. ²³ This may have increased subject variation, known to affect reliability
258	positively. Also, PABAK calculations did not affect the overall reliability of the
259	apprehension and surprise tests, probably due to an optimal prevalence index of
260	positive and negative tests (close to 0.50). For the relocation test, the existing inter-
261	tester reliability was almost similar to previously reported ( $k$ 0.39 vs. 0.44), ²³ however
262	lower. Apparently, the primary reason for the current poor reliability in relocation was
263	presence of systematic bias between testers, as indicated by the actual raw data

264 (contingency tables) and the statistical significant inter-examiner difference. Likewise,

265 systematic bias between testers was also found for the sulcus sign test in the present

Inter-tester reliability of clinical shoulder instability and laxity tests

0.44	
266	study. Hypothetically, this may be explained by inter-tester variability in the force
267	produced to translate the humeral head in posterior (relocation test) or inferior (sulcus
268	sign test) direction, in the current study. This is, however, only speculative and further
269	studies are needed to standardize these tests.
270	Reliability for the present sulcus sign test was slightly lower than previously reported (k
271	0.39 vs. >0.50). ^{22,23} The discrepancy in reliability observed may be due to the use of
272	different test positions with participants in the current study sitting upright ²⁹ as
273	opposed to a previous lying test position. ²² However, due to the presence of
274	systematic bias in both the relocation and sulcus sign test, PABAK did not affect the
275	overall reliability much.
276	For the load-and-shift test, reliability was relatively low (including wide CI). This may be
277	due to the current low prevalence index below 50%, which is the optimum prevalence
278	in reliability studies. ²⁵ However, the present dichotomous rating of the load-and-shift
279	test (meaning that only individuals that could either subluxate or dislocate the
280	shoulder during testing was deemed positive) may have influenced the prevalence of
281	positive tests largely. Therefore, using PABAK, reliability of the load-and-shift test
282	improved considerably (from moderate to almost perfect). Nevertheless, different
283	statistics (kappa vs. Intra-class-Correlation Coefficients), different scoring systems
284	(dichotomous rating (positive yes/no) vs. four point grading scale (0-3) ²³ and inclusion
285	of shoulder asymptomatic athletes only ²² make comparison across studies difficult.
286	Finally, reliability of the Gagey test was substantial and PABAK did not affect reliability
287	much due to a nearly optimal prevalence and low bias between testers. Unfortunately,
288	there is no other study to compare with.

Page 19 of 33

#### **BMJ Open**

289	Although the current study was designed to investigate reliability, and not diagnostic
290	accuracy, the mutual dependency between the individual tests and self-reported
291	shoulder problems was analysed. It revealed that the tests most often used to
292	characterize those with and without self-reported shoulder instability and laxity
293	(mutual dependency) proved to be the apprehension, relocation and surprise tests.
294	This may indicate a relationship between these tests, which may come as no surprise,
295	since these tests are a continuum of the apprehension test and, thus, closely related. ⁹
296	Nevertheless, for clinicians it is of interest to specify the clinical characteristics of
297	patients with self-reported shoulder problems. Thus, the current prevalence of
298	positive tests may mirror these characteristics of the included patients and should be
299	taken into consideration in the management of such musculoskeletal conditions. It is
300	recommended to develop and test the clinimetric properties of a more comprehensive
301	test battery for evaluating such self-reported shoulder problems. No prior studies were
302	found addressing mutual dependency of the current tests for shoulder instability and
303	laxity, which hampers comparison.
304	The present study has several limitations. Firstly, the lack of standardized
305	measurement of the amount of force exerted by the two testers during especially the
306	relocation and sulcus sign test may have limited the current inter-tester reliability.
307	Further standardization in both performance and interpretation is therefore needed.
308	Also, the current study did not randomize the order of the clinical tests. However, we
309	do not believe this to have biased the reliability of the data, since the same order was
310	used for both testers.
311	Secondly, no valid gold standard for classifying shoulder instability and laxity was used.

#### Inter-tester reliability of clinical shoulder instability and laxity tests

312	To compensate for this, self-reported confirmation of shoulder-related problems was
313	applied, but this was not reflected in the current WOSI scores, which were relatively
314	low. Lack of a more objective gold standard may have decreased diagnostic accuracy,
315	however not reliability, which was the primary objective of the present study. Also, in
316	the group with normal shoulders, one individual reported to have had a previous
317	shoulder injury and three individuals reported subjective shoulder instability, which
318	does not comply with the inclusion criteria for being regarded as shoulder healthy in
319	the current study. At the clinical session, a self-reported questionnaire was completed
320	regarding demographic data and historical information. Apparently, in the baseline
321	questionnaire three shoulder healthy individuals answered yes to perceiving instability
322	in their shoulder and one had had a previous shoulder injury, even though they all had
323	reported no shoulder trouble during the telephone inclusion interview. However, as
324	depicted in table 2, WOSI and pain scores in the group with normal shoulders seem
325	not to be influenced severely by these four individuals. Also, re-calculations of
326	demographic data and mutual dependency with the revised classification into
327	affected/normal shoulders did not change the mutual dependency of the most
328	frequently used tests for classification into affected/normal shoulders, and neither was
329	kappa and demographics affected (data not shown).
330	Thirdly, due to a relative short recruitment period besides difficulties in recruiting
331	subjects with shoulder instability and laxity only thirteen subjects with an affected
332	shoulder were included. Naturally, this also affected the prevalence of positive and
333	negative test findings meaning that the prevalence of 0.50, as recommended in
334	reliability studies, ²⁵ in all six tests was not accomplished. However, to overcome this,

### **BMJ Open**

Inter-tester reliability of clinical shoulder instability and laxity tests

335	PABAK calculations was used and reported along with kappa, to show transparently
336	how data would have been with equal distributions of positive and negative test
337	results. Nevertheless, future studies should use inclusion criteria of more established
338	shoulder instability and laxity conditions, and, if possible, verified by objective criteria
339	as surrogate for a gold standard of shoulder instability and laxity. This may optimize
340	prevalence as well as diagnostic accuracy in studies where this is a further aim.
341	The strengths of the study are the use of standardized procedures (including blinding
342	to patient status and the use of a three-phased protocol for conducting reliability
343	studies). Also, presentation of raw data, using contingency tables, along with kappa
344	and PABAK values, increases data transparency and improves interpretation of the
345	reliability study.
346	Conclusions
347	This study showed acceptable inter-tester reliability for four of six clinical shoulder
348	instability and laxity tests in relatively sports active individuals with and without self-
349	reported shoulder problems. However, relocation and sulcus sign tests need further
350	standardisation before being recommended for use in clinical practice. Based on the
351	frequency and mutual dependency of the current tests, especially apprehension and
352	surprise tests seem important in the characterisation of self-reported shoulder
353	problems. Future research on the validity of tests for shoulder instability and laxity is
354	needed.

Inter-tester reliability of clinical shoulder instability and laxity tests

357	Author statement: HE, KGI, CML and BJK conceived and designed the study. HE and
358	BHK recruited study participants and collected data. HE performed the statistical
359	analysis. HE, KGI, CML, BJK interpreted the results. HE drafted the manuscript with KGI,
360	CML, BHK and BJK contributing to the manuscript. All authors have read and approved
361	the final manuscript. HE is the guarantor.
362	
363	Consent for publication: The depicted individuals in Table 1 have provided written
364	consent for publication of the pictures.
365	
366	Funding: This work was supported by Region of Southern Denmark's Research fund
367	and The Danish Rheumatism Association.
368	
369	Competing interest: None declared
370	
371	Data sharing statement: No additional data are available
372	

		Inter-tester reliability of clinical shoulder instability and laxity tests	
1 2			
2			
4	373	References	
5	374	1. Luime, J. J., B. W. Koes, I. J. Hendriksen, A. Burdorf, A. P. Verhagen, H. S. Miedema	
6	375	and J. A. Verhaar. 2004. 'Prevalence and incidence of shoulder pain in the general	а,
7	376	population; a systematic review', <i>Scandinavian Journal of Rheumatology</i> , 33: 73-81.	
8 9	370	population, a systematic review, scunumuvium sournar of kneumatology, 55.75-61.	
10	378	2. Farrar, N. G., J. J. Malal, J. Fischer, and M. Waseem. 2013. 'An overview of	
11	370	shoulder instability and its management', Open Orthopaedics Journal, 7: 338-46.	
12	379	shoulder instability and its management, Open Orthopaedics Journal, 7. 558-46.	
13	381	2 Coss T. D. 1099 'Antoriar glanahumaral instability' Orthonodics, 11:97 05	
14	382	3. Goss, T. P. 1988. 'Anterior glenohumeral instability', <i>Orthopedics</i> , 11: 87-95.	
15 16		A Compress K L M L Duffey T M DeBererdine D D Stenemen C L lenge and C	,
17	383	4. Cameron, K. L., M. L. Duffey, T. M. DeBerardino, P. D. Stoneman, C. J. Jones, and E	5.
18	384	D. Owens. 2010. 'Association of generalized joint hypermobility with a history of	
19	385	glenohumeral joint instability', <i>J Athl Train,</i> 45: 253-8.	
20	386	E Chabal I. I. I. Shar M. D. Malfan, and D. D. Mitalan. 2010. [Consultant	
21	387	5. Chahal, J., J. Leiter, M. D. McKee, and D. B. Whelan. 2010. 'Generalized	
22 23	388	ligamentous laxity as a predisposing factor for primary traumatic anterior	
23	389	shoulder dislocation', J Shoulder Elbow Surg, 19: 1238-42.	
25	390		
26	391	6. Dodson, C. C., and F. A. Cordasco. 2008. 'Anterior glenohumeral joint	
27	392	dislocations', Orthop Clin North Am, 39: 507-18, vii.	
28	393		
29 30	394	7. Jaggi, A., and S. Lambert. 2010. 'Rehabilitation for shoulder instability', Br J	
31	395	Sports Med, 44: 333-40.	
32	396		
33	397	8. Wilk, K. E., L. C. Macrina, and M. M. Reinold. 2006. 'Non-operative rehabilitation	
34	398	for traumatic and atraumatic glenohumeral instability', N Am J Sports Phys Ther, 1:	
35	399	16-31.	
36 37	400		
38	401	9. Hegedus, E. J., A. P. Goode, C. E. Cook, L. Michener, C. A. Myer, D. M. Myer, and A	۱.
39	402	A. Wright. 2012. 'Which physical examination tests provide clinicians with the	
40	403	most value when examining the shoulder? Update of a systematic review with	
41	404	meta-analysis of individual tests', <i>Br J Sports Med</i> , 46: 964-78.	
42	405		
43 44	406	10. Ann Ganestam, Mikkel L. Attrup, Per Hølmich and Kristoffer W Barfoed. 2015.	
45	407	'Evaluation of Clinical Practice of Shoulder Examination amon Ten Experienced	
46	408	Shoulder Surgeons', Journal of Orthopaedic Research and Physiotherapy, 1.	
47	409		
48	410	11. Luime, J. J., A. P. Verhagen, H. S. Miedema, J. I. Kuiper, A. Burdorf, J. A. Verhaar,	
49 50	411	and B. W. Koes. 2004. 'Does this patient have an instability of the shoulder or a	
50 51	412	labrum lesion?', JAMA, 292: 1989-99.	
52	413		
53	414	12. Tzannes, A., and G. A. Murrell. 2002. 'Clinical examination of the unstable	
54	415	shoulder', Sports Medicine, 32: 447-57.	
55	416		
56 57	417	13. Gagey, O. J., and N. Gagey. 2001. 'The hyperabduction test', J Bone Joint Surg Br,	,
57 58			
58 59			
60			
			22

1 2 3 4	
5 6 7 8	
9 10	
13 14 15 16	
11 12 13 14 15 16 17 18 19 20 21 22 23	
24	
25 26 27 28	
29 30 31 32 33	
34 35 36 37	
38 39 40 41	
42 43 44 45	
46 47 48 49	
50 51 52 53	
54 55 56 57	
58 59 60	

418	83: 69-74.
410	85. 09-74.
420	14. Lo, I. K., B. Nonweiler, M. Woolfrey, R. Litchfield, and A. Kirkley. 2004. 'An
421	evaluation of the apprehension, relocation, and surprise tests for anterior shoulder
422	instability', Am J Sports Med, 32: 301-7.
422	Instability, And Sports Wea, 32. 301-7.
423 424	15 Silliman L.E. and B. L. Hawking 1002 "Classification and physical diagnosis of
424 425	15. Silliman, J. F., and R. J. Hawkins. 1993. 'Classification and physical diagnosis of instability of the shoulder', <i>Clin Orthop Relat Res</i> : 7-19.
423	instability of the shoulder, clin of thop keldt kes. 7-19.
420 427	16. Cavallo, R. J., and K. P. Speer. 1998. 'Shoulder instability and impingement in
427	
428 429	throwing athletes', Med Sci Sports Exerc, 30: S18-25.
	17 Materia 6 A 2rd and L. D. Zuskarman 1092 (Antoxiar slanchumeral
430	17. Matsen, F. A., 3rd, and J. D. Zuckerman. 1983. 'Anterior glenohumeral
431	instability', Clin Sports Med, 2: 319-38.
432	10 Debinson C. M. J. Hauser H. Murdach F. Will and C. Craham 2000 (Exactional
433	18. Robinson, C. M., J. Howes, H. Murdoch, E. Will, and C. Graham. 2006. 'Functional
434	outcome and risk of recurrent instability after primary traumatic anterior shoulder
435	dislocation in young patients', <i>J Bone Joint Surg Am</i> , 88: 2326-36.
436	10 van Kannan D.A. T.van den Dere II. I van den Wavde D.M. Gestelein, C.D.
437	19. van Kampen, D. A., T. van den Berg, H. J. van der Woude, R. M. Castelein, C. B.
438	Terwee, and W. J. Willems. 2013. 'Diagnostic value of patient characteristics,
439	history, and six clinical tests for traumatic anterior shoulder instability', <i>J Shoulder</i>
440	Elbow Surg, 22: 1310-9.
441	
442	20. Warby, S. A., T. Pizzari, J. J. Ford, A. J. Hahne, and L. Watson. 2014. 'The effect of
443	exercise-based management for multidirectional instability of the glenohumeral
444	joint: a systematic review', J Shoulder Elbow Surg, 23: 128-42.
445	
446	21. Gibson, K., A. Growse, L. Korda, E. Wray, and J. C. MacDermid. 2004. 'The
447	effectiveness of rehabilitation for nonoperative management of shoulder
448	instability: a systematic review', J Hand Ther, 17: 229-42.
449	22 June A. C. C. Listers K. Kaster and K. D. Const. 1000. Hoter and Listersheering
450	22. Levy, A. S., S. Lintner, K. Kenter, and K. P. Speer. 1999. 'Intra- and interobserver
451	reproducibility of the shoulder laxity examination', Am J Sports Med, 27: 460-3.
452	22 Territor A. A. De lines M. Cellence and C. A. Marsell. 2004. Increase of a
453	23. Tzannes, A., A. Paxinos, M. Callanan, and G. A. Murrell. 2004. 'An assessment of
454	the interexaminer reliability of tests for shoulder instability', J Shoulder Elbow
455	Surg, 13: 18-23.
456	
457	24. Kottner, J., L. Audige, S. Brorson, A. Donner, B. J. Gajewski, A. Hrobjartsson, C.
458	Roberts, M. Shoukri, and D. L. Streiner. 2011. 'Guidelines for Reporting Reliability
459	and Agreement Studies (GRRAS) were proposed', J Clin Epidemiol. 64 (1): 96-106.
460	
461	25. Patijn J, Remvig L. 2007. "Reproducibility And Validity 2007-Protocol Formats
462	For Diagnostics Procedures In Manual/Musculoskeletal Medicine." In.

## **BMJ Open**

463	
464	26. Downie, W. W., P. A. Leatham, V. M. Rhind, V. Wright, J. A. Branco, and J. A.
465	Anderson. 1978. 'Studies with pain rating scales', Annals of the Rheumatic Diseases,
466	37: 378-81.
467	
468	27. Kirkley, A., S. Griffin, H. McLintock, and L. Ng. 1998. 'The development and
469	evaluation of a disease-specific quality of life measurement tool for shoulder
470	instability. The Western Ontario Shoulder Instability Index (WOSI)', Am J Sports
471	Med, 26: 764-72.
472	
473	28. World Medical Association Declaration of Helsinki: ethical principles for
474	medical research involving human subjects'. 2000. <i>JAMA</i> , 284: 3043-5.
475	
476	29. Bahk, M., E. Keyurapan, A. Tasaki, E. L. Sauers, and E. G. McFarland. 2007.
477	'Laxity testing of the shoulder: a review', Am J Sports Med, 35: 131-44.
478	20. Circular and C. C. Mainly 2005. The large statistic is sufficient discussed
479	30. Sim, J., and C. C. Wright. 2005. 'The kappa statistic in reliability studies: use,
480 481	interpretation, and sample size requirements', <i>Phys Ther</i> , 85: 257-68.
481 482	21 Durt T. J. Dichon and J. D. Carlin 1002 'Dias provalance and kanna' J. Clin
482 483	31. Byrt, T., J. Bishop, and J. B. Carlin. 1993. 'Bias, prevalence and kappa', <i>J Clin Epidemiol</i> , 46: 423-9.
405 484	Epidermol, 40. 425-9.
485	32. Hoehler, F. K. 2000. 'Bias and prevalence effects on kappa viewed in terms of
486	sensitivity and specificity', <i>J Clin Epidemiol</i> , 53: 499-503.
487	schallwry and specificity, 5 cim epidermol, 55. 455 565.
488	33. Landis, J. R., and G. G. Koch. 1977. 'The measurement of observer agreement for
489	categorical data', <i>Biometrics</i> , 33: 159-74.

#### Inter-tester reliability of clinical shoulder instability and laxity tests

1
2
3
4
5
6
7
8
9
10
11
12
13
14
16
17
18
19
20
21
22
2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 8 9 10 11 2 3 4 5 8 9 10 11 2 3 4 5 8 9 10 11 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
24
25
26
27
28
29
30
<ul> <li>31</li> <li>32</li> <li>33</li> <li>34</li> <li>35</li> <li>36</li> <li>37</li> <li>38</li> </ul>
32
33
34
35
30
31 20
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59 60
60

1

490

491 492

493 494

495 496

497 498

499 500

501 502

503 504 **Figure legends** 

Figure 1. Apprehension

Figure 4. Load and shift – anterior direction

Figure 5. Load and shift – posterior direction

Figure 2. Relocation

Figure 6. Sulcus sign

Figure 7. Gagey

Figure 3. Surprise

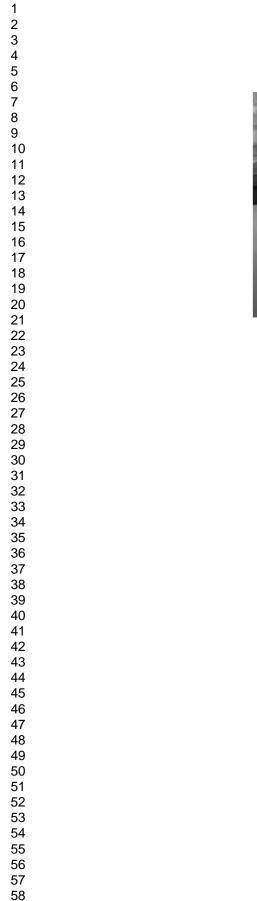





Table 1, Figure 1 26x19mm (300 x 300 DPI)




Table 1, Figure 2 26x19mm (300 x 300 DPI)



Table 1, Figure 3 26x21mm (300 x 300 DPI)





Table 1, Figure 4

30x19mm (300 x 300 DPI)

1 2 3 4	
2 3 4 5 6 7 8	
9 10 11 12 13	
14 15 16 17	
19 20 21 22	
$9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 9 \\ 21 \\ 22 \\ 24 \\ 25 \\ 27 \\ 28 \\ 30 \\ 31 \\ 32 \\ 33 \\ 35 \\ 37 \\ 38 \\ 37 \\ 38 \\ 37 \\ 38 \\ 38 \\ 38$	
28 29 30 31	
32 33 34 35 36	
39 40	
41 42 43 44 45	
46 47 48 49 50	
51 52 53 54	
55 56 57 58 59	
60	



Table 1, Figure 5 28x23mm (300 x 300 DPI)



Table 1, Figure 6 20x28mm (300 x 300 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml



Table 1, Figure 7 29x17mm (300 x 300 DPI)