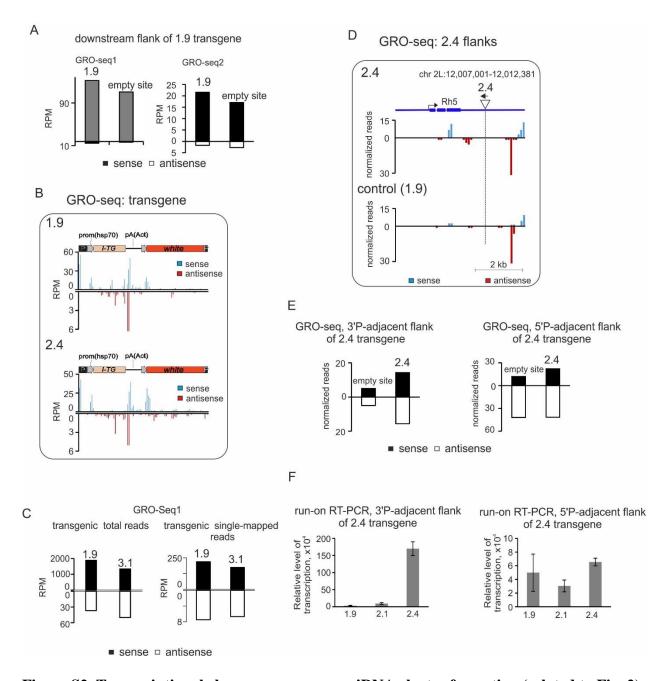
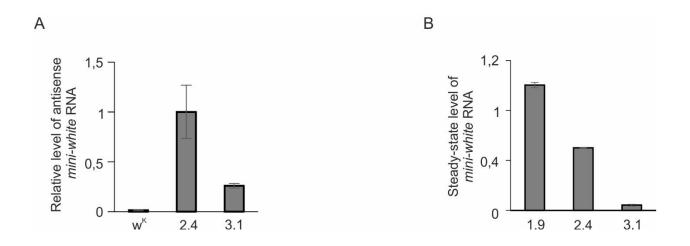
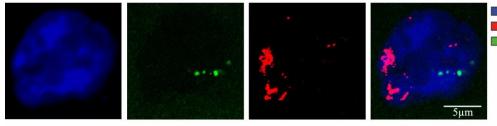

Supplementary materials for


Transcriptional and chromatin changes accompanying *de novo* formation of transgenic piRNA clusters

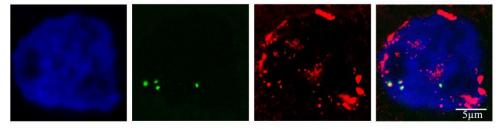
Natalia Akulenko, Sergei Ryazansky, Valeriya Morgunova, Pavel A. Komarov, Ivan Olovnikov, Chantal Vaury, Silke Jensen and Alla Kalmykova

Figures S1-S5 and Table S1

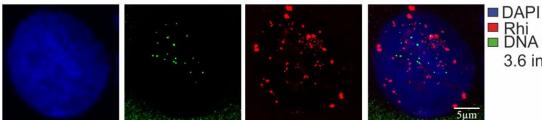



Figure S2. Transcriptional changes accompany piRNA cluster formation (related to Fig. 2). (A) GRO-seq read counts at 9 kb region downstream of 1.9 insertion site in 1.9 and 3.1 (GRO-seq1) and in 1.9 and 2.4 (GRO-seq2) strains. (B) Mapping of normalized (RPM) GRO-seq reads to the transgene calculated for 100 bp window size in strong (2.4) and in weak (1.9) strains (blue – sense; pink– antisense; no mismatches allowed). Schema of transgene is shown above. (C) Normalized numbers of transgenic small RNAs mapped to 1.9 and 3.1 transgenes. Total transgene-specific small RNAs (to the left) and single-mapped reads (to the right) are shown. (D) Normalized GRO-seq densities mapping to the 2.4 transgene insertion site (indicated by triangle

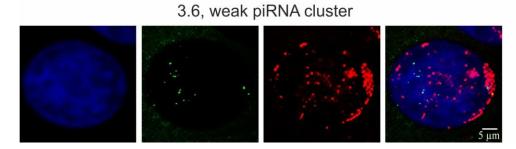
above the plots) in control (1.9) and in 2.4 strains (no mismatches allowed). Schema of genomic region is shown above; genome coordinates are given according to Drosophila R5 release. (E) Normalized GRO-seq read counts (RPM) at ~4 kb region upstream and ~2 kb region downstream of 2.4 insertion site in 1.9 ("empty" site) and 2.4 (transgene insertion) strains. (F) The level of nascent RNA from 2.4 3'P-flanking region is higher in ovaries of 2.4 strain as compared to control strains. RT-qPCR was done on ovarian run-on RNAs from indicated strains. Random hexamers were used for reverse transcription priming. Relative RNA levels normalized to rp49 are shown. Error bars represent SEM of three technical replicates.


Figure S3. Expression analysis of I-TG transgenes. (A) Antisense *mini-white* RNA is not revealed in ovaries of w^{K} . Expression analysis of antisense *mini-white* RNA in ovaries of w^{K} , 3.1 and 2.4 strains using strand-specific RT-qPCR. (B) Steady-state level of transgenic *mini-white* detected by RT-qPCR using random primers and normalized to *rp49* expression level is higher in strain 1.9 than in 3.1 or 2.4.

control, wK



DAPI
Rhi
DNA probe, 2.4 insertion region


2.4, strong piRNA cluster

control, wK

e anna an Albard an A

DAPI
Rhi
DNA probe, 3.6 insertion region

Figure S4. Strong transgenic piRNA clusters show association with Rhino foci (related to Fig. 3). Rhi immunostaining (red) in combination with DNA FISH with probes corresponding

to 2.4 and 3.6 insertion regions was done on ovaries of w^{K} , 2.4 and 3.6 strains. Nurse cell nuclei at stage X of oogenesis are shown. DNA is stained by DAPI (blue). Bars, 5 µm.

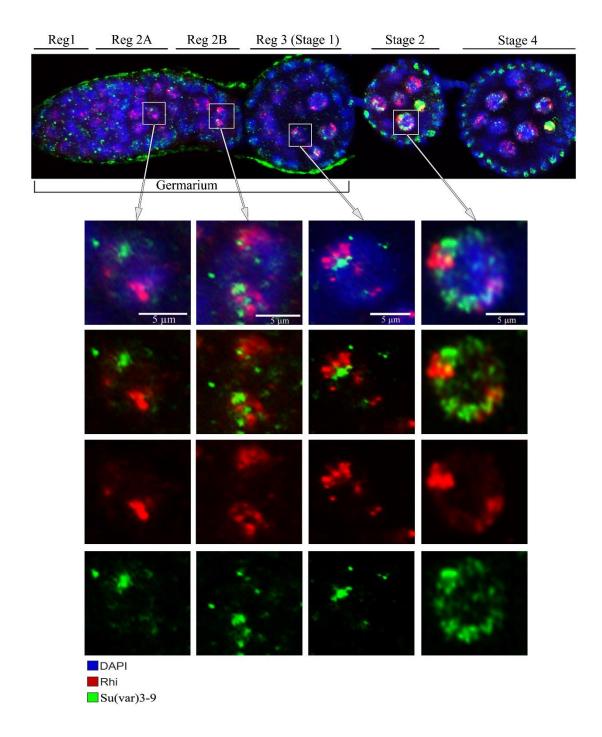


Figure S5. Rhi does not associate with histonemethyltransferase Su(var)3-9 during oogenesis. Ovaries of w^K strain were immunostained for Rhi (red) and Su(var)3-9 (green). Nuclei of germ cyst cells and nurse cells at indicated stages of oogenesis are shown. DNA is stained by DAPI (blue).

name/target	orientation	amplification region	sequence
rp49	forward		AAACGCGGTTCTGCATGAG
	reverse		GACGCTTCAAGGGACAGTATCTG
2.4_ins_up1	forward	2.4 empty site (Fig1A); region a (Fig 1B)	GTCTCAATGCTTCCGTGCCTG G
	reverse		CTCCTGGCCGCCGGATGTTC
2.4_claster	forward	region e (Fig1B),Fig.S2F	ACATTACCAGTTTGCCATCTCGC
	reverse		GCCATCATCATCTGCCATCG
2.1_ins_claster	forward	2.1 empty site (Fig 1A)	GACCGCCGAACTGGAGGATT
	reverse		CGAAGCGAGTGGCAAAGAAA
1.9_ins_claster	forward	1.9 empty site (Fig1A)	ATTTGAGTTTCTGTCCCACTGTGG
	reverse		TGTTGGGAGAGAGAGAATAGAGATAAGGC
67.2.1_ins	forward	67.2.1 empty site(Fig1A)	GAGCGATATAAAGAGAGTGGCAAAGA
	reverse		TTGTGGGTGCTCTCCAATGC
3.6 empty site	forward	3.6 empty site (Fig 1A)	TCCCCAGAGAGAAAACCCACG
	reverse		GCTCGTTCGGCTCTCGGC
5'P	forward	5'P (after insertion, Fig 1A) region d (Fig 1B)	AGAGGAAAGGTTGTGTGCGGAC
	reverse		CTGCGAATCATTAAAGTGGGTATCA
<i>Mini-white</i> intr	forward	region c (Fig1B)	ATTCTGGTAGCTGTGCTCGC
	reverse		GTGCATCTAGCTAGAGTCGAGC
Transgenic mini-white	forward	transgenic mini-white (FigS3B)	TGCAACTACTGAAATCAACCAAGA
	reverse		GCACTTTGTGTTTAATTGATGGCG
exon 6 of white gene	forward	strand-specific RT -qPCR of mini-white (FigS2A)	GCTGCCAGTTTTTATGAGGGAGG
	reverse	mini-white (FigS2A)	CGCCAGGCAGTTGAAGAAGTG
3'P	forward	region b (Fig2B)	TAATTCAAA CCCCACGGACA
	reverse		ATAACATAAGGTGGTCCCGTC
3.6 flank1	S	3.6 insertion region,	CCGCTAGACCACGTAACGC
	as	probe for DNA FISH	CGGGCACTATCTGAGCGG
3.6 flank2	S	3.6 insertion region,	CTCAGACCGGACCTCTACCAG
	as	probe for DNA FISH	GCTTCGTGGACAGCGCTTC
antisense mini-	RT primer	For detection of antisense	CATGATCAAGACATCTAAAGGC
white	PCR-s	mini-white transcripts	CATGATCAAGACATCTAAAGGC
	PCR-as	(Fig.2F)	GTGCATCTAGCTAGAGTCGAGC
2.4 ins up	S	For RT -PCR of 2.4 3' flank	GGTGGGTAGATCGAGTCCGGATACC
	as	(<i>Fig. S2F</i>)	GCAAGAAGAAGCCCCACTTTGCG

Table S1. Primers used in the study (5' to 3').