
Modeling crypt dynamics. This part of the Supplemental Material
describes in more detail the model of stem cell and non-stem cell crypt dy-
namics used in the simulations summarized in the article. The biological
motivation for the model is given in Potten and Loeffler (1) and Potten (2)
for example.

A crypt contains N stem cells after every division. The cell replication
mechanism has the following form. Label the stem cells in a given generation
as 1,2,. . . ,N , and let νi denote the number of stem cell daughter cells born
to stem cell i, i = 1, 2, . . . , N . Because we assume a constant number of
stem cells after each replication, the νi are not independent. To specify
their joint distribution, we use a model that arose originally in population
genetics [Karlin and McGregor (3); Cannings (4)]. Let X1, X2, . . . , XN be
independent random variables with distribution

Q(i) = IP(Xj = i), i = 0, 1, 2. (1)

The joint distribution of ν1, . . . , νN is then given by the joint distribution
of X1, . . . , XN , conditional on X1 + · · · + XN = N . We assume that the
same distribution applies in different cell divisions, the offspring numbers in
different divisions being independent of one another.

Each of the N cells that are not designated to be stem cells after a given
division initiate independent branching processes with offspring distributions
that may vary with time since initiation, and all of whose progeny cells are
also non-stem cells. Each such branching process goes extinct after at most a
fixed number (h) of generations after initiation, because the oldest non-stem
cells are lost to maintain an approximately constant total number of cells per
crypt.

To simulate the evolution of a population of crypt cells replicating in this
way, we have to simulate from the joint distribution of the νi. This can be
done as follows. Denote the l-fold convolution of Q by

P (l, i) = IP(X1 + · · ·+ Xl = i), i = 0, 1, 2, . . . . (2)

The conditional distribution of νj+1 given ν1, . . . , νj is given by

IP(νj+1 = ij+1 | νj = ij, . . . , ν1 = i1) =
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=
IP(νj+1 = ij+1, νj = ij, . . . , ν1 = i1)

IP(νj = ij, . . . , ν1 = i1)

=
IP(Xj+1 = ij+1, Xj = ij, . . . , X1 = i1 |

∑N
r=1 Xr = N)

IP(Xj = ij, . . . , X1 = i1 |
∑N

r=1 Xr = N)

=
IP(Xj+1 = ij+1, Xj = ij, . . . , X1 = i1)IP(

∑N
r=j+2 Xr = N − i1 − · · · − ij+1)

IP(Xj = ij, . . . , X1 = i1)IP(
∑N

r=j+1 Xr = N − i1 − · · · − ij)

=
IP(Xj+1 = ij+1)IP(

∑N
r=j+2 Xr = N − i1 − · · · − ij+1)

IP(
∑N

r=j+1 Xr = N − i1 − · · · − ij)

=
Q(ij+1) P (N − j − 1, N − i1 − · · · − ij+1)

P (N − j, N − i1 − · · · − ij)
. (3)

The joint law of ν1, . . . , νN is then given by

IP(ν1 = i1, ν2 = i2, . . . , νN = iN) =

= IP(ν1 = i1)
N−1∏
j=1

IP(νj+1 = ij+1 | νj = ij, . . . , ν1 = i1)

=
N−2∏
j=0

Q(ij+1) P (N − j − 1, N − i1 − · · · − ij+1)

P (N − j, N − i1 − · · · − ij)
. (4)

Thus the numbers ν1, . . . , νN in a given generation may be simulated recur-
sively from Eq. 4 by simulating observations from the distribution given in
Eq. 3 in the order j = 0, 1, . . . , N−2, and noting that νN = N−ν1−· · ·−νN−1.
The convolution probabilities P (l, i) can be calculated in the usual way via

P (l + 1, i) =
2∑

r=0

Q(r)P (l, i− r),

with P (1, i) ≡ Q(i). These can be computed once at the start of the simula-
tion, and an observation from the distribution in Eq. 3 can then be simulated
easily.

To model the evolution of the methylation patterns in the cells, we con-
sider mutations arising at a particular CpG island as the region containing
the island replicates through the cell population. We keep track of a single
copy of the region in each cell for X chromosomes and two copies of the region
in each cell for autosomes. The process begins with N cells containing no
methylated sites in the island of interest. At each division, the CpG islands
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in each stem cell and non-stem cell are allowed to mutate. We chose the
simplest model in which each site flips from methylated to unmethylated (or
vice versa) with probability µ, independently for each site in the island.

Because we know the age of each individual in our data, we know how
many divisions (g) are necessary, assuming one division per day. The method
outlined above is then used to simulate the methylation patterns in a pop-
ulation of crypt cells (containing both stem and non-stem cells) that has
evolved for g generations. We note that if non-stem cell lineages have a
maximal life time of h generations, we do not need to simulate the non-stem
cells until generation g − h. Further details of the mutation model for CpG
islands appear below. A simulation run results in a population of C cells,
and therefore 2C CpG islands (when considering an autosomal locus) or C
(when considering an X-chromsome locus). From that population of islands,
a random sample is taken and the statistics of the methylation patterns in
the sample are recorded.

In the simulations, we used a variety of different parameter values. The
mutation rate µ = 2 × 10−5, and the cell division distribution in Eq. 1 is
given by

Q(0) = Q(2) = (1− p)/2, Q(1) = p,

where 0 ≤ p ≤ 1. For the immortal cell line model, p = 1. Values of p for the
niche model varied, as described in Table 3. The way in which the lineage
initiated by a non-stem cell replicates also depends on N , as described in
Table 3. Our analysis is constrained by the fact that the total number of
cells in a crypt is about 2,000; in the simulations described in the article, the
crypts always contain 2,048 cells. The last three divisions mentioned in Table
3 are really not divisions but reflect the observation that in a steady-state
process the oldest non-stem cells no longer divide but stay around for awhile
before exiting the crypt.

Time to the most recent common ancestor, MRCA, of stem cells.
The distribution of the time to MRCA stem cell of a group of N stem cells
evolving according to our model was found by a coalescent simulation [King-
man (5); Tsao et al. (6)]. First, the number of distinct ancestors, A1, of
N stem cells was found from a simulation of ν ≡ (ν1, . . . , νN). From an
independent simulation of ν, the number A2 of distinct parents of a random
sample of size A1 of the N was found. If A2 > 1, the process was repeated,
producing a series of ancestral numbers A1, . . . , At−1 > 1, At = 1. This sim-
ulation returns a value of t for the time to the MRCA of the population of
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Table 3: Parameters in the simulations.

N p non-stem cell divisions∗

4 0.98 (0,0,1) 7; (0,1,0) 3
16 0.95 (0,0,1) 5; (0,1,0) 3
64 0.95 (0,0,1) 3; (0,1,0) 3
256 0.89 (0,0,1) 1; (0,1,0) 3
512 0.75 (0,1,0) 3

∗ The notation (p0, p1, p2) n describes the offspring
distribution, and the number n of generations
it applies for. Here, pi is the probability of a

cell division producing i copies.

N stem cells. The whole process can be repeated as many times as required
to estimate properties of the number of divisions to the MRCA.

We note that this framework provides quite a general methodology for
examining methylation patterns in CpG islands in colon crypts. For example,
the number of stem cells can be allowed to fluctuate with time (this amounts
to changing the value of N in different generations), and the distribution of
mutations in an island can be much more complicated than the one described
here. For example, it can allow the distribution of mutations in offspring cells
to depend on the current methylation pattern in the parent cell. It remains
to be seen what realistic parameter values for such models should be. We
note that because the number of cells in a crypt is quite small (≈ 2, 000),
there is no need to simulate the sample using coalescent methods. In any
case, the presence of non-stem cells makes this approach quite difficult to
implement. Computer programs used in this work are available from Simon
Tavaré (stavare@hto.usc.edu).

The effects of contamination on the number of unique tags. In
the article we gave a lower bound of 95% for the proportion of epithelial
cells present in a sample from a given crypt. The remaining 5% of cells
are nonepithelial cells. In this section, we discuss the likely effects of such
contamination in the context of the number of unique tags observed among
different crypts. The sample from a crypt contains approximately 1,000
cells, and therefore about 50 contaminating cells. In a sample of 8 molecules
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from this mixture (8 being the typical experimental sample), the number of
contaminating molecules therefore has approximately a binomial distribution
with success probability 0.05. The probability of no contaminating molecules
in the sample is 0.66, the probability of 1 is 0.28, and the probability of 2 or
more is 0.06.

We might suppose that each contaminating molecule contributes a single
unique tag to the number of unique tags we observe in the data from a given
crypt. Let U denote the observed number of unique tags in a sample, let V
denote the number of these arising from epithelial cells, and let J denote the
number coming from contaminating cells. Then U = V + J , where J and V
are independent. J is approximately binomially distributed with variance =
8×0.05×0.95 = 0.38, and hence the variances σ2

U and σ2
V of U and V satisfy

σ2
U = σ2

V + 0.38.
In Table 2 of the article, we compare the intracrypt variance of the number

of unique tags as estimated from the data with those predicted under our
model. The models assume no contamination, and therefore they need to
be compared with the intracrypt variance to be expected in the data when
contamination is removed. We see from the previous paragraph that the
expected value of this intracrypt variance, σ2

V , is given by σ2
U −0.38. Thus, a

rough allowance for contamination could be made by reducing the observed
variance in Column 1 of Table 2 of the article, which estimates σ2

U , by about
0.38. Comparing these reduced estimates with the model results given in
Table 2 of the article, we see that our conclusions are indeed strengthened.
This analysis of the possible role of contamination is somewhat simplified,
but we conclude that low levels of potential contamination should not alter
the thrust of our results.
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