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Cell Lines and Reagents. HEK293T cells (Sigma-Aldrich) were
grown in DMEM with 10% FBS (Wisent). Polyethyleneimine
(PEI; 25-kDa molecular mass, linear or branched forms) was
obtained fromSigma-Aldrich. Coelenterazine h and coelenterazine
400a were obtained from NanoLight Technology. 17-Beta-
estradiol (E2) and 4-hydroxytamoxifen (OHT) were purchased
from Sigma-Aldrich; RU58668 (RU58), ICI182,780 (ICI), and
raloxifene (Ral) were purchased from Tocris Cookson. The
Gibson assembly procedure was performed according to the
manufacturer’s protocol using Gibson Assembly Master Mix
(New England BioLabs).

Expression Plasmids.
Donor plasmids: RLucII fusions. Full-length ERα and ERβ cDNAs
were PCR-amplified from expression vectors for the human
ESR1 and human ESR2 genes pSG5-HEG0 and pSG5-ERβ,
respectively, and cloned in-frame N-terminal to RLucII into the
NheI/BamHI restriction sites of pcDNA3.1(Hygro+)-RLucII
vector DNA (1). V2R was cloned N-terminal to RLucII in the
pcDNA3.1/Zeo(+) vector backbone (Thermo Fisher Scientific)
between the NheI and BamH1 sites. βArr2-RlucII was cloned
N-terminal to RLucII in the pcDNA3.1/Hygro(+) vector back-
bone between the NheI and HindIII sites.
Intermediate plasmids: mTFP1, mTagBFP2, and GFP2 fusions. CMV
promoter-driven expression vectors for mTFP1 (monomeric
form), mTagBFP2, or GFP2 were generated by replacement of
the eGFP in the peGFP-N2 vectors (Clontech) with the cDNA for
mTFP1 (Allele Biotechnology), mTagBFP2, or GFP2, which was
inserted into the BamHI/NotI sites of peGFP-N2. Human full-
length ERα and ERβ were cloned into the above-described
vectors N-terminal to mTFP1, GFP2, or mTagBFP2 by PCR
amplification of coding sequences and digestion of 5′ and 3′ ends
with the appropriate restriction enzymes (EcoRI and BamH1) or
by Gibson assembly. The ERα(L507R) mutant was created by
site-directed mutagenesis. The Nur77-mTFP1 vector was a kind
gift from D. Lévesque, Université de Montréal. The V2R cDNA
was cloned by fusing it N-terminal to mTFP1 in pIRES-Puro3
(Clontech). The V2R-mTFP1 expression vector was generated
by replacement of the Venus cDNA by mTFP1 between BamHI
and Not1 of the pIRES-puro3-V2R-Venus expression vector (2).
Acceptor plasmids: YFP fusions. CMV promoter-driven expression
vectors for Venus or Topaz (3–9) were generated by replacement
of the eGFP in the peGFP-N1 vector (Clontech) with cDNAs for
the corresponding fluorophores to generate pVenusN1 or pTo-
pazN1, inserted between the AgeI and NotI sites. DsRed and
mTagBFP2 (monomeric form) cDNAs were cloned into
pcDNA3.1/Hygro(+). The CoA-Ven construct was generated by
inserting tandem copies of oligonucleotides coding for the WT
version of the first NCOA2 LXXLL motif (amino acids 641 to
645) or a mutated AXXAA version and for a glucocorticoid
receptor-derived nuclear localization signal sequence (amino
acids 467 to 503) into pVenus-N1 between the EcoRI and
BamHI sites, and a second copy of Venus was added N-terminal
to these motifs between the NheI and EcoRI sites to maximize
energy transfer. ERα/β-interacting partners RID, AF1ID,
PGC1α, LCoR, and SHP were similarly cloned between two
copies of Topaz using PCR amplification and restriction enzyme
digestion or Gibson assembly. The RID was cloned from SRC1/
NCOA1 cDNA with primers flanking the third and fifth LXXLL
motifs (amino acids 633 to 753). The AF1-interacting domain
(AF1ID) encompasses the glutamine-rich region of SRC1/NCOA1

(amino acids 1,043 to 1,261). eYFP-SUMO3 and eYFP-
SUMO1G expression vectors were obtained from M. Dasso,
NIH, Bethesda, MD (10). Gγ2-Venus was cloned by insertion of
Gγ2 C-terminal to Venus in pcDNA3.1/Hygro(+). βArr2 was
subcloned from βArr2-meYFP (11) between the HindIII and
BamHI sites of pVenus-N1 to generate βArr2-Venus.

Transfection Assays. HEK293T cells were maintained in DMEM
supplemented with 10% FBS. Cells were switched to phenol red-
free DMEM containing 10% charcoal-stripped FBS 2 d before
transfection with ER expression plasmids. Cells were transfected
using PEI (1.5 μg DNA, 1.5 μg PEI-branched, and 4.5 μg PEI-
linear per 1.25 × 106 cells). DNA/PEI/cell suspensions were
aliquoted in 96-well white-bottom culture plates (125,000 cells
per well) for BRET, SRET, and BRETFect assays or in 12-well
culture plates (1.25 × 106 cells per well) for spectral analysis and
grown for 48 h before ligand treatment and signal quantitation.

BRET, BRETFect, and SRET Assays. The SRET spectral analysis (Fig.
S2C) was performed similar to the corresponding BRETFect ex-
periment with several changes to compensate for the dramatically
decreased signal output (Fig. S1E). HEK293T cells were trans-
fected with expression vectors for ERα-LucII, ERα-GFP2, and
CoA-Venus (5 μg each per 1 × 107 cells). Cells were harvested 48 h
posttransfection in HBSS 1× supplemented with 100 nM E2 and
aliquoted in 96-well plates (2.5 million cells in 100 μL per well).
Each well was scanned for 50 nm in 25-nm increments from 400 to
600 nm (400 to 450, 425 to 475, etc.). The seven resulting over-
lapping scans from different wells were fitted together to rebuild
the spectrum of light emission from the SRET experiment.
Note that while an LP550 filter (TTO) was used in BRETFect

to limit bleed-through from mTFP1 emission in BRETFect as-
says, use of a BP530-nm filter yielded similar delta BRET signals.
The 485-nm CTOP filter combines detection of energy emitted by
RLucII/coel-h and of the energy reemitted by mTFP1, and thus
reflects the total energy available for transfer to the acceptor.
Net BRET values are BRET ratios for fused proteins minus

BRET ratios with fused luciferase but unfused GFP. Delta
BRETFect measurements were calculated by subtraction from
the three-partner BRET ratios of the sum of those obtained in the
D + A and D + I controls. Net SRET and delta SRET were cal-
culated as for BRETFect but using previously described assay
parameters (3). For titration analyses, BRET ratios were repre-
sented as a function of log10(fluorescent protein/CTOP), where
levels of the fluorescent protein are measured after direct stimu-
lation at the appropriate wavelength using a FlexStation
II microplate reader. FRET ratios were calculated as (emission
550 nm)/(emission 495 nm). For individual spectral analysis, rela-
tive light units (RLUs) were calculated as the fraction of the
maximal value recorded in each condition (arbitrarily set at 1.00).
For comparison of the emission spectra under BRETFect and
control conditions (Fig. 2 A–D), spectra were standardized for the
total area under the curve (AUC) to reflect energy redistribution.
All graphs were generated using GraphPad Prism 5.00, which

analyzed titration data using nonlinear regression curve fit with
variable slope [log(agonist) vs. response] and one-way ANOVA
and the Bonferroni post hoc test. Spectral analysis was performed
by AUC quantification using GraphPad Prism 5.00.

BRETFect and FRET Time Course Experiments. For time course ex-
periments, cells were transfected as indicated above and treated
at time 0. Luminescence was then measured approximately every
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30 s for BRET and 60 s for FRET. Data presented in Fig. 6 B andD
are the subtraction (delta BRET) of the BRET signals obtained in
nontreated cells from the AVP-treated signals. BRET and FRET
ratio measurements in the presence or absence of AVP are pre-
sented in Fig. S6 B, C, F, and G as a function of time (relative
BRET ratios with respect to values at time 0).

Western Analysis. For Western analysis, HEK293T cells were
seeded into 10-cm dishes at a density of 2 × 106 cells per plate.
The following day, cells were transfected (1 μg of ERα-
expressing vector per plate) with PEI as described above and
then treated 48 h later with ICI182,780 (1 μM) or vehicle (0) for
1 h. Cells were harvested in ice-cold PBS, and whole-cell extracts
were prepared by lysis in extraction buffer [Tris·HCl, pH 7.4,
50 mM; EDTA, 5.0 mM; NaCl, 150 mM; Triton X-100, 0.5%;

Nonidet P-40, 1.0%; SDS, 2%; freshly added protease inhibitors
(PMSF 1%, leupeptin 0.1%, pepstatin 0.1%, aprotinin 0.1%); N-
ethylmaleimide, 2 mM]. Extracts were homogenized by sonication
and quantified by Lowry assay (Bio-Rad). Equal amounts of pro-
teins (50 μg) were separated on an SDS/polyacrylamide gel (7%
acrylamide) and transferred onto PVDF membranes (Millipore).
Membranes were hybridized with the appropriate antibodies (rabbit
monoclonal anti-ERα antibody clone 60C, EMD Millipore; mouse
monoclonal anti-ERβ 14C8, GeneTex; monoclonal mouse anti–
alpha-tubulin clone DM1A, Sigma-Aldrich; monoclonal mouse
anti–beta-actin, Sigma-Aldrich; mouse monoclonal anti-GFP B-
2 antibody, Santa Cruz Biotechnology). Immunodetection was
performed using enhanced chemiluminescence (PerkinElmer Life
and Analytical Sciences) as recommended by the manufacturer,
and detected using a ChemiDoc imager (Bio-Rad).
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Fig. S1. (A) Description of donor ERα-RLucII (D), intermediate ERα-GFP2 (I), and acceptor CoA-Venus (A) fusion proteins and schematized energy transfer in the
presence of two or three partners in a SRET2 assay. (B) Physical constants of the different chromophores used in the SRET and BRETFect assays presented in this
study (1–7). (C) Spectral profiles of the SRET1 donor (RLucII/coel-h; black line), intermediate (Venus; yellow lines), and acceptor (DsRed; red lines). RLUs were
calculated as the fraction of the maximal value recorded in each condition (arbitrarily set at 1.00). (D) Spectral profiles of the SRET2 donor (RLucII/coel-400a;
black line), intermediate (GFP2; green lines), and acceptor (Venus; yellow lines). (E) Comparison of luminescent signal output upon conversion of coel-h or coel-
400a by RLucII. HEK293T cells were transfected with expression vectors encoding ERα-RLucII and unfused mTFP1 as a transfection control. Cells were treated
with coel-h or coel-400a and luminescence was measured at 485 nm for coel-h and 400 nm for coel-400a. RLUs are luminescence counts normalized for
transfection efficiency by fluorescence from unfused mTFP1. Error bars represent the SEM. (F) Spectral profile of mTagBFP2 (BFP2) as a “poor-transfer” in-
termediate control.
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Fig. S2. (A) FRET between the intermediate and acceptor in the BRETFect assay from Fig. 2. FRET(550/495) ratios were measured from HEK293T cells
transfected with ERα-mTFP1 and CoA-Venus and treated with ligands (E2 or OHT) or with vehicle only (0) for 45 min. Values reported are the average of three
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intermediate fluorophore. The experiment was carried out as in Fig. 2E. (C) Spectral profile of a SRET2 experiment carried out as in Fig. 2 A–C using SRET2

settings. (D) Titration curves in the BRETFect setup with increasing concentrations of the acceptor (CoA-Ven); the x axis represents measured acceptor (Venus)
fluorescence over combined total output potential (CTOP). (E) Stimulated fluorescence readings and recorded luminescence of cells of the titration assays in
D with associated BRET(550/485) ratios. (F) Titration curves in the BRETFect setup with increasing concentrations of the intermediate (ERα-mTFP1); the x axis
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(L507R)-mTFP1), or no intermediate. All graphs were prepared from at least three biological replicates, and error bars represent the SEM.
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Fig. S3. (A) mTFP1-tagged ERα and ERβ fusion proteins used in Figs. 3–5 are expressed at similar levels as revealed by fluorometry. RFU, relative fluorescence
unit. (B) Expression of Venus-tagged acceptor fusion proteins used in Fig. 3 A and Bmonitored by fluorometry. (C) BRETFect assays for AF1ID recruitment by ER
dimers were reproduced in U2OS cells. Cells were treated as in Fig. 3C. (D) BRETFect assays for CoA recruitment by ER dimers were reproduced in U2OS cells.
Cells were treated as in Fig. 3A. (E) BRETFect analysis of ligand-dependent recruitment of the cofactors PGC1α, LCoR, and SHP to ERα dimers. HEK293T cells
were transfected with expression vectors for ERα-RLucII, ERα-mTFP1, and/or cofactors fused to Topaz and treated with the indicated ligands (1 μM) for 45 min.
(F) Delta BRET calculations were performed from BRETFect assays in E. (G) FRET between the intermediate and acceptor in the BRETFect assays in E.
HEK293T cells were transfected with ERα-mTFP1 plus the indicated constructs and treated with the indicated ligands (E2, OHT, or ICI) or with vehicle only (0) for
45 min. All graphs were prepared from at least three biological replicates, and error bars represent the SEM. Statistical significance was analyzed by ANOVA
with a Bonferroni post hoc test. *P < 0.01, **P < 0.001.
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ERα-GFP or ERβ-GFP and treated as in B. Western analysis was carried out with an antibody against GFP. (D) ERα–ERβ heterodimers show weaker SUMOylation
marks. HEK293T cells were transfected with vectors expressing ERα (WT) either alone or in combination with ERβ (WT) and treated for 3 h with ICI182,780 or
vehicle only (0). Western analysis was carried out with antibodies against ERα, ERβ, or β-actin. (E) BRETFect assays for SUMOylation of ER dimers were
reproduced in U2OS cells. Cells were treated as in A. Error bars represent the SEM. Statistical significance was analyzed by ANOVA with a Bonferroni post hoc
test. **P < 0.001.
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Fig. S5. (A and B) PPT (A) and DPN (B) promote the recruitment of the SRC1 RID to heterodimers. Experiments were carried out as in Fig. 5 C and D with the
substitution of CoA-Venus for the SRC1 RID fused to Topaz (RID-YFP). (C) Net BRET ratios from cells transfected with ERα-RucII, ERα-mTFP1, and CoA-Venus and
treated with varying concentrations of E2, PPT, or DPN. *P < 0.01 (Student’s t test). (D) Z′ score calculated from cells transfected with ERβ-RLucII, ERα-mTFP1,
and CoA-Ven, seeded in two 96-well plates, and treated in alternate rows with estradiol (E2; 1 μM) or vehicle only (0). BRET ratios from individual wells are
plotted on the graph against the position of the wells. All graphs were prepared from three biological replicates, and error bars represent the SEM.
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Fig. S6. (A) BRETFect assays for the recruitment of beta-arrestin2 to V2R dimers. Net BRET(550/485) signals were measured in the binary and ternary con-
ditions in HEK293T cells expressing V2R fused to RLucII (donor), βArr2 fused to Venus (acceptor), or Venus alone, and mTFP1-tagged V2R as intermediate or
untagged V2R (control C), after treatment with AVP (1 μM) or vehicle (0) for 20 min. Delta BRET signals are shown in Fig. 6A. (B and C) BRET (B) and FRET (C)
signal increases recorded in the time course experiment from Fig. 6B and used to calculate delta BRET/FRET values in the presence vs. absence of AVP. (D)
Titration curves showing BRETFect signal amplification dependence and saturation with increasing concentrations of the intermediate (V2R-mTFP1); x axis
values are the log10 ratio of measured intermediate fluorescence (mTFP1) over CTOP. (E) BRETFect assays for the corecruitment of βArr2 and Gγ2 to V2R. Net
BRET(550/485) signals were measured in HEK293T cells expressing βArr2 fused to RLucII (donor), Gγ2 fused to Venus (acceptor) or Venus alone, and mTFP1-
tagged V2R (intermediate) or untagged V2R (control C), after treatment with AVP (1 μM) or vehicle (0) for 20 min. Delta BRET signals are shown in Fig. 6C. (F
and G) BRET (F) and FRET (G) signal increases recorded in the time course experiment from Fig. 6D and used to calculate delta BRET/FRET values in the presence
vs. absence of AVP. Error bars represent the SEM. Statistical significance was analyzed by ANOVA with a Bonferroni post hoc test. *P < 0.01.
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Table S1. Allosteric effects between dimeric partners for
recruitment of the coactivator motif peptide revealed by
BRETFect titration curves with receptor-selective ligands

EC50, nM (95% confidence interval)

Ligand ERα–ERα ERα–ERβ ERβ–ERβ

E2 0.341 0.419 0.469
(0.255 to 0.481) (0.214 to 0.822) (0.222 to 0.831)

PPT 0.547 28.4 n/a
(0.421 to 2.22) (10.3 to 38.6)

DPN 20.1 5.11 1.02
(15.2 to 40.4) (2.76 to 11.8) (0.196 to 2.12)

EC50s are taken from curves in Fig. 5. Note that titration curves using
inverted tagging of LucII and mTFP1 for the heterodimers yielded similar re-
sults. Data are the average of three biological replicates. n/a, not applicable.

Table S2. Allosteric effects between dimeric partners for
recruitment of SRC1 RID revealed by BRETFect titration curves
with receptor-selective ligands

EC50, nM (95% confidence interval)

Ligand ERα–ERα ERα–ERβ ERβ–ERβ

E2 0.404 0.503 0.218
(0.268 to 0.784) (0.109 to 2.65) (0.166 to 0.286)

PPT 0.968 25.1 n/a
(0.729 to 1.18) (7.43 to 84.7)

DPN 69.7 17.6 0.757
(35.1 to 447) (4.12 to 22.3) (0.318 to 1.80)

EC50s are taken from curves in Fig. S5 A and B. Note that titration curves
using inverted tagging of LucII and mTFP1 for the heterodimers yielded
similar results. Data are the average of three biological replicates. n/a, not
applicable.
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