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1 a1- proof of theorem 1

T :=

√
m

a

m∑
i=1

√
ni

(
ni

ni − 1
dGi(Mi) −

n

n− 1
dG(Mi)

)
(1)

Theorem 1. Under the null hypothesis the statistic T verifies i) and ii), while T is sensitive to the alternative hypothesis,
verifying iii).

i) E (T) = 0.

ii) T is asymptotically (K := min{n1,n2, ..,nm} →∞) Normal(0,1).

iii) Under the alternative hypothesis T will be smaller than any negative value for K large enough (The test is
consistent).

1.1 Notation

Let T =
√
m
a Z with

- Z =
∑m

i=1Wi

- Wi = biDGi(Mi) − ciDG(Mi)

- bi =
√
ni

ni−1

- ci =
√
ni

n−1

- DGi(Mi) = nidGi(Mi)

- DG(Mi) = ndG(Mi).

1.2 A1.1- Proof i : E (T) = 0.

Let denote by G1
1, . . . ,G1

n1
the sample networks from subpopulation 1, G2

1, . . . ,G2
n2

the ones from subpopu-
lation 2, and so on until Gm

1 , . . . ,Gm
nm

the networks from subpopulation m. Let denote without superscript
G1, . . . ,Gn the complete pooled sample of networks where n =

∑m
i=1 ni. And let Gk⊕

1 , . . . ,Gk⊕
n⊕ be the

pooled sample of networks without the sample k where nk⊕ =
∑m

h 6=k nh.
The sum of the distance from the pooled sample to the average network of sample k (Mk) can be decom-

posed in the following way,
DG(Mk) = DGk(Mk) +DGk⊕(Mk).

Where
DGk(Mk) = nk

∑
i<j

2p̂k(i, j)(1− p̂k(i, j)),

DGk⊕(Mk) = nk⊕
(∑
i<j

p̂k⊕(i, j)(1− p̂k(i, j)) + p̂k(i, j)(1− p̂k⊕(i, j))
)
,

and p̂k(i, j) =
Xk

i,j
nk

is the proportion of times the link (i, j) appears in the sample k (Xk
ij is the number of

times link (i, j) appears in sample k), and p̂k⊕(i, j) the proportion of times link (i, j) appears in the sample of
networks Gk⊕.

Using the fact that under H0 it verifies that E (p̂k(i, j)) = E (p̂k⊕(i, j)) =: p(i, j), and applying the equality
E
(
p̂(i, j)2

)
= p(i, j)(1− p(i, j))/n+ p(i, j)2 it is easy to obtain that

E (DGk(Mk)) = (2nk − 2)
∑
i<j

p(i, j)(1− p(i, j)). (2)
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Now, since p̂k(i, j) and p̂k⊕(i, j) are independent we obtain,

E (DGk⊕(Mk)) = 2nk⊕
∑
i<j

p(i, j)(1− p(i, j)).

Therefore,
E (DG(Mk)) = (2n− 2)

∑
i<j

p(i, j)(1− p(i, j)), (3)

and consequently

E

(
1

nk − 1
DGk(Mk)

)
= E

(
1

n− 1
DG(Mk)

)
which is the same to E (Wk) = 0, proving that E (T) = 0

1.3 A1.2- Proof ii : T → N(0, 1).

dG(Mk) and dGk(Mk) verifies the central limit because they are averages of finite variance variables. Under
the Null hypothesis, both random variables have expected value zero. Then Wk has an asymptotic Normal

distribution centered in zero. Moreover, c
m∑

k=1

Wk, where c is a non-zero constant, has an asymptotic Normal

distribution centered in zero which finish the proof.
Up till now, we have shown that T is asymptotically Normal centered in zero. On the following we show

that the asymptotic variance is 1.

A1.3- The value a

In this proof we will use only basic properties of the variance and the moments of the Binomial distribution.
The value a is a sum of many simple functions. Here we calculate each of the terms of the sum.

Var(T) =
m

a2
Var(Z)

Since we want Var(T) = 1, a =
√
mVar(Z)

Var(Z) =
∑

16k6m

Var(Wk) + 2
∑

16r<t6m

Cov(Wr,Wt)

Var(Wk) = b
2
kVar(DGk(Mk)) + c

2
kVar(DG(Mk)) − 2bkckCov(DGk(Mk),DG(Mk))

Cov(Wr,Wt) = Cov(brDGr(Mr),btDGt(Mt)) −Cov(brDGr(Mr), ctDG(Mt))

+Cov(crDG(Mr), ctDG(Mt)) −Cov(crDG(Mr),btDGt(Mt))

As we have shown

DGk(Mk) = nk

∑
i<j

2p̂k(i, j)(1− p̂k(i, j)) =
2

nk

∑
i<j

Xk
i,j(nk −Xk

i,j),

and under H0 is verified that Xk
1,1,Xk

1,2, . . . ,Xk
1,s,Xk

2,1,Xk
2,2, . . . ,Xk

s−1,s are i.i.d. random variables with Xk
i,j ∼

Bin(nk,pi,j) where s is the number of nodes in the network. And

DG(Mk) = DGk(Mk) +DGk⊕(Mk) =

=
2

nk

∑
i<j

Xk
i,j(nk −Xk

i,j) +
1

nk

∑
i<j

(
nk⊕X

k
i,j +nkX

k⊕
i,j − 2Xk⊕

i,j X
k
i,j
)
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with Xk⊕
1,1 , . . .k⊕s−1,s are iid r.v. with Xk⊕

i,j ∼ Bin(nk⊕,pi,j) and are independent of Xk
i,j for all i, j.

Now we calculate each of the above terms.

Var(DGk(Mk))

Var(DGk (Mk )) = (
2

nk
)2
∑
i<j

Var(Xk
i ,j (nk − Xk

i ,j )) .

Var(Xk
i ,j (nk − Xk

i ,j )) = M2 (X
k
i ,j )n

2
k − 2nkM3 (X

k
i ,j ) +M4 (X

k
i ,j ) − (M1 (X

k
i ,j )nk −M2 (X

k
i ,j ))

2 ,

where Mi is the i − th moment of the Binomial Distribution.

Var(DGk (Mk )) = ( 2
nk

)2
∑
i<j

M2 (X
k
i ,j )n

2
k − 2nkM3 (X

k
i ,j ) +M4 (X

k
i ,j ) − (M1 (X

k
i ,j )nk −M2 (X

k
i ,j ))

2 .

Var(DG (Mk ))

Var(DG (Mk )) = Var(DGk (Mk ) + DGk⊕ (Mk ))

Var(DG (Mk )) = Var(DGk (Mk )) + Var(DGk⊕ (Mk )) + 2Cov(DGk (Mk ) ,DGk⊕ (Mk )) (4)

Te second term on the right,

Var(DGk⊕ (Mk )) = Var(
1

nk

∑
i<j

(
nk⊕X

k
i ,j + nkX

k⊕
i ,j − 2Xk⊕

i ,j X
k
i ,j
)
) =

=
1

n2
k

∑
i<j

Var
(
nk⊕X

k
i ,j + nkX

k⊕
i ,j − 2Xk⊕

i ,j X
k
i ,j
)

=
1

n2
k

∑
i<j

n2
k⊕Var(X

k
i ,j ) + n

2
kVar(X

k⊕
i ,j ) + 4Var(X

k⊕
i ,j X

k
i ,j
)
− 4nk⊕Cov(X

k
i ,j , Xk⊕

i ,j X
k
i ,j )+

−4nkCov(X
k⊕
i ,j , Xk⊕

i ,j X
k
i ,j ) .

Each term can be expressed in a simply way in term of the moments of the binomial distribution. For
example,

Cov(Xk
i ,j , Xk⊕

i ,j X
k
i ,j ) = M1 (X

k⊕
i ,j )(M2 (X

k
i ,j ) −M1 (X

k
i ,j )

2 )

The third term on the right on eq. 4,

Cov(DGk (Mk ) ,DGk⊕ (Mk )) = Cov(
2

nk

∑
i<j

Xk
i ,j (nk − Xk

i ,j ) ,
1

nk

∑
i<j

(
nk⊕X

k
i ,j + nkX

k⊕
i ,j − 2Xk⊕

i ,j X
k
i ,j
)
) ,

applying the independence between both random variable can be expressed as,

Cov(DGk (Mk ) ,DGk⊕ (Mk )) =
2

n2
k

∑
i<j

(
Cov(Xk

i ,jnk , nk⊕X
k
i ,j ) − 2Cov(X

k
i ,jnk , Xk⊕

i ,j X
k
i ,j )+

−Cov((Xk
i ,j )

2 , nk⊕X
k
i ,j ) + 2Cov((X

k
i ,j )

2 , Xk
i ,jX

k⊕
i ,j )

)
.

And again each term can be easily expressed in terms of the moments of the binomial distribution.

Cov(DGk (Mk ) ,DG (Mk ))
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Cov(DGk (Mk ) ,DG (Mk )) = Cov(DGk (Mk ) ,DGk (Mk ) + DGk⊕ (Mk ))) =

= Var(DGk (Mk )) + Cov(DGk (Mk ) ,DGk⊕ (Mk )) .

The two terms have been previously calculated.

Cov(DGr (Mr ) ,DGt (Mt )) with r 6= t

Cov(DGr (Mr ) ,DGt (Mt )) = 0 ,

since DGr (Mr ) and DGt (Mt ) are independent random variables

Cov(DGr (Mr ) ,DG (Mt )) with r 6= t

Cov(DGr (Mr ) ,DG (Mt )) = Cov(DGr (Mr ) ,DGr (Mt ) + DGr⊕ (Mt )) =

= Cov(DGr (Mr ) ,DGr (Mt )) + Cov(DGr (Mr ) ,DGr⊕ (Mt ))

Now using that DGr (Mt ) =
1
nt

∑
i<j

(
nrX

t
i ,j + ntX

r
i ,j − 2X

r
i ,jX

t
i ,j
)

we obtain

Cov(DGr (Mr ) ,DGr (Mt )) =
2

nrnt

∑
i<j

Cov(nrX
r
i ,j , ntX

r
i ,j ) − 2Cov(nrX

r
i ,j , Xr

i ,jX
t
i ,j )+

−Cov((Xr
i ,j )

2 , ntX
r
i ,j ) + 2Cov((X

r
i ,j )

2 , Xr
i ,jX

t
i ,j )

Since DGr (Mr ) and DGr⊕ (Mt ) are independent

Cov(DGr (Mr ) ,DGr⊕ (Mt )) = 0

.

Cov(DG (Mr ) ,DG (Mt ))

DG (Mr ) =
∑
i<j

(n − Xr
i ,j − X

t
i ,j − X

rt⊕
i ,j )

Xr
i ,j

nr
+ (Xr

i ,j + X
t
i ,j + X

rt⊕
i ,j )(1 −

Xr
i ,j

nr
) and DG (Mt ) =

∑
i<j

(n −

Xr
i ,j − X

t
i ,j − X

rt⊕
i ,j )

Xt
i ,j

nt
+ (Xr

i ,j + X
t
i ,j + X

rt⊕
i ,j )(1 −

Xt
i ,j

nt
)

Cov(DG (Mr ) ,DG (Mt )) =
∑
i<j

Cov((n − Xr
i ,j − X

t
i ,j − X

rt⊕
i ,j )

Xr
i ,j

nr
, (n − Xr

i ,j − X
t
i ,j − X

rt⊕
i ,j )

Xt
i ,j

nt
)+

+Cov((n − Xr
i ,j − X

t
i ,j − X

rt⊕
i ,j )

Xr
i ,j

nr
, (Xr

i ,j + X
t
i ,j + X

rt⊕
i ,j )(1 −

Xt
i ,j

nt
))+

+Cov((Xr
i ,j + X

t
i ,j + X

rt⊕
i ,j )(1 −

Xr
i ,j

nr
) , (n − Xr

i ,j − X
t
i ,j − X

rt⊕
i ,j )

Xt
i ,j

nt
)+

+Cov((Xr
i ,j + X

t
i ,j + X

rt⊕
i ,j )(1 −

Xr
i ,j

nr
) , (Xr

i ,j + X
t
i ,j + X

rt⊕
i ,j )(1 −

Xt
i ,j

nt
))

From here is straighfoward to finish the expression in terms of the moments of the binomial distribution.

Cov(DG (Mr ) ,DGt (Mt ))

Cov(DG (Mr ) ,DGt (Mt )) = Cov(DGt (Mt ) ,DG (Mr ))

The right term was already calculated.
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1.4 A1.4- Proof iii: Under HA

Let write the sample size of each subpopulation as nk = ckn where 0 < ck < 1, and
m∑

k=1

ck = 1. The proof

is based on the fact that if H0 is not true then for any d < 0 there exist a n such that

E (T ) < d .

Or equivalently,
lim
n→∞E (T ) = −∞ .

E (T ) =

m∑
k=1

√
m

a

m∑
k=1

√
nk

(
1

nk − 1
E (DGk (Mk )) −

1

n − 1
E (DG (Mk ))

)
(5)

It easy to verify that

E (T ) =

√
m

a

∑
i<j

E
(
T i ,j

)
:=
∑
i<j

√
m

a

m∑
k=1

√
nk

(
1

nk − 1
E
(
D

i ,j
Gk (Mk )

)
−

1

n − 1
E
(
D

i ,j
G (Mk )

))
, (6)

where the sum
∑
i<j

is over all links, Di ,j
Gk (Mk ) =

2
nk
Xk
i ,j (nk − Xk

i ,j ) and Di ,j
Gk (Mk ) =

2
nk
Xk
i ,j (nk − Xk

i ,j ) +

1
nk

(
nk⊕X

k
i ,j + nk (

∑
h 6=k

Xh
i ,j ) − 2(

∑
h 6=k

Xh
i ,j )X

k
i ,j
)

For simplicity reasons let suppose that the first m − 1 groups have a mean network M̃ with elements
M̃(i , j) = p(i , j) and the last group m has another mean network M̃m with elements

M̃m(i, j) =

{
p(i, j) for all (i , j) 6= (i∗ , j∗ )
q(i, j) for all (i, j) = (i∗, j∗),

with q(i∗, j∗) 6= p(i∗, j∗). i.e. the mean network differ in only one link. Under this hypothesis,

E (T) = E
(
T i
∗,j∗
)

,

since the E
(
T i,j) = 0 for all (i, j) 6= (i∗, j∗). Now, if we replace Di,j

Gk(Mk) and D
i,j
Gk(Mk) and we take

expectation it is easy to verify that E (T) is a quadric expression in p(i∗, j∗) and q(i∗, j∗). If we call x = p(i∗, j∗)
and y = q(i∗, j∗), then E (T) verifies

E (T) = a1x
2 + a2y

2 + a3xy+ a4x+ a5y+ a6.

Now we now that if x = y (null hypothesis) then E (T) = 0. This means that the there is 1 dimensional
subspace that is solution of the equation E (T) = 0. Now, there ara two possibilities for a quadric equation to
verifies this last. If there exist another 1 dimensional space for the equation E (T) = 0 then the function E (T)

is an hyperbolic paraboloid, if not the function E (T) is a parabolic cylinder. In order to distinguish between
these two cases we will move a little (ε << 1) to both sides of the found solution for E (T) = 0 (the line x=y)
and see if the sign of E (T) change. If the sign changes then E (T) is an hyperbolic paraboloid, if not E (T) is
a parabolic cylinder.

We will study E (T) for (x1,y1) = (1/2, 1/2+ ε) and for (x2,y2) = (1/2, 1/2− ε) with ε > 0. For simplicity
we will study lim

n→∞ 1√
n

E (T) which is enough for proof 1.

It is straightforward to see that for both (x1,y1) and (x2,y2)

lim
n→∞ 1√

n
E (T) = −2(1− cm)

√
cmε

2,

1 Based on T it is easy to see that the rate of convergence 1√
n
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which is negative value since 0 < cm < 1, confirming that E (T) is a parabolic cylinder that goes than, i.e. if
q(i∗, j∗) 6= p(i∗, j∗) then

lim
n→∞E (T) = −∞.

To finish the proof we say that any other alternative hypothesis can be proved from this particular alterna-
tive scenario. For example, if there exist another (i∗∗, j∗∗) with p(i∗∗, j∗∗) 6= q(i∗∗, j∗∗) then

E (T) = E
(
T i
∗,j∗
)
+ E

(
T i
∗∗,j∗∗

)
and we apply the same proof for each term. Another alternative hypothesis might be that there exist a
unique (i∗ , j∗ ) where pr (i∗ , j∗ ) 6= ps (i

∗ , j∗ ) for r 6= s being pr (i∗ , j∗ ) the probability of observing link
(i∗ , j∗ ) in subpopulation r. In this case E (T ) is a quadric expression in p1 (i

∗ , j∗ ), p2 (i∗ , j∗ ), ..., and
pm (i∗ , j∗ ) . And the same argument can be used obtaining the same result, under the alternative hypothesis
lim
n→∞E (T ) = −∞.
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Figure S1: Fig A1: Power of the tests as a function of the sample size for the model with parameters λ1 = 0.5, λ2 = 2/3,
and λ3 = 0.5.
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Figure S2: Fig A2: Null hypothesis. Variance of T statistics as a function of the sample size, K for the model with
parameters λ1 = 0.5, λ2 = 0.8, and λ3 = 0.6.
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Figure S3: Fig A3: Histogram of number of nodes determine by identification procedure. These results correspond to
the model with parameters λ1 = 0.5, λ2 = 0.8, λ3 = 0.6 and K = 30.
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3 a3- hcp resting-state fmri functional networks
For each variable, we calculated W3 as well as W4 and W5, which counts the number of T statistics lower
than -4 and -5, respectively. Using a resampled bootstrap, we obtained empirical probabilities P(W5 > 1) = 0
(less than 1/10000) and P(W4 = 1) = 1/10000. Variables with W3 values greater than 3 are shown in Table S1

and S2.

Brain volumetric variable W3 W4 W5

FS–R–Inferiortemporal–Area 5 5 3

FS–SupraTentorial–Vol 5 5 3

FS–R–WM–Vol 5 4 3

FS–R–Cort–GM–Vol 6 3 3

FS–BrainSeg–Vol 5 3 3

FS–Tot–WM–Vol 5 3 3

FS–Mask–Vol 5 3 3

FS–L–Middletemporal–Area 9 4 2

FS–R–Cuneus–Area 5 4 2

FS–L–Lateraloccipital–Area 4 4 2

FS–R–Superiorfrontal–Area 5 3 2

FS–BrainSeg–Vol–No–Vent 5 3 2

FS–L–Supramarginal–Area 5 3 1

FS–R–Fusiform–Area 5 2 2

FS–BrainStem–Vol 5 2 1

FS–R–Precentral–Area 5 2 1

FS–L–Superiorfrontal–Area 4 3 2

FS–L–WM–Vol 4 3 2

FS–OpticChiasm–Vol 4 2 2

FS–R–Rostralmiddlefrontal–Area 4 2 1

Table S1: Variables that partitioned the subjects in groups that present very high statistical differences between the
corresponding brain networks. Only variables with W3 > 4 are included.

Behavioral variables (label) W3 W4 W5

Amount of sleep (PSQI_AmtSleep) 9/8/7 6/6/7 4/6/6

Cognitive flexibility (CardSort_AgeAdj) 4/3/4 3/3/4 0/3/3

Cognitive flexibility (CardSort_Unadj) 4/3/3 0/2/2 0/2/2

Motor (Strength_AgeAdj) 4/3/3 4/3/3 3/2/2

Motor (Strength_Unadj) 4/3/4 4/2/3 2/2/2

Working memory (WM_Task_2bk_Acc) 3/5/1 0/2/1 0/0/1

Relational processing (Relational_Task_Acc) 3/4/7 0/3/6 0/0/5

Delay discounting (DDisc_SV_10yr_40K) 1/5/7 0/1/6 0/0/6

Delay discounting (DDisc_AUC_40K) 0/4/4 0/3/4 0/3/4

Table S2: Behavioral variables that partitioned the subjects in groups that present high statistical differences between the
corresponding brain networks. The W3, W4 and W5 statistics are presented for different networks sizes (15 /
50 / 300). Only variables with W3 > 4 are included.
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Figure S4: Fig A4: Relationship between variable Right Inferiortemporal Area and variable: (A) Amount of sleep , (B)
Brain segmentation volume. The Spearman correlation coefficient between both variables are shown. (C)
Spearman correlation matrix between the highly significant variables.
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Figure S5: Fig A5: T–statistics as a function of (left panel) ρ and (right panel) the number of links for the variable Picture
vocabulary test.
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