
Reviewers' comments:  
 
Reviewer #1 (Remarks to the Author):  
 
A. Summary of key results  
The authors applied a data-driven approach to detect thalamocortical dysrhythmias in a resting-
state EEG dataset consisting of healthy controls and subjects with neurological disorders (PD, 
Depression, Chronic Pain, and Tinnitus). Their SVM-based classification accurately distinguished 
between disease states and control states by using distinct sets of spectral features (theta, alpha, 
beta, gamma) from source-localized signals. They showed that beta power increased in the dACC 
in disease states compared to healthy controls. Finally, they showed that theta-beta and theta-
gamma cross-frequency coupling exhibited disease-specific topologies for PD, Chronic Pain, and 
Tinnitus, in addition to non-specific topologies common to all disease states.  
 
B: Originality and interest  
A previous study by Llinas and colleagues (Llinas et al. 1999, PNAS) showed widespread theta 
power and cross-frequency power spectrum coherence in PD, pain, tinnitus, and depression. The 
current study supports this study and goes on to obtain an oscillation-based profile of each disease 
state using the power and cross-frequency coupling as features. Such findings would be of interest 
to the wider field. However, the limitations of the datasets (mentioned below) make the 
conclusions unconvincing.  
 
C. Data and methodology.  
• It is not clear how consistently the data were collected across subjects and groups. More 
description of the recording parameters is necessary to clarify this point. For instance, how long 
were the recordings after artifact removal for each specific group? Differing lengths of signals can 
introduce bias into the classifier by influencing the feature set.  
• The number of PD and depression subjects is very small compared to the controls and other 
disease states. How might this bias the SVM?  
• Please clarify how the folds were obtained. For instance, how many of the 31 PD subjects were in 
the first fold? How many were in each of the remaining nine folds? If they are evenly distributed, 
this would suggest that training was done on three to four PD subjects at any given test.  
• Cross frequency coupling is not found consistently in PD subjects even when chosen to have 
similar symptoms (Wang et al., 2016 Neurobiology of Disease). In addition, such coupling is 
widespread across the cortex, even in healthy subjects (Florin and Baillet 2016 NeuroImage). 
Given these considerations, one would expect to see a much broader spatial and group distribution 
than what is illustrated in Figure 5.  
 
D. Appropriate use of statistics and treatment of uncertainties  
The work seems reproducible overall. The statistical analysis seems acceptable, but see above for 
my questions concerning the SVM and cross-validation approach.  
 
E. Conclusions  
In terms of disease characterization, the field is moving toward refined classification and subject-
specific approaches, since neurological disorders themselves exhibit significant clinical and 
neurophysiological heterogeneity. The current study proposes the opposite approach by finding 
common characteristics for each disease state. This is interesting and merits more investigation; 
however, the study limitations make the overall conclusions unconvincing. Further, while the study 
may support common cortical oscillations and cross-frequency coupling amongst the four brain 
disorders investigated, it is certainly a stretch to conclude that the data reported here ‘confirms’ 
the TCD model. Supports, possibly, but not confirms.  
 
F. Suggested improvements  
• The sample size is fairly uneven (i.e. many controls, and differing numbers of each disease 
state). Please comment on how this affects the performance of your models?  



• How do you address the volume conduction problem when localizing sources in the subgenual 
cingulate? Although it is a cortical structure, it is fairly deep for a modality like EEG. The authors 
provide justification using Pizzagalli, et al. 2004 as a reference (Line 140), but there are notable 
differences in the analysis techniques between this study and the current study (e.g. range of EEG 
frequencies of interest).  
• For training the SVM models, is power the feature that is used for training? Is this computed 
using the entire five minute recordings (after artifact removal)?  
• What is meant by sLORETA having “zero error”?  
• Figure 1  
o Please expand on the description to include the main take-away(s) for the figure.  
o Consider labeling the y-axis with percent/units to clarify the figure.  
• Figure 2 & 3  
o In figure 2 (PD, left hemisphere) – why is sgACC labeled for theta/gamma on the top and 
gamma only on the bottom? The text only indicates gamma frequency band. Also for Pain, right 
hemisphere, why is So labeled with theta/alpha on top and not labeled on bottom? The text 
indicates the former.  
o For both figures, presumably the rows are from the same hemisphere only a different 
perspective, but this is not clearly labeled. In any case, the second row seems redundant given the 
cortical reconstruction transparency.  
o Please expand on the caption to clarify that the frequency labels correspond to power in that 
band. Does this correspond to an increase or decrease?  
o Consider adding a clarification point in the caption stating that the sgACC, dACC, and PCC do 
have a left and right component. Presumably this was done due to volume conduction limitations 
of EEG.  
• Figure 4  
o Please add labels and description to the caption to clarify the measures.  
• Figure 5  
o Typo in labels: “Parkisnon”  
o It would be helpful to include the key points of the figure in the caption.  
• Figure 6  
o Please use a larger font size for the group labels  
 
G: References  
Appropriate.  
 
H. Clarity and Context  
• Line 166: For clarity and consistency, the ‘1’ in ‘k1’ should be subscripted  
• Line 222: Typos/errors.  
• Line 252: Typo: “controls subjects”  
• Line 292: Grammatical errors  
 
 
 
Reviewer #2 (Remarks to the Author):  
 
In this study the authors aim to verify the presence of thalamocortical dysrhythmia (TCD) in 
various neural disorders using a machine-learning approach. They train a support vector machine 
model on current density in various frequency bands of resting-state EEG to distinguish between 
healthy controls and patients with Parkinson’s disease, tinnitus, chronic pain and depression. The 
authors show that their model is able to distinguish between patients and controls with a high 
degree of accuracy compared to a randomly generated model, and that the most important 
predictor oscillations are spatially distinct in the brain for different disorders, but that the dorsal 
ACC and hippocampal areas appear to be common regions of disturbance across diagnoses. 
Furthermore, the cross-frequency (theta-gamma and theta-beta) coupling is increased in different 
brain regions for different disorders. The authors conclude that these findings show strong support 



for TCD as a unifying neural mechanism that can also serve as a unique neural signature in diverse 
neurological and neuropsychiatric disorders.  
 
GENERAL CRITIQUE:  
 
This study takes an interesting and novel machine-learning approach to the important problem of 
identifying cross-diagnostic biomarkers in neural disorders. However, the justifications for many of 
the choices made in the study design, such as the disorders the authors considered and the 
regions of interest selected in the analysis, are only weakly presented in the text. In addition, 
some key points are unclearly expressed or completely missing, including participant 
demographical/clinical information and the training and testing of the SVM model, making it 
difficult to evaluate the soundness of the experimental design and the validity of the conclusions 
that the authors make. Furthermore, the figures are difficult to interpret and figure captions seem 
to be incomplete. Therefore I do not recommend the paper for publication in its current form. 
Additional concerns as well as elaborations on my previous points are provided below.  
 
SPECIFIC COMMENTS & SUGGESTIONS:  
 
• P.3 – The authors do not provide any evidence for why TCD has been proposed as a mechanism 
in these disorders. The argument for the experiment as currently articulated in the Introduction 
seems to be only weakly justified. Out of all the possible neurological/neuropsychiatric disorders, 
why look in particular at PD/tinnitus/MDD/chronic pain? What is so special about thalamocortical 
oscillations in these diseases? What about other diseases in which thalamocortical information 
processing is thought to be disrupted, such as schizophrenia? What is the justification for picking 
these ROIs? Citations to other papers including the Llinás et al. paper are given, but some 
supporting evidence should be provided in the main text.  
 
• P.4 – The full demographic and symptom information are not provided. It is impossible to 
evaluate whether control and patient sub-groups are well matched.  
 
• What was done to address possible confounds, such as cognitive performance irrespective of 
clinical status or duration of illness? Particularly were any patients on medication and if so how 
was this controlled for?  
 
• Some of the clinical groups are fairly small in size (particularly for depression, which is already 
the only psychiatric disorder in the sample), which may affect the accuracy and generalizability of 
the model.  
 
• P. 6 – How accurate was the manual removal of artifacts? A more detailed description of how 
these artifacts were identified and removed would be useful.  
 
• P. 8 – It is unclear to me how the SVM was trained. In the Model Generation section it reads as 
though the SVM was given a multi-class dataset but trained only to make binary predictions 
(tinnitus vs controls), although it is clear from the Results that the model was tested on the other 
disorders vs controls as well. Or was the model only trained to differentiate between tinnitus and 
controls, but then used to classify the other disorders vs controls? This point, although critical to 
evaluating the integrity of the experiment, is ambiguous in the text.  
 
• Is the model able to differentiate between controls and diseases in which TCD is not thought to 
be involved?  
 
• The authors show that their SVM model identified frequency bands and regions of interest that 
were significant predictors of group membership. However the nature of the differences in these 
oscillations is not clear. It would be helpful to visualize these effects in the patient and control 
groups by plotting their individual power spectra. TCD specifically proposes that neurons are 



locked in theta oscillations and so increased theta power should be observed.  
 
• P. 19 – “We show a spectrally equivalent but spatially distinct form of TCD depending on the 
specific neuropsychiatric disorder.” – I am not sure that this claim is founded. The authors do not 
show any data on the power spectra of oscillations in the different disorders. This conclusion 
seems to be based on the result that oscillations in different frequency bands were identified as 
important predictors in the SVM model, but it appears that different frequencies, as well as 
different brain regions, are affected in different disorders (for example alpha band does not appear 
to be in the pain model).  
 
• P. 18 – Drawing conclusions regarding similarities/differences between neurological and 
neuropsychiatric disorders (such as the subgenual ACC as a “common core”) can be a little 
ambitious as only three neurological disorders and one neuropsychiatric (with a small sample size) 
were considered in this study.  
 
• Figure captions should be updated to provide more information (for example in Fig. 5 it is not 
clear from the figure/caption that the spider plots are showing Pearson correlation coefficients). 
The authors should also consider labeling the subplots with letters for easier reference.  
 
MINOR POINTS:  
 
• Consider consistently using both “neurological” and “neuropsychiatric” or a more general term 
such as “neural disorder”.  
 
• There are numerous grammatical mistakes throughout the manuscript – please check carefully.  
 
 
 
Reviewer #3 (Remarks to the Author):  
 
This is an impressive manuscript on a large database of patients similar to the original description 
of TD in PNAS. I am very supportive of its publication since I do think that TD exists and that the 
controversy has come more from the technical difficulty in demonstrating it. This manuscript does 
just that. However, I have a major issue that I believe should be addressed.  
Since TD is very controversial and this manuscript makes strong claims, I believe that it should not 
be published without an additional analysis of the EEG similar to the original publication of TD. This 
analysis should demonstrate that the relevant frequencies are present in the power spectrum of an 
example patient and the population, show that shifts in frequency are statistically significant and 
clearly visible in the power spectrum. Another key aspect of TD is the increase in coherence, also 
illustrated in the original paper, this manuscript must address coherence at the large scale of the 
EEG.  



Response to the reviewers 
 

Reviewer #1 
• It is not clear how consistently the data were collected across subjects and groups. More description of 
the recording parameters is necessary to clarify this point. For instance, how long were the recordings 
after artifact removal for each specific group? Differing lengths of signals can introduce bias into the 
classifier by influencing the feature set. 
 
Answer: We understand the concern of the reviewer and therefore made a comparison between the 
lengths of the EEG after artifact rejection between the different groups. This analysis revealed no 
significant difference. In addition, we added more clarification about the recording procedure and 
artifact rejection. The following was added to the manuscript: ‘This study was approved by the local 
ethical committee at Antwerp University Hospital and was in accordance with the Declaration of 
Helsinki. All participants provided informed consent before the EEG recording. EEG was obtained for 
each patient as a standard procedure for diagnostic and neuromodulation treatment purposes at the 
BRAI2N unit in Antwerp University Hospital. All Resting-state EEGs were recorded in the same room for 5 
minutes at 19 scalp sites of a Tin-electrode cap (ElectroCap, Ohio, United States) using a Mitsar amplifier 
(Mitsar EEG-201, St.Petersburg, Russia; http://www.mitsar-medical.com) and were sent to the WinEEG 
software version 2.84.44 (Mitsar, St. Pertersburg, Russia). EEGs were measured in a fully lighted room 
shielded against sound and stray electric currents, with participants sitting upright on a comfortable 
chair with their eyes closed. The resting-state EEG was sampled with 19 electrodes in the standard 10 – 
20 international placement (Fp1, Fp2, F7, F3, Fz, F4, F8, T7, C3, Cz, C4, T8, P7, P3, Pz, P4, P8, O1, O2), 
referenced to linked ears, and impedances were maintained below 5 kΩ at all electrodes throughout the 
EEG recording. Participants were instructed not to drink alcohol 24 hours prior to EEG recording or 
caffeinated beverages on the day of recording to avoid alcohol- or caffeine-induced changes in the EEG 
stream (1-3). The alertness of participants was checked by monitoring both slowing of the alpha rhythm 
and  appearance of spindles in the EEG stream to prevent possible enhancement of the theta power due 
to drowsiness during recording (4). No participants included in the current study showed such EEG 
changes during measurements. Data was recorded in the WinEEG software with a sampling rate of 1024 
Hz, a high-pass filter at 0.15 Hz, and a low-pass filter at 200 Hz. The data was then resampled to 128 Hz, 
band-pass filtered (fast Fourier transform filter applying a Hanning window) to 2–44 Hz, and imported 
into the Eureka! Software (5). A careful inspection of artifacts was performed and all episodic artifacts 
suggestive of eye blinks, eye movements, jaw tension, teeth clenching, or body movement were 
manually removed from the EEG stream. An artifact was defined as an EEG characteristic that differs 
from signals generated by activity in the brain. 1) Some artifacts are known to be in a limited frequency 
range, e.g., above some frequency. This was removed by frequency filtering. 2) Some artifacts consist of 
discrete frequencies such as 50 Hz (or 60 Hz for USA) or its harmonics. These were removed by notch 
filtering. 3) Some artifacts are limited to a certain time range, e.g., in the case of eye blinks. These 
artifacts were recognized by visual inspection and these time intervals were discarded. 4) Some artifacts 
originate from one or a few distinct sources or a limited volume of space so that the artifact topography 
is a superposition of characteristic topographies (equivalently, the artifact is limited to a subspace of the 
signal space). We removed the artifacts by determining the characteristic topographies (equivalently, 
the artifact subspace) so that the remaining signals do not contain anything from the artifact subspace 
(6). 5) Artifacts and true brain signals that can be assumed to be sufficiently independent can be 
removed by independent component analysis (7, 8). 6) Some artifacts are characterized by a particular 
temporal pattern such as exponential decay. We removed these artifacts by modeling the artifact, fitting 
its parameters to the data, and then removing the artifact (9).  



After artifact rejection, a comparison was made between the different groups (healthy control subjects, 
tinnitus subjects, subjects with chronic pain, subjects with PD, and subjects with major depression) for 
the average length of the EEG. This analysis showed no significant difference between the different 
groups (F = .88, p = .48; see Figure 1S).’ 
 
• The number of PD and depression subjects is very small compared to the controls and other disease 
states. How might this bias the SVM? 
 
Answer: Although the smaller sample for PD subjects and subjects with major depression, we see a clear 
differentiation between the SVM model obtained with the real data in comparison to the random model 
with the same data and same distribution. This finding suggests the great sensitivity of the model. 
Furthermore, the internal validity was confirmed by a 10-fold cross-validation technique for each 
disorder. Our models are further tested using the k-fold cross-validation technique as well as true-
positive ratio, root mean squared error (RMSE), mean average error (MAE), and κ-statistic, further 
confirming our findings. The unequal distribution of the sample sizes could potentially influence the full 
model. However, when comparing the expected contribution to the full model based on the sample size 
(see Figure 2S) with the actual contribution based on the accuracy of the model, it is clear that the 
unequal distribution does not influence the full model. We added this to the discussion and 
supplementary material: ‘An additional weakness of the paper could be the unequal distribution of the 
sample sizes of the specific thalamocortical dysrhythmias included in our analysis. Although there is a 
smaller sample size for PD (n =31) and major depression (n = 15), this should not have a major bearing 
on the individual accuracies of the model, since each pathology is individually compared to a random 
model and yields approximately the same accuracy. Furthermore, the internal validity was confirmed by 
a 10-fold cross-validation technique for each disorder. The unequal distribution of the sample sizes 
could potentially influence the full model. However, when comparing the expected contribution to the 
full model based on the sample size (see Figure 2S) with the actual contribution based on the accuracy 
of the model, it is clear that the unequal distribution does not influence the full model.`  
 
• Please clarify how the folds were obtained. For instance, how many of the 31 PD subjects were in the 
first fold? How many were in each of the remaining nine folds? If they are evenly distributed, this would 
suggest that training was done on three to four PD subjects at any given test. 
 
Answer: We understand the concern of the reviewer and further explained the method in detail: 
‘The regions of interest in the different frequency bands were further organized into a file that could be 
read by the data-mining software Weka (University of Waikato Machine Learning Group, available at 
http://www.cs.waikato.ac.nz/ml/weka/). Thus, the file consisted of the full dataset, which is comprised 
of the current density for all regions of interest for all 541 subjects in the 5 frequency bands for the 
model (i.e. Full model). The analysis was also conducted for respectively 264 tinnitus subjects, 78 
subjects with chronic pain, 31 subjects with PD, and 15 subjects with major depression in comparison to 
healthy control subjects separately. Using a simple logistics filter, a 10 fold cross-validation was 
performed on the full dataset. Cross-validation is a technique in which the data set is divided into k 
equal portions called folds. The first fold is used to generate a predictive model of the dataset. The data 
in the remaining k – 1 folds are then tested against the model, yielding measurements of model 
accuracy. A second model is then generated off the second fold, and the remaining k – 1 folds (which 
includes the fold that created the first model) are tested against this new model again. Subsequently, 
after all the folds have been used to create and test a model, the average of the values of model 
accuracy over the k-fold cross-validation is presented as the overall accuracy of the model. For example, 
in a 10-fold cross-validation technique for 100 people labeled (disorder vs. healthy), the program takes 



the 100 labeled data and produces 10 equal sized sets. Each set is divided into two subgroups: 90 
labeled data that are used for training and 10 labeled data are used for testing. For the labelled group 
that is used for training, the program maintains the same distribution. So if out of the 100 people 
labelled, 60 were healthy subjects and 40 were subjects with a disorder, it will keep this distribution 
when it selects 90 subjects for training. That would be 54 healthy subjects and 36 subjects with a 
disorder. It also produces a classifier with an algorithm from 90 labeled data and applies that on the 10 
testing data for k1. It does the same computation for each of the nine remaining folds (k2 – k10) and 
produces 9 more classifiers. At the end of a 10-fold validation, the average of the 10 classifiers produced 
from 10 equal sized sets is calculated and represents the averaged cross validation. The measurements 
for model accuracy calculated by the k-fold cross-validation technique includes the true-positive ratio, 
root mean squared error (RMSE), mean average error (MAE), and κ-statistic.’  
 
• Cross frequency coupling is not found consistently in PD subjects even when chosen to have similar 
symptoms (Wang et al., 2016 Neurobiology of Disease). In addition, such coupling is widespread across 
the cortex, even in healthy subjects (Florin and Baillet 2016 NeuroImage). Given these considerations, 
one would expect to see a much broader spatial and group distribution than what is illustrated in Figure 
5. 
 
Answer: We agree that in PD subjects we see more widespread coupling in the cortex as confirmed by 
Florin & Bailler (2015); however, in this study, we are only looking at the regions that were important 
based on the classifier. A closer look at the data in figure 5 also shows that for Parkinson’s, we see 
increased coupling in most areas (AUD, SOM, MOTOR, SgACC, dACC). However, this effect did not 
survive correction for multiple comparisons. We added this to the paper: ‘Interestingly, for PD we also 
observe increased coupling in the auditory and somatosensory cortices; however, this effect does not 
survive correction for multiple comparisons. The motor cortex findings of cross-frequency coupling in 
the EEG are in keeping with recordings from the subthalamic nucleus in PD, which also shows symptoms 
related to cross frequency coupling (10).’   
 
D. Appropriate use of statistics and treatment of uncertainties 
 
The work seems reproducible overall. The statistical analysis seems acceptable; see above for my 
questions concerning the SVM and cross-validation approach. 
 
We added this to the paper (see above) 
 
E. Conclusions 
In terms of disease characterization, the field is moving toward refined classification and subject-specific 
approaches, since neurological disorders themselves exhibit significant clinical and neurophysiological 
heterogeneity. The current study proposes the opposite approach by finding common characteristics for 
each disease state. This is interesting and merits more investigation; however, the study limitations 
make the overall conclusions unconvincing. Further, while the study may support common cortical 
oscillations and cross-frequency coupling amongst the four brain disorders investigated, it is certainly a 
stretch to conclude that the data reported here ‘confirms’ the TCD model. Supports, possibly, but not 
confirms. 
 
Answer: We understand the concern and toned down the conclusion: ‘In conclusion, the current data-
driven approach using machine learning shows temporal and spatial patterns of activity that serve as a 
cortical signature for respectively pain, tinnitus, PD, and depression. Our data suggest a spectrally 



equivalent but spatially distinct form of TCD depending on the specific neural disorder. However, apart 
from the disorder-specific spatial signature, common brain areas that are involved in pain, tinnitus, 
Parkinson’s, and depression are identified as well. Therefore, this study supports the existence of TCD as 
a unifying mechanism underlying diverse neuropsychiatric disorders; however, more research is needed 
to cross validate these findings, including different neurological and neuropsychiatric disorders.’ 
 
F. Suggested improvements 
• The sample size is fairly uneven (i.e. many controls, and differing numbers of each disease state). 
Please comment on how this affects the performance of your models? 
 
Answer: The uneven number could have a direct effect on the power of the classifier. We see that the 
smallest sample (i.e. the depression group) has less predictive power in comparison to the other 
pathologies. However, Pain and Parkinson’s have smaller samples in comparison to the tinnitus group, 
but generate a stronger model in generating a classifier. In addition, we see areas involved in depression 
as confirmed by previous research, thereby cross validating our findings. It is however possible that 
increasing the sample would generate more areas selected by the classifier that could lead to more 
accurate model. 
‘An additional weakness of the paper could be the unequal distribution of the sample sizes of the 
specific thalamocortical dysrhythmias included in our analysis. Although there is a smaller sample size 
for PD (n =31) and major depression (n = 15), this should not have a major bearing on the individual 
accuracies of the model, since each pathology is individually compared to a random model and yields 
approximately the same accuracy. Furthermore, the internal validity was confirmed by a 10-fold cross-
validation technique for each disorder. The unequal distribution of the sample sizes could potentially 
influence the full model. However, when comparing the expected contribution to the full model based 
on the sample size (see Figure 2S) with the actual contribution based on the accuracy of the model, it is 
clear that the unequal distribution does not influence the full model.`  
 
• How do you address the volume conduction problem when localizing sources in the subgenual 
cingulate? Although it is a cortical structure, it is fairly deep for a modality like EEG. The authors provide 
justification using Pizzagalli, et al. 2004 as a reference (Line 140), but there are notable differences in the 
analysis techniques between this study and the current study (e.g. range of EEG frequencies of interest). 
 
Answer: We understand the concern. However previous research by our group and other groups 
showed the localization of the sgACC in mood disorders (Jawoska et al. 2012; Albert et al. 2012). In 
addition, the sgACC has been cross validated using different techniques such as EEG and rsfMRi (Grecius 
et al, 2007; Mayberg et al 2005). 
 
• For training the SVM models, is power the feature that is used for training? Is this computed using the 
entire five minute recordings (after artifact removal)? 
 
Answer: The length of the EEG is 4 minutes on average. There was no significant difference in length 
between the different groups. It is important to state that the artifact removal was done by the same 
person. We added a figure in the supplementary material and text into the paper: ‘After artifact 
rejection a comparison was made between the different groups (healthy control subjects, tinnitus 
subjects, subjects with chronic pain, subjects with PD, and subjects with major depression) for the 
average length of the EEG. This analysis showed no significant difference between the different groups 
(F = .88, p = .48; see Figure 1S).’  
 



• What is meant by sLORETA having “zero error”? 
 
Answer: sLORETA is similar to the Dale et al. method: it employs the current density estimate given by 
the minimum norm solution, and localization inference is based on standardized values of the current 
density estimates. However, standardization in sLORETA takes a completely different route. In all noise 
free simulations, only sLORETA has exact, zero error localization. In all noisy simulations, sLORETA has by 
far the lowest localization errors. In most cases, the spatial spread (i.e. “blurring”) of sLORETA is smaller 
than that of the Dale method.  The consequence is that, unlike the Dale et al. (6) method, sLORETA is 
capable of exact (zero-error) localization. 
 
• Figure 1 
o Please expand on the description to include the main take-away(s) for the figure.  
 
Answer: We added more information. Figure 1 became Figure 2 in the new draft. ‘Figure 2. Obtained 
model using support vector machine learning to differentiate between respectively tinnitus vs controls, 
pain vs controls, Parkinson disease vs controls, and depression vs controls. SVM learning can 
differentiate between the disorder and healthy control subjects with an accuracy between 75% and 94% 
in comparison to a random model. The sensitivity of the models and the area under the curve were 
significantly higher for the obtained model in comparison to the random model, while the false 
discovery rate was significantly lower. A significant difference was also identified by comparing the κ-
statistic MAE and RMSE, confirming the strength of the tested model in comparison to the random 
model’. 
 
o Consider labeling the y-axis with percent/units to clarify the figure. 
 
Answer: We added this to the paper. 
 
• Figure 2 & 3  
In figure 2 (PD, left hemisphere) – why is sgACC labeled for theta/gamma on the top and gamma only on 
the bottom? The text only indicates gamma frequency band.  Also for Pain, right hemisphere, why is So 
labeled with theta/alpha on top and not labeled on bottom? The text indicates the former.  
o For both figures, presumably the rows are from the same hemisphere only a different perspective, but 
this is not clearly labeled. In any case, the second row seems redundant given the cortical reconstruction 
transparency. Please expand on the caption to clarify that the frequency labels correspond to power in 
that band. Does this correspond to an increase or decrease? Consider adding a clarification point in the 
caption stating that the sgACC, dACC, and PCC do have a left and right component. Presumably this was 
done due to volume conduction limitations of EEG. 
 
Answer: The figures have changed to figure 3 and 4 in the new version. We added this to the paper: 

‘Figure 3. Support vector machine learning differentiates between respectively tinnitus vs controls, 
pain vs controls, Parkinson disease vs controls, and depression vs controls. Abbreviations: dACC: 
dorsal anterior cingulate cortex; sgACC: subgenual anterior cingulate cortex; INS: Insula; PHC: 
parahippocampus; AUD: Auditory Cortex, So: Somatosensory cortex; Mo: Motor cortex, PCC: 
posterior cingulate cortex. 

Figure 4. Support vector machine learning differentiates between thalamocortical dysrhythmia as a 
unifying disorder (including tinnitus, pain, Parkinson’s, and depression) vs controls. Abbreviations: 
dACC: dorsal anterior cingulate cortex; sgACC: subgenual anterior cingulate cortex; INS: Insula; PHC: 



parahippocampus; AUD: Auditory Cortex, So: Somatosensory cortex; Mo: Motor cortex, PCC: 
posterior cingulate cortex.’ 

 
• Figure 4 
o Please add labels and description to the caption to clarify the measures. 
 
Answer: We added this to the paper. 
 
• Figure 5 
Typo in labels: “Parkisnon”. It would be helpful to include the key points of the figure in the caption. 
 
Answer: We changed this and add more information: ‘Figure 6. Radar plot of presence of cross-

frequency coupling in the auditory cortex, somatosensory cortex, motor cortex, subgenual anterior 
cingulate cortex, and the dorsal anterior cingulate cortex for theta-beta and theta-gamma coupling. 
An asterisk indicates if the CFC for a specific disorder is significant after Bonferroni correction. The 
figure demonstrates the presence of theta-gamma (red line) and theta-beta (black line) coupling for 
tinnitus in the auditory cortex (upper left panel), for pain in the somatosensory (upper right panel) 
and motor cortices (mid left panel), and Parkinson’s in the motor cortex (mid left panel). For the 
dorsal anterior cingulate (lower left panel) and subgenual anterior cingulate cortices (mid right 
panel), an increased coupling between theta-gamma and theta-beta oscillations is identified that is 
not related to the specific neurological/neuropsychiatric disorder, but likely has a more non-specific 
general role.’ 

 
• Figure 6 
o Please use a larger font size for the group labels 
 
Answer: We modified this. 
 
H. Clarity and Context 
• Line 166: For clarity and consistency, the ‘1’ in ‘k1’ should be subscripted 
•  Line 222: Typos/errors. 
• Line 252: Typo: “controls subjects” 
• Line 292: Grammatical errors 
 
Answer: We modified these typos 
 
Reviewer #2 
• P.3 – The authors do not provide any evidence for why TCD has been proposed as a mechanism in 
these disorders. The argument for the experiment as currently articulated in the Introduction seems to 
be only weakly justified. Out of all the possible neurological/neuropsychiatric disorders, why look in 
particular at PD/tinnitus/MDD/chronic pain? What is so special about thalamocortical oscillations in 
these diseases? What about other diseases in which thalamocortical information processing is thought 
to be disrupted, such as schizophrenia? What is the justification for picking these ROIs? Citations to 
other papers including the Llinás et al. paper are given, but some supporting evidence should be 
provided in the main text. 
 
Answer: We understand the concern of the reviewer and have added additional information to the 
paper: ‘Specific brain oscillatory behavior characterizes resting-state awake (11) and sleep stages (12) in 



an evolutionary preserved way (13), as well as perceptual (14, 15), motor (16), and cognitive states (17). 
Furthermore, some brain disorders might harbor a specific oscillatory signature, known as 
thalamocortical dysrhythmia (TCD) (18-20). The original TCD model suggests a common underlying 
oscillatory mechanism present in specific neurological disorders (i.e. Parkinson's disease (PD), 
neuropathic pain, and tinnitus) as well as neuropsychiatric disorders (i.e. depression) (20). The original 
description of TCD proposes that normal resting-state alpha activity (8 – 12 Hz) slows down to theta (4 – 
8 Hz) activity in states of deprived input and that this theta activity is associated with an increase in 
surrounding beta/gamma (25 – 50 Hz) activity, which results in persistent cross-frequency coupling 
between theta and gamma activity (19, 20). The underlying idea is that deprivation leads to a 
thalamocortical column-specific decrease in information processing, which permits slowing down of 
resting-state thalamocortical activity from alpha to theta, as less information needs to be processed 
(21). Decreased input also results in a reduction of GABAA mediated lateral inhibition, inducing gamma 
(>30 Hz) band activity surrounding the deafferented thalamocortical columns (19). This gamma band 
activity surrounding theta activity is known as the edge effect (19, 20).’ 

‘However, whether TCD really exists is controversial and the entity is not widely accepted. Recent 
interest in cross-frequency coupling in physiological states (17, 22, 23) might lead to a wider acceptance 
of TCD as a pathological state (18). It is therefore of interest to verify whether a purely data-driven 
approach by means of a support vector machine (SVM) can reliably detect this entity. This would serve 
as proof that TCD as a pathological state indeed does exist. In this study we therefore combine source 
localized resting-state EEG with machine learning to look for a brain-based neurologic and 
neuropsychiatric signature for tinnitus, neuropathic pain, PD, depression, and all pathologies described 
as TCDs in the seminal paper on the model (20). We used a ROI based approach. The initial choice of the 
ROIs was based on a meta-analysis of brain areas involved in the pathophysiology of tinnitus (24). These 
include tinnitus specific areas such as the auditory cortex and non-specific areas, such as the 
parahippocampus, dorsal anterior and posterior cingulate cortex, and insula, which are common to 
tinnitus and the other pathologies (25, 26). This was complemented by spatially specific areas such as 
the somatosensory cortex (27), motor cortex (28), and subgenual anterior cingulate cortex (29) that 
have been associated with neuropathic pain, PD, and depression respectively. We further aim to 
establish whether TCD as an entity can be diagnosed from resting-state electroencephalography (EEG) 
and further subdivided into its specific clinical entities. Based on theoretical underpinnings (18), we 
hypothesize that if TCD exists, it should be characterized by different spectrally equivalent but spatially 
distinct forms of TCD.’ 

‘In this paper, we only look at TCD in specific neurological (i.e. tinnitus, pain, Parkinson’s) and 
neuropsychiatric (i.e. depression) disorders as suggested in the original paper on TCD. Further research 
has shown that TCD could also be present in schizophrenia (30), migraines (31), visual snow (32), and 
chronic back pain (33). Therefore, in future research we could also look at these additional pathologies 
and cross-validate our findings by including non-TCD related disorders’ 

‘In conclusion, the current data-driven approach using machine learning shows temporal and spatial 
patterns of activity that serve as a cortical signature for pain, tinnitus, PD, and depression respectively. 
Our data suggest a spectrally equivalent but spatially distinct form of TCD depending on the specific 
neural disorder. However, apart from the disorder-specific spatial signature, common brain areas that 
are involved in pain, tinnitus, Parkinson’s, and depression are identified as well. Therefore, this study 
supports the existence of TCD as a unifying mechanism underlying diverse neuropsychiatric disorders. 
However, more research is needed to cross validate these findings, including different neurological and 
neuropsychiatric disorders.’ 
 
• P.4 – The full demographic and symptom information are not provided. It is impossible to evaluate 
whether control and patient sub-groups are well matched. What was done to address possible 



confounds, such as cognitive performance irrespective of clinical status or duration of illness? 
Particularly were any patients on medication and if so how was this controlled for? 
 
Answer: We added more information about the different patient groups in table 1. All patients were in a 
chronic stage of their disease and if patients were taking mediation, use was stable for at least 3 months 
before the EEG recording. Medication was also different over different patients within one group and 
between groups. In addition, our ethical board did not allow us to stop patients’ medication regimens to 
record an EEG. Patients were not tested for their cognitive performance. However, the brain areas of 
interest included in our analysis are not directly related to cognitive performance with the exception of 
the parahippocampus. However, the parahippocampus has also been shown to be associated with 
aversion (34) and context processing (35), so it is related to more general area rather than a brain-
specific area that was not an essential component to differentiate between the different pathologies. 
 
• Some of the clinical groups are fairly small in size (particularly for depression, which is already the only 
psychiatric disorder in the sample), which may affect the accuracy and generalizability of the model. 
 
Answer: The uneven number can have a direct effect on the power of the classifier. We see that the 
smallest sample (i.e. the depression group) has less predictive power in comparison to the other 
pathologies. However, Pain and Parkinson have smaller samples in comparison to the tinnitus group, but 
generate a stronger model in generating a classifier. In addition, we see the same areas involved in 
depression as confirmed by previous research, cross validating our findings. It is nonetheless possible 
that increasing the sample would generate more areas selected by the classifier that could lead to more 
accurate model. However, when comparing the expected contribution to the full model based on the 
sample size (see Figure 2S) with the actual contribution based on the accuracy of the model, it is clear 
that the unequal distribution does not influence the full model. We added this to the discussion and 
supplementary material: ‘An additional weakness of the paper could be the unequal distribution of the 
sample sizes of the specific thalamocortical dysryhthmias included in our analysis. Although there is a 
smaller sample size for PD (n =31) and major depression (n = 15), this should not have a major bearing 
on the individual accuracies of the model, since each pathology is individually compared to a random 
model and yields approximately the same accuracy. Furthermore, the internal validity was confirmed by 
a 10-fold cross-validation technique for each disorder. The unequal distribution of the sample sizes 
could potentially influence the full model. However, when comparing the expected contribution to the 
full model based on the sample size (see Figure 2S) with the actual contribution based on the accuracy 
of the model, it is clear that the unequal distribution does not influence the full model.` 
 
• P. 6 – How accurate was the manual removal of artifacts? A more detailed description of how these 
artifacts were identified and removed would be useful. 
 
Answer: We further clarified this in the paper: ‘An artifact was defined as an EEG characteristic that 
differs from signals generated by activity in the brain. 1) Some artifacts are known to be in a limited 
frequency range, e.g., above some frequency. This was removed by frequency filtering. 2) Some artifacts 
consist of discrete frequencies such as 50 Hz (or 60 Hz for USA) or its harmonics. These were removed by 
notch filtering. 3) Some artifacts are limited to a certain time range, e.g., in the case of eye blinks. These 
artifacts were recognized by visual inspection and these time intervals were discarded. 4) Some artifacts 
originate from one or a few distinct sources or a limited volume of space so that the artifact topography 
is a superposition of characteristic topographies (equivalently, the artifact is limited to a subspace of the 
signal space). We removed the artifacts by determining the characteristic topographies (equivalently, 
the artifact subspace) so that the remaining signals do not contain anything from the artifact subspace 



(6). 5) Artifacts and true brain signals that can be assumed to be sufficiently independent can be 
removed by independent component analysis (7, 8). 6) Some artifacts are characterized by a particular 
temporal pattern such as exponential decay. We removed these artifacts by modeling the artifact and 
fitting its parameters to the data and then removing the artifact (9).  

After artifact rejection, a comparison was made between the different groups (healthy control 
subjects, tinnitus subjects, subjects with chronic pain, subjects with PD, and subjects with major 
depression) for the average length of the EEG. This analysis showed no significant difference between 
the different groups (F = .88, p = .48; see Figure 1S).’  
 
• P. 8 – It is unclear to me how the SVM was trained. In the Model Generation section it reads as though 
the SVM was given a multi-class dataset but trained only to make binary predictions (tinnitus vs 
controls), although it is clear from the Results that the model was tested on the other disorders vs 
controls as well. Or was the model only trained to differentiate between tinnitus and controls, but then 
used to classify the other disorders vs controls? This point, although critical to evaluating the integrity of 
the experiment, is ambiguous in the text.  
 
Answer: ‘The regions of interest in the different frequency bands were further organized into a file that 
could be read by the data-mining software Weka (University of Waikato Machine Learning Group, 
available at http://www.cs.waikato.ac.nz/ml/weka/). Thus, the file consisted of the full dataset, which is 
comprised of the current density for all regions of interest for all 541 subjects in the 5 frequency bands 
for the model (i.e. Full model). The analysis was also conducted for respectively 264 tinnitus subjects, 78 
subjects with chronic pain, 31 subjects with PD, and 15 subjects with major depression in comparison to 
healthy control subjects separately. Using a simple logistics filter, a 10 fold cross-validation was 
performed on the full dataset. Cross-validation is a technique in which the data set is divided into k 
equal portions called folds. The first fold is used to generate a predictive model of the dataset. The data 
in the remaining k – 1 folds are then tested against the model, yielding measurements of model 
accuracy. A second model is then generated off the second fold, and the remaining k – 1 folds (which 
includes the fold that created the first model) are tested against this new model again. Subsequently, 
after all the folds have been used to create and test a model, the average of the values of model 
accuracy over the k-fold cross-validation is presented as the overall accuracy of the model. For example, 
in a 10-fold cross-validation technique for 100 people labeled (disorder vs. healthy), the program takes 
the 100 labeled data and produces 10 equal sized sets. Each set is divided into two subgroups: 90 
labeled data that are used for training and 10 labeled data are used for testing. For the labelled group 
that is used for training, the program maintains the same distribution. So if out of the 100 people 
labeled, 60 were healthy subjects and 40 were subjects with a disorder, it will keep this distribution 
when it selects 90 subjects for training. That would be 54 healthy subjects and 36 subjects with a 
disorder. It also produces a classifier with an algorithm from 90 labeled data and applies that on the 10 
testing data for k1. It does the same computation for each of the nine remaining folds (k2 – k10) and 
produces 9 more classifiers. At the end of a 10-fold validation, the average of the 10 classifiers produced 
from 10 equal sized sets is calculated and represents the averaged cross validation. The measurements 
of model accuracy calculated by the k-fold cross-validation technique includes the true-positive ratio, 
root mean squared error (RMSE), mean average error (MAE), and κ-statistic. True-positive ratio was 
calculated as the ratio of the total number of correctly classified positive instances (in this case, positive 
refers to tinnitus patients) over the total number of positive instances in the testing sample. The RMSE is 
a measure of how well the model is learned by the machine, and was calculated by taking the square 
root of the average of the residuals (errors not explained by the regression equation) over the total 
sample size. The MAE is simply the average of residuals over the total sample size. The κ-statistic 



compares the model’s observed accuracy with its expected (chance) accuracy by taking the difference in 
observed and expected accuracy over 1 – expected accuracy.’ 
 
• Is the model able to differentiate between controls and diseases in which TCD is not thought to be 
involved? 
 
Answer: We added an additional analysis trying to differentiate between a control of a non-TCD 
described group (i.e. obese patients) and healthy subjects using the exact same model and same regions 
of interest. This model was not able to differentiate between the disease state and the control group. 
This suggests that the model is specifically looking at a pattern (increased theta and gamma power) that 
cannot be detected in non-TCD describe group. This further cross validates our findings.  
 
• The authors show that their SVM model identified frequency bands and regions of interest that were 
significant predictors of group membership. However the nature of the differences in these oscillations 
is not clear. It would be helpful to visualize these effects in the patient and control groups by plotting 
their individual power spectra. TCD specifically proposes that neurons are locked in theta oscillations 
and so increased theta power should be observed. P. 19 – “We show a spectrally equivalent but spatially 
distinct form of TCD depending on the specific neuropsychiatric disorder.” – I am not sure that this claim 
is founded. The authors do not show any data on the power spectra of oscillations in the different 
disorders. This conclusion seems to be based on the result that oscillations in different frequency bands 
were identified as important predictors in the SVM model, but it appears that different frequencies, as 
well as different brain regions, are affected in different disorders (for example alpha band does not 
appear to be in the pain model). 
 
Answer: We understand the concern of the reviewers and added a specific section in the results section 
dealing with this issue: ‘Whole brain Frequency analysis 
Comparing the power spectrum of patients (i.e. tinnitus, pain, PD, and depression) with healthy control 
subjects showed a significant effect for tinnitus (F = 4.44, p < .001), pain (F = 7.77, p < .001) (F = 3.29, p < 
.001), PD (F = 3.24, p < .001), and depression (F = 3.29, p < .001). A simple contrast analysis showed a 
significant increase in the current density for tinnitus patients in comparison to healthy control subjects 
between 2-4 Hz and 14-44 Hz. In comparison to healthy subjects, we see for pain a significant increase 
between 2 to 5 Hz and 14 to 44 Hz in current density and a significant decrease between 9 to 10 Hz. For 
both PD patients and patients with depression, we found respectively a significant increase from 3 to 8 
Hz and from 3 and 9 Hz in comparison to healthy control subjects. In addition, a significant increase was 
identified in current density between 12 and 44 Hz for PD patients and between 19 and 41 Hz for 
patients with depression in comparison to healthy control subjects. A general comparison between all 
patients (i.e. tinnitus, pain, PD, and depression) and healthy control subjects showed a significant effect 
(F = 5.07, p < .001). A simple contrast analysis revealed a significant increase between 2 and 5 Hz and 
between 13 and 44 Hz. See Figure 1 for overview.’ 
 
• P. 18 – Drawing conclusions regarding similarities/differences between neurological and 
neuropsychiatric disorders (such as the subgenual ACC as a “common core”) can be a little ambitious as 
only three neurological disorders and one neuropsychiatric (with a small sample size) were considered in 
this study. 
 
Answer: We tone-down the interpretation of the study in the conclusion: ‘In conclusion, the current 
data-driven approach using machine learning shows temporal and spatial patterns of activity that serve 
as a cortical signature for respectively pain, tinnitus, PD, and depression. Our data suggest a spectrally 



equivalent but spatially distinct form of TCD depending on the specific neural disorder. However, apart 
from the disorder-specific spatial signature, common brain areas that are involved in pain, tinnitus, 
Parkinson’s, and depression are identified as well. Therefore, this study supports the existence of TCD as 
a unifying mechanism underlying diverse neuropsychiatric disorders. However, more research is needed 
to cross validate these findings, including different neurological and neuropsychiatric disorders.’ 
 
• Figure captions should be updated to provide more information (for example in Fig. 5 it is not clear 
from the figure/caption that the spider plots are showing Pearson correlation coefficients). The authors 
should also consider labeling the subplots with letters for easier reference. 
 
Answer: We modified the figure captions by adding more information and clarifying the figures more in 
detail: 
‘Figure 1. A Comparison of the power spectrum of patients (i.e. tinnitus, pain, PD and depression) with 

healthy control subjects showed a significant effect for tinnitus (F = 4.44, p < .001), pain (F = 7.77, p < 
.001) PD (F = 3.24, p < .001), and depression (F = 3.29, p < .001) for specific frequencies (see grey bars 
in figure). A general comparison between all patients (i.e. tinnitus, pain, PD, and depression) and 
healthy control subjects showed a significant effect (F = 5.07, p < .001) for specific frequencies (see 
grey bars in figure). 

Figure 2. Obtained model using support vector machine learning to differentiate between respectively 
tinnitus vs controls, pain vs controls, Parkinson disease vs controls, and depression vs controls. SVM 
learning can differentiate between the disorder and healthy control subjects with an accuracy 
between 75% and 94% in comparison to a random model. The sensitivity of the models and the area 
under the curve were significantly higher for the obtained model in comparison to the random 
model, while the false discovery rate was significantly lower. A significant difference was also 
identified by comparing the κ-statistic MAE and RMSE, confirming the strength of the tested model in 
comparison to the random model. 

Figure 3. Support vector machine learning differentiates between respectively tinnitus vs controls, pain 
vs controls, Parkinson disease vs controls, and depression vs controls. Abbreviations: dACC: dorsal 
anterior cingulate cortex; sgACC: subgenual anterior cingulate cortex; INS: Insula; PHC: 
parahippocampus; AUD: Auditory Cortex, So: Somatosensory cortex; Mo: Motor cortex, PCC: 
posterior cingulate cortex. 

Figure 4. Support vector machine learning differentiates between thalamocortical dysrhythmia as a 
unifying disorder (including tinnitus, pain, Parkinson’s, and depression) vs controls. Abbreviations: 
dACC: dorsal anterior cingulate cortex; sgACC: subgenual anterior cingulate cortex; INS: Insula; PHC: 
parahippocampus; AUD: Auditory Cortex, So: Somatosensory cortex; Mo: Motor cortex, PCC: 
posterior cingulate cortex. 

Figure 5. Conjunction analysis between tinnitus, pain, Parkinson’s, and depression after the subtraction 
of the healthy controls shows a significant increase in the dorsal anterior cingulate cortex and 
hippocampal area for the beta frequency band. dACC: dorsal anterior cingulate cortex; PHC: 
parahippocampus. 

Figure 6. Radar plot of presence of cross-frequency coupling in the auditory cortex, somatosensory 
cortex, motor cortex, subgenual anterior cingulate cortex, and the dorsal anterior cingulate cortex for 
theta-beta and theta-gamma coupling using Pearson correlations. An asterisk indicates if the CFC for 
a specific disorder is significant after Bonferroni correction. The figure demonstrates the presence of 
theta-gamma (red line) and theta-beta (black line) coupling for tinnitus in the auditory cortex (upper 
left panel), for pain in the somatosensory (upper right panel) and motor cortices (mid left panel), and 
Parkinson’s in the motor cortex (mid left panel). For the dorsal anterior cingulate (lower left panel) 
and subgenual anterior cingulate cortices (mid right panel), an increased coupling between theta-



gamma and theta-beta oscillations is identified that is not related to the specific 
neurological/neuropsychiatric disorder, but likely has a more non-specific general role. 

Figure 7. Spatial distribution of theta-beta and theta-gamma cross frequency coupling as related to 
different thalamocortical dysrhythmia syndromes.’ 

 
MINOR POINTS: 
 
• Consider consistently using both “neurological” and “neuropsychiatric” or a more general term such as 
“neural disorder”. 
 
Answer: We modified this throughout the paper 
 
• There are numerous grammatical mistakes throughout the manuscript – please check carefully. 
 
Answer: We carefully checked for typos and grammatically mistakes. 
 
Reviewer #3 
This is an impressive manuscript on a large database of patients similar to the original description of TD 
in PNAS. I am very supportive of its publication since I do think that TD exists and that the controversy 
has come more from the technical difficulty in demonstrating it. This manuscript does just that. 
However, I have a major issue that I believe should be addressed. Since TD is very controversial and this 
manuscript makes strong claims, I believe that it should not be published without an additional analysis 
of the EEG similar to the original publication of TD. This analysis should demonstrate that the relevant 
frequencies are present in the power spectrum of an example patient and the population, show that 
shifts in frequency are statistically significant and clearly visible in the power spectrum. Another key 
aspect of TD is the increase in coherence, also illustrated in the original paper, this manuscript must 
address coherence at the large scale of the EEG. 
 
Answer: We understand the concern of the reviewer and added the power spectrum to the results 
sections: ‘Whole brain frequency analysis 
Comparing the power spectrum of patients (i.e. tinnitus, pain, PD, and depression) with healthy control 
subjects showed a significant effect for tinnitus (F = 4.44, p < .001), pain (F = 7.77, p < .001) (F = 3.29, p < 
.001), PD (F = 3.24, p < .001), and depression (F = 3.29, p < .001). A simple contrast analysis showed a 
significant increase in the current density for tinnitus patients in comparison to healthy control subjects 
between 2-4 Hz and 14-44 Hz. In comparison to healthy subjects, we see for pain a significant increase 
between 2 to 5 Hz and 14 to 44 Hz in current density and a significant decrease between 9 to 10 Hz. For 
both PD patients and patients with depression, we found respectively a significant increase from 3 to 8 
Hz and from 3 and 9 Hz in comparison to healthy control subjects. In addition, a significant increase was 
identified in current density between 12 and 44 Hz for PD patients and between 19 and 41 Hz for 
patients with depression in comparison to healthy control subjects. A general comparison between all 
patients (i.e. tinnitus, pain, PD, and depression) and healthy control subjects showed a significant effect 
(F = 5.07, p < .001). A simple contrast analysis revealed a significant increase between 2 and 5 Hz and 
between 13 and 44 Hz. See Figure 1 for overview.’ 
‘Figure 1. A Comparison of the power spectrum of patients (i.e. tinnitus, pain, PD, and depression) with 

healthy control subjects showed a significant effect for tinnitus (F = 4.44, p < .001), pain (F = 7.77, p < 
.001) (F = 3.29, p < .001), PD (F = 3.24, p < .001), and depression (F = 3.29, p < .001) for specific 
frequencies (see grey bars in figure). A general comparison between all patients (i.e. tinnitus, pain, 



PD, and depression) and healthy control subjects showed a significant effect (F = 5.07, p < .001) for 
specific frequencies (see grey bars in figure).’ 

 
 Answer: We also tried to apply an overall cross-frequency coupling (power to power) as applied in the 
original paper but were unable to find a clear effect looking at power to power. We did not add this to 
the paper, but it the reviewer thinks this is necessary we are will to add this. 

 
 
However, we do think that coupling using phase-amplitude gives a more accurate reflection of the 
relationship between two frequency bands (17) that might be, based on our data that fits with the 
original paper: 
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Reviewers' comments:  
 
Reviewer #1 (Remarks to the Author):  
 
The authors have adequately addressed my original comments and concerns.  
 
 
Reviewer #2 (Remarks to the Author):  
 
GENERAL COMMENTS  
The study deserves merit for its impressive results. However, details for one of their key analyses, 
the SVM model, still seem insufficiently characterized for reproducibility, unless perhaps the same 
particular data-mining software is used. In addition, there are still pervasive careless errors and 
points that require clarification throughout. More specific points are given below.  
 
SPECIFIC POINTS AND SUGGESTIONS  
 
• Power correlation plots in response to R3 – the authors note that they do not see a clear 
difference between control and patients samples when looking at power-to-power correlations, but 
do patients statistically show an increase in theta power, or harmonics in the gamma range? It is 
difficult to judge from the figure as no key was included. However, these effects were 
demonstrated in Llinás et al. and would be expected from increased theta coherence and an edge 
effect respectively, both of which are key arguments for the TCD model of neural disorders.  
• Please provide further details on how the SVM model was generated. Were data normalized 
before being used as features? What kind of kernel was used and what was the slack penalty? 
These are parameters that may all affect the performance of the SVM and can be optimized via 
cross-validation, and can affect the interpretability of the results. Experimenting with weighting 
control and patient classes could also help with the imbalanced class sizes.  
• Additionally, could the authors please clarify what is meant by a “simple logistics filter” (line 
214)?  
• “False discovery rate” and “FPR” (false positive rate) have different statistical definitions, but 
they appear to be used interchangeably throughout this manuscript. Please clarify.  
• Fig. 3 – it is still unclear to me why frequency bands are only listed for some regions and not 
others here, and this information is not included in the caption. A fellow reviewer also brought up 
this point, which I feel is still inadequately addressed.  
 
MINOR POINTS  
• The manuscript is now much easier to read and understand than it had been previously, but 
there are still several typos throughout – e.g. in the Abstract, “”Parkinso’s Disease (PD)” should be 
“Parkinson’s Disease (PD)”; line 284, “modal” should be “model” etc.  
• There are also some abbreviations that are not defined in the text or in the captions (e.g. TPR, 
FPR).  
• In Fig. 2 “Percentage” is used as the y-axes for plots in the first column but decimals are used 
for the second and third columns – please consider keeping the labels consistent.  
 
 
 
Reviewer #3 (Remarks to the Author):  
 
I am impressed and convinced by the additional analysis, I hope the authors agree that this 
increases the power of the results. I don't think that the figure illustrating the lack of cross 
frequency coupling is necessary, but it should be cited and the phase-amplitude analysis should be 
in the manuscript and explained as in the reply to the reviewer.  
otherwise i have no further comments. i enjoyed reading both versions of the manuscript.  
 



Response to the Reviewer 
 
Reviewer #2  
GENERAL COMMENTS 
The study deserves merit for its impressive results. However, details for one of their key analyses, the 
SVM model, still seem insufficiently characterized for reproducibility, unless perhaps the same particular 
data-mining software is used. In addition, there are still pervasive careless errors and points that require 
clarification throughout. More specific points are given below. 
 
SPECIFIC POINTS AND SUGGESTIONS 
• Power correlation plots in response to R3 – the authors note that they do not see a clear difference 
between control and patients samples when looking at power-to-power correlations, but do patients 
statistically show an increase in theta power, or harmonics in the gamma range? It is difficult to judge 
from the figure as no key was included. However, these effects were demonstrated in Llinás et al. and 
would be expected from increased theta coherence and an edge effect respectively, both of which are 
key arguments for the TCD model of neural disorders. 
 
Answer: We do see an increase in the theta and gamma power for our patients (see figure 1). However, 
for the power to power cross-frequency coupling we did not identify a significant difference between 
controls and patients. More recent research suggests that phase-amplitude is a more accurate reflection 
of the relationship between the two frequencies1. Applying this latter method demonstrates a clear 
correlation between the phase of the theta and the amplitude of the gamma. 
  
• Please provide further details on how the SVM model was generated. Were data normalized before 
being used as features? What kind of kernel was used and what was the slack penalty? These are 
parameters that may all affect the performance of the SVM and can be optimized via cross-validation, 
and can affect the interpretability of the results. Experimenting with weighting control and patient 
classes could also help with the imbalanced class sizes. 
 
Answer: We understand the concern. Therefore, we rewrote the whole section to clarify the method 
further. In addition, we added more information in the supplementary materials regarding the method 
applied. To further analyze the problem of the imbalanced class sizes we include also weighted 
comparisons.  
 
• Additionally, could the authors please clarify what is meant by a “simple logistics filter” (line 214)? 
 
Answer: We modified this in the paper and changed it to logistic regression-based classifier. We further 
added in supplementary material the underlying method. 
 
• “False discovery rate” and “FPR” (false positive rate) have different statistical definitions, but they 
appear to be used interchangeably throughout this manuscript. Please clarify. 
 
Answer: Was a typo. We change if throughout the paper to false positive rate. 
 



• Fig. 3 – it is still unclear to me why frequency bands are only listed for some regions and not others 
here, and this information is not included in the caption. A fellow reviewer also brought up this point, 
which I feel is still inadequately addressed. 
 
Answer: We understand the confusion and regenerated the figures only including the areas that show 
up based on the SVM calculations and not the areas that were included in the SVM model. We did the 
same thing for figure 4 to avoid inconsistency. 
 
MINOR POINTS 
• The manuscript is now much easier to read and understand than it had been previously, but there are 
still several typos throughout – e.g. in the Abstract, “”Parkinson’s Disease (PD)” should be “Parkinson’s 
Disease (PD)”; line 284, “modal” should be “model” etc. 
 
Answer: We corrected this. 
 
• There are also some abbreviations that are not defined in the text or in the captions (e.g. TPR, FPR). 
 
Answer: We screened the whole paper and added the missing abbreviations. 
 
• In Fig. 2 “Percentage” is used as the y-axes for plots in the first column but decimals are used for the 
second and third columns – please consider keeping the labels consistent. 
 
Answer: We modified the figure so that it is consistent with the second and third columns. 
 
Reviewer #3  
I am impressed and convinced by the additional analysis, I hope the authors agree that this increases the 
power of the results. I don't think that the figure illustrating the lack of cross frequency coupling is 
necessary, but it should be cited and the phase-amplitude analysis should be in the manuscript and 
explained as in the reply to the reviewer. 
 
Answer: We understand the concern of the reviewer and integrated the comment as suggested. ‘Phase–
amplitude was chosen over power–power cross-frequency coupling as the former has been shown to 
reflect a physiological mechanism for effective communication in the human brain1.’ 
 
1 Canolty, R. T. et al. High gamma power is phase-locked to theta oscillations in human neocortex. 
Science 313, 1626-1628, doi:10.1126/science.1128115 (2006). 
 



REVIEWERS' COMMENTS:  
 
Reviewer #3 (Remarks to the Author):  
 
I have no further general comments except that I believe the significant increase in the theta and 
gamma power in patients shown in figure 1 without a significant difference in the power to power 
cross-frequency coupling MUST be clearly indicated in the results section since this differs from the 
original PNAS report on TCD. It would also be highly appropriate and useful if the authors included 
a comment in discussion commenting on the recent research that suggests that phase-amplitude 
is a more accurate reflection of the relationship between the two frequencies, with citations.  



Response to the editor reviewers: 

 

Reviewer #3 (Remarks to the Author): 

I  have  no  further  general  comments  except  that  I  believe  the  significant  increase  in  the  theta  and 

gamma power in patients shown in figure 1 without a significant difference in the power to power cross‐

frequency coupling MUST be clearly  indicated  in the results section since this differs  from the original 

PNAS report on TCD. It would also be highly appropriate and useful if the authors included a comment in 

discussion commenting on the recent  research that suggests that phase‐amplitude  is a more accurate 

reflection of the relationship between the two frequencies, with citations. 

 
Answer: We understand the concern of the reviewer and add the cross‐frequency coupling in the results 
section and include a comment in the discussion. 

“The cross‐correlation between spectral amplitudes at different frequencies for healthy control subjects 
as well as for patients with tinnitus, pain, Parkinson’s disease, and depression as illustrated in Fig. 7 does 
not  show  a  significant  difference  in  increased  power  to  power  in  theta‐beta  and  theta‐gamma 
correlation between the healthy control group and the patient groups.” 
 
“Theta‐beta  and  theta‐gamma  coupling were  however  not  confirmed when  using  a  power‐to‐power 
cross‐frequency coupling analysis as applied in the original TCD model9. However, more recent research 
suggests  that  phase–amplitude  coupling  more  accurately  reflects  the  physiological  mechanism  for 
effective communication in the human brain6.” 

 

  


