
 

Supplementary Information Box 2. Variational inference and the free energy formulation. 

Organisms do not have access to the ‘true’ probabilistic contingencies that describe the entire 

organism-niche system, that is, the actual relations of dependencies between environmental 

states and states of the organism. After all, the biotic system itself is ‘hidden’, as it were, behind 

a Markov blanket, which endows it with statistical independence from random fluctuations and 

other influences from the ‘outside’. However, it does have access to quantities that define the 

variational free energy, and it can leverage the gradients defined by the free energy landscape to 

resists entropic erosion, through the process of ‘active inference’ [111, 112]. Here, the 

organism’s action-perception cycles can be seen as self-evidencing [40]; that is, as producing 

evidence that allows it to infer its own existence.  

Self-evidencing and variational inference 

Formally, we can model this behaviour using the variational methods that were first developed 

by Feynman[113], and are now widely used in statistical mechanics and machine learning [114-

117]. In the context of the free energy formulation, the internal states of the organism (i.e., 

internal states of the Markov blanket) are formally described as encoding a ‘variational’ density, 

which comes to approximate the ‘true’ (posterior) probability density that is embodied by the 

organism-niche system, namely, through gradient descent on the free energy landscape. This 

warrants further explication.  

Because living systems are inferentially secluded behind their Markov blanket, the causes of 

their sensory states are represented using surrogate or fictive variables,  , which represent the 

system’s ‘best guess’ as to the cause of its input. As such, on the free energy formulation, the 

internal states of the organism encode or embody a ‘variational density’, which represents the 

organism’s ‘best guess’ as to the causes of its sensations through cycles of free energy 

minimisation (a.k.a. active inference).  

The ensuing formalism draws on approximate Bayesian inference (e.g., variational approaches in 

machine learning). When the computation of a posterior probability scheme becomes intractable 

in Bayesian inference (e.g., due to high dimensional and nonlinear generative models), a 

common strategy is to approximate the ‘true’ posterior density over the model parameters with a 

simpler variational density, whose sufficient statistics can be optimised easily. Usually, this 

involves something called a mean field approximation in which a high dimensional posterior 

density is approximated with a product of marginal densities. These marginal densities then 

minimise variational free energy by passing messages (sufficient statistics) to each other. When 

this variational message passing is cast as a gradient descent on variational free energy, we 

obtain a DST version of approximate (variational) inference. 

In the present (general) setting, the variational density is defined as a probability density, q, that 

is encoded or parameterized by internal states ( )t of the system of interest, which is itself 

bounded by a Markov blanket and subject to free energy minimising dynamics. Thus, the internal 

states of the system induce a variational density over external states ( )t . This is a consequence 

of the formulation of the free energy as surprise plus divergence. This means that when the 

variational free energy functional is minimised, the divergence disappears and the variational 

density becomes the posterior density. At the same time, the variational free energy 

approximates surprise or (negative) log Bayesian evidence. 

Active inference and variational free energy 



So, although the organism cannot access the true posterior density (or surprise), it can 

nonetheless evaluate the variational free energy, because this quantity is a function of two 

quantities which it can access: the variational density that it encodes (which is parameterised by 

its internal states) and the sensations or sensory states of the Markov blanket that are contingent 

upon action. This brings us to a crucial observation. The only way we can actually change 

surprise is by changing the sensory states through action. This means to minimise surprise 

through minimising variational free energy, we need to change our internal states to make the 

free energy a good proxy for surprise and then we need to act to change our sensory states to 

actually reduce surprise. If we do this for long enough, the expected surprise or entropy of our 

sensory exchanges will be minimised (i.e., model evidence will be maximised) and we will be 

locally ergodic and self-evidencing. This is ‘active inference’. 

The generative models that define free energy are probabilistic models of the eco-niche relation, 

the dynamical relation that couples the organism to its niche. The generative model is usually 

expressed as the joint probability of sensory states, s(t), and their causes, (t), in the (external) 

environment. This joint probability is usually expressed in terms of a likelihood p(s(t)|(t)) and 

prior beliefs p((t)). With this formalism in place, one can say the variational density – that is 

parameterised by internal states – is encoded or embodied by the internal states of the system. 

Conversely, we can say the generative model is entailed by the existence of a system equipped 

with a Markov blanket. Equivalently, we can also say that the generative model is enacted by the 

entire organism-niche system—that is, the conditional dependencies described by the generative 

model are brought forth in a process that is accomplished by exchanges between the organism 

and econiche.  

Ergodicity and active inference 

By virtue of the existence of an attracting or characteristic set of states (the extended phenotype), 

the dynamics of the random dynamical system must be locally ergodic. Living systems must 

maintain their ergodicity in order to remain alive – and thereby engage in some form of active 

inference. On this view, ergodicity is not merely an assumption that underwrites any principle of 

self-organisation. It is a definition of the living, complex adaptive (biological) systems we want 

to characterise. In other words, any system that does not maintain its (local) ergodicity cannot, by 

definition, possess characteristics that can be measured. The ergodicity of systems that possess a 

random dynamical attractor allows us to associate the long-term average of self-information or 

surprisal with the entropy of the probability distribution of occupying different states. This 

means that a tendency to minimise surprisal (or, equivalently, to maximise model evidence) is 

also a tendency to minimise (internal) entropy and thereby resist the second law of 

thermodynamics. In the sense that entropy is formally equivalent to the time average of a log 

probability, it corresponds to a Hamiltonian action. This means that all we are saying is that 

living systems conform to Hamilton's principle of least action, where action is entropy. In fact, 

we are saying a little bit more than this, we are saying that living systems conform to Hamilton's 

principle of least action via active inference – and the implicit minimisation of variational free 

energy. 

  




