Supplementary Information Box 2. Variational inference and the free energy formulation.
Organisms do not have access to the ‘true’ probabilistic contingencies that describe the entire
organism-niche system, that is, the actual relations of dependencies between environmental
states and states of the organism. After all, the biotic system itself is ‘hidden’, as it were, behind
a Markov blanket, which endows it with statistical independence from random fluctuations and
other influences from the ‘outside’. However, it does have access to quantities that define the
variational free energy, and it can leverage the gradients defined by the free energy landscape to
resists entropic erosion, through the process of ‘active inference’ [111, 112]. Here, the
organism’s action-perception cycles can be seen as self-evidencing [40]; that is, as producing
evidence that allows it to infer its own existence.

Self-evidencing and variational inference

Formally, we can model this behaviour using the variational methods that were first developed
by Feynman[113], and are now widely used in statistical mechanics and machine learning [114-
117]. In the context of the free energy formulation, the internal states of the organism (i.e.,
internal states of the Markov blanket) are formally described as encoding a ‘variational’ density,
which comes to approximate the ‘true’ (posterior) probability density that is embodied by the
organism-niche system, namely, through gradient descent on the free energy landscape. This
warrants further explication.

Because living systems are inferentially secluded behind their Markov blanket, the causes of
their sensory states are represented using surrogate or fictive variables, , which represent the

system’s ‘best guess’ as to the cause of its input. As such, on the free energy formulation, the
internal states of the organism encode or embody a ‘variational density’, which represents the
organism’s ‘best guess’ as to the causes of its sensations through cycles of free energy
minimisation (a.k.a. active inference).

The ensuing formalism draws on approximate Bayesian inference (e.g., variational approaches in
machine learning). When the computation of a posterior probability scheme becomes intractable
in Bayesian inference (e.g., due to high dimensional and nonlinear generative models), a
common strategy is to approximate the ‘true’ posterior density over the model parameters with a
simpler variational density, whose sufficient statistics can be optimised easily. Usually, this
involves something called a mean field approximation in which a high dimensional posterior
density is approximated with a product of marginal densities. These marginal densities then
minimise variational free energy by passing messages (sufficient statistics) to each other. When
this variational message passing is cast as a gradient descent on variational free energy, we
obtain a DST version of approximate (variational) inference.

In the present (general) setting, the variational density is defined as a probability density, g, that
is encoded or parameterized by internal states x(t) of the system of interest, which is itself

bounded by a Markov blanket and subject to free energy minimising dynamics. Thus, the internal
states of the system induce a variational density over external states 7(t) . This is a consequence

of the formulation of the free energy as surprise plus divergence. This means that when the
variational free energy functional is minimised, the divergence disappears and the variational
density becomes the posterior density. At the same time, the variational free energy
approximates surprise or (negative) log Bayesian evidence.

Active inference and variational free energy




So, although the organism cannot access the true posterior density (or surprise), it can
nonetheless evaluate the variational free energy, because this quantity is a function of two
quantities which it can access: the variational density that it encodes (which is parameterised by
its internal states) and the sensations or sensory states of the Markov blanket that are contingent
upon action. This brings us to a crucial observation. The only way we can actually change
surprise is by changing the sensory states through action. This means to minimise surprise
through minimising variational free energy, we need to change our internal states to make the
free energy a good proxy for surprise and then we need to act to change our sensory states to
actually reduce surprise. If we do this for long enough, the expected surprise or entropy of our
sensory exchanges will be minimised (i.e., model evidence will be maximised) and we will be
locally ergodic and self-evidencing. This is ‘active inference’.

The generative models that define free energy are probabilistic models of the eco-niche relation,
the dynamical relation that couples the organism to its niche. The generative model is usually
expressed as the joint probability of sensory states, s(t), and their causes, 7(t), in the (external)
environment. This joint probability is usually expressed in terms of a likelihood p(s(t)| 7(t)) and
prior beliefs p(#7(t)). With this formalism in place, one can say the variational density — that is
parameterised by internal states — is encoded or embodied by the internal states of the system.
Conversely, we can say the generative model is entailed by the existence of a system equipped
with a Markov blanket. Equivalently, we can also say that the generative model is enacted by the
entire organism-niche system—that is, the conditional dependencies described by the generative
model are brought forth in a process that is accomplished by exchanges between the organism
and econiche.

Ergodicity and active inference

By virtue of the existence of an attracting or characteristic set of states (the extended phenotype),
the dynamics of the random dynamical system must be locally ergodic. Living systems must
maintain their ergodicity in order to remain alive — and thereby engage in some form of active
inference. On this view, ergodicity is not merely an assumption that underwrites any principle of
self-organisation. It is a definition of the living, complex adaptive (biological) systems we want
to characterise. In other words, any system that does not maintain its (local) ergodicity cannot, by
definition, possess characteristics that can be measured. The ergodicity of systems that possess a
random dynamical attractor allows us to associate the long-term average of self-information or
surprisal with the entropy of the probability distribution of occupying different states. This
means that a tendency to minimise surprisal (or, equivalently, to maximise model evidence) is
also a tendency to minimise (internal) entropy and thereby resist the second law of
thermodynamics. In the sense that entropy is formally equivalent to the time average of a log
probability, it corresponds to a Hamiltonian action. This means that all we are saying is that
living systems conform to Hamilton's principle of least action, where action is entropy. In fact,
we are saying a little bit more than this, we are saying that living systems conform to Hamilton's
principle of least action via active inference — and the implicit minimisation of variational free
energy.






