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1 Mathematical derivation

Suppose that a quantitative trait Y , measured on n individuals, follows the regression model

yi = wT
i β + εi, i = 1, . . . , n
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where

E[ε] = 0 (1)

var[ε] = σ2eIn×n + σ2aA1 + . . .+ σ2kK = Σ (2)

and A, . . . ,K are n×n matrices modeling correlations between individuals. Let ai,j , . . . , ki,j denote

the i, j entries of the matrices A, . . . ,K. Assuming that random effects due to A, . . . ,K are

independent, we have that:

E[εiεj ] = cov(εi, εj) = σ2eI(i=j) + σ2aai,j + . . .+ σ2kki,j .

Let β̂ be an unbiased estimator of β, and let ε̂i = yi −wT
i β̂ be an estimator εi, i = 1, . . . , n. We

estimate the variance components in a residual regression, i.e. by taking the vector all unique pairs

of residuals ε̂iε̂j , i ≤ j (we can do it by taking the upper diagonal sub-matrix of ε̂ε̂T that includes

the diagonal), denoted by ε̃d and regressing it according to the above model. The regression design

matrix is given by:

X =



1 a1,1 . . . k1,1

0 a1,2 . . . k1,2
...

...
...

...

0 a1,n . . . k1,n

1 a2,2 . . . k2,2

0 a2,3 . . . k2,3
...

...
...

...

0 a2,n . . . k2,n
...

...
...

...

1 an−1,n−1 . . . kn−1,n−1

0 an−1,n . . . kn−1,n

1 an,n . . . kn,n



=



1 1 1 1

0 a1,2 . . . k1,2
...

...
...

...

0 a1,n . . . k1,n

1 1 1 1

0 a2,3 . . . k2,3
...

...
...

...

0 a2,n . . . k2,n
...

...
...

...

1 1 1 1

0 an−1,n . . . kn−1,n

1 1 1 1
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(because ai,i, . . . , ki,i = 1 for all i). Denote, for simplicity of presentation, the vector of off-diagonal

elements of A, . . . ,K by l = (l1,2, l1,3, . . . , l1,n, l2,3, . . . , ln−1,n)T , l = 1, . . . , k, and the vector of off-

diagonal elements of ε̂ε̂T by ε̃. Then the least squares estimator of (σ2e , σ
2
a, . . . , σ

2
k) is given by

(XTX)−1XT ε̃d. Clearly, we have that

(XTX) =



n n n . . . n

n n+ aTa n+ aTb . . . n+ aTk

...
...

n n+ kTa n+ kTb . . . n+ kTk


.

This is most likely a positive definite matrix as (we assume that) the matrices A, . . . ,K are not

highly correlated. In addition, we have that

XT ε̃ =



∑n
i=1 ε̂

2
i∑n

i=1 ε̂
2
i + aT ε̃

...∑n
i=1 ε̂

2
i + kT ε̃


=



∑n
i=1 ε̂

2
i∑n

i=1 ε̂
2
i

...∑n
i=1 ε̂

2
i


+



0

aT ε̃

...

kT ε̃


.

Lemma 1:

(
XTX

)−1



1

1

...

1


=



1
n

0

...

0


⇔
(
XTX

)


1
n

0

...

0


=



1

1

...

1


Proof: Because

(
XTX

)
is non-singular, and from the properties of the inverse matrix, we have

that
(
XTX

)−1 (
XTX

)
v = v for every v.

Lemma 2: Variance component estimators corresponding to the matrices A, . . . ,K depend only on

the between-observation residuals of the form εiεj for i 6= j and do not depend on ε2i , i = 1, . . . , n.
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Proof: By noting that

(
XTX

)


1
n

0

...

0


=



1

1

...

1


,

we get from Lemma 1 that

(
XTX

)−1



∑n
i=1 ε̂

2
i∑n

i=1 ε̂
2
i

...∑n
i=1 ε̂

2
i


=



1
n

∑n
i=1 ε̂

2
i

0

...

0


which proves that the term

∑n
i=1 ε̂

2
i contributes only to the estimator σ̂2e .

Lemma 3: Denote by σ2T = σ2e + σ2a + . . .+ σ2k. Then σ̂2T = 1
n

∑n
i=1 ε̂

2
i .

Proof: We show that σ̂2e + σ̂2a + . . .+ σ̂2k = 1
n

∑n
i=1 ε̂

2
i . In the proof of Lemma 2 we saw that

(
XTX

)−1



1

1

...

1


=



1
n

0

...

0


.

Since this
(
XTX

)−1
is symmetric, it follows that

(
1 1 . . . 1

)(
XTX

)−1
=

(
1
n 0 . . . 0

)

Therefore

σ̂2e + σ̂2a + . . .+ σ̂2k ≡
(

1 1 . . . 1

)(
XTX

)−1
(XT ε̃)

=

(
1
n 0 . . . 0

)
(XT ε̃) =

1

n

n∑
i=1

ε̂2i ,

which completes the proof.
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Lemma 4: An estimator of the ratio between any variance component (or sum of variance com-

ponents) and the total variance is a ratio between two quadratic forms.

Proof: For L = A, . . . ,K, a quantity of the form lT ε̃ = ε̂TL−ε̂/2, where the matrix L−1 is the

matrix L with all diagonal values set to 0. An estimator a variance component σ2l is a linear sum

of the quadratic forms ε̂TA−ε̂, . . . , ε̂TK−ε̂, with coefficients the entries of the corresponding row

of (XTX)−1. Since a weighted sum of quadratic forms is a quadratic form, any variance compo-

nent (and a sum of variance components) is also a quadratic form. Similarly, the total variance

estimators is the quadratic form 1
n ε̂

T ε̂.

Theorem: We say that two matrices C1 and C2 are orthogonal in the trace inner product, or

“trace orthogonal” if tr (C1C2) = 0. If a matrix L− is trace orthogonal to all other matrices in the

set {A−, . . . ,K−}, then

σ̂2l =
1∑

j>i l
2
i,j

∑
j>i

li,j ε̂iε̂j .

Proof: Without loss of generality, assume that A is trace orthogonal to B, . . . ,K. First note that

for the symmetric matrices with diagonal values set to zero A−, . . . ,K−, tr
(
A−L−) = 0 if and

only if aT l = 0. Then

(XTX) =



n n n . . . n

n n+ aTa n . . . n

n n n+ bTb . . . n+ bTk

...
...

...
...

n n n+ kTb . . . n+ kTk.


Denote by (XTX)−1

[i,j] the i, j element in the matrix (XTX)−1. First, we notice that the entries

(XTX)−1
[2,j], j = 3, . . . , k+ 1 are all 0, because the (XTX)−1

[i,j] entry is a constant times the i, j minor

of (XTX), which has two identical columns (corresponding to the 1st and 2nd columns of (XTX)

when removing its 2nd row). Since the sum of the 2nd row of (XTX)−1 is equal to 0, as we saw

before, we get that (XTX)−1
[2,1] = −(XTX)−1

[2,2].
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We now argue that

σ̂2a ≡ (XTX)−1
[2,1]

n∑
i=1

ε2i + (XTX)−1
[2,2]

(
n∑

i=1

ε2i + aT ε̃

)

= (XTX)−1
[2,1]

n∑
i=1

ε2i − (XTX)−1
[2,1]

(
n∑

i=1

ε2i + aT ε̃

)

= −(XTX)−1
[2,1]a

T ε̃
(4)
=

1∑
j>i a

2
i,j

∑
j>i

ai,jεiεj ,

where we need to show that equality (4) holds to complete the proof. We need to show that

−(XTX)−1
[2,1] = 1∑

j>i a
2
i,j

. Consider now the matrix XTX. One can derive its determinant from its

second row, as:

|XTX| = (XTX)[2,1]M2,1 − (XTX)[2,2]M2,2 + . . .+ (−1)k+1(XTX)[2,1k]M2,k

= nM2,1 − (n+ aTa)M2,2 + 0 + . . . 0

= n|XTX|(XTX)−1
[2,1] − (n+ aTa)|XTX|(XTX)−1

[2,2]

= n|XTX|(XTX)−1
[2,1] − (n+ aTa)|XTX|(XTX)−1

[2,1]

= −aTa|XTX|(XTX)−1
[2,1]

Therefore, we get that −(XTX)−1
[2,1] = 1

aTa , which completes the proof.

2 Computation

2.1 Variance component estimators

While any unbiased estimator of β̂ suffices to generate residuals ε̂ and use them to obtain variance

component estimators as
(
XTX

)−1
XT ε̃d, a more efficient estimator iterates between estimating β

and the variance component estimator as follows:

1. Initialization step: set β̂
(0)

= (WTW)−1WTy.

2. Iteration step:

(a) Given the kth estimator of β, β̂
(k)

, set ε̂ = y −Wβ(k) and ε̃ is the vector of uppder

diagonal matrix (including the diagonal) of ε̂ε̂T . Set σ̂2,(k) = (σ̂
2,(k)
e , σ̂

2,(k)
a , . . . , σ̂

2,(k)
k ) =
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(
XTX

)−1
XT ε̃d.

(b) Given the kth estimator of σ2, σ̂2,(k), let Σ̂
(k)

= σ̂
2,(k)
e In×n + σ̂

2,(k)
a A+ . . .+ σ̂

2,(k)
k K with

inverse Σ̂
−1,(k)

. Set β̂
(k+1)

= (WT Σ̂
−1,(k)

W)−1WT Σ̂
−1,(k)

y

The iteration step repeats until convergence.

2.2 Confidence intervals for the variance components

From Lemma 4, any variance components (or sum of variance components) is given as a quadratic

form. Let Q be the quadratic form corresponding to a variance component estimate σ̂2l , such that

σ̂2l = ε̂TQε̂. Then this σ̂2l is distributed as the sum of independent χ2
(1) variables in

∑n
i=1 λiχ

2
(1),

where λ1, . . . , λn are the eigenvalues of Qcov(ε̂). In practice, for cov(ε̂) we use used the estimated

Σ̂(σ̂2e , . . . , σ̂
2
k). Functions in the package CompQuadFrom calculate the probability function (or

survival function) of this quadratic form based on λ1, . . . , λn. While it takes times to compute the

eigenvalues, once they are computed, a calculating the probabilities associated with the quadratic

form over a grid is simple and quick. We can test the hypothesis H0 : σ2l = 0 by calculating the

probability

Pr
(
ε̂TQε̂ = 0

)
= 1− Pr

(
ε̂TQε̂ > 0

)
,

and calculate two-sided confidence intervals for σ̂2l by calculating the survival probabilities over a

grid, and taking the appropriate quantiles. For example, for a 95% confidence interval we take the

values (c1, c2) for which

c1 = u : Pr
(
εTQε > u

)
= 0.025

c2 = u : Pr
(
εTQε > u

)
= 0.975.

We find these values using a binary search on the interval [0, σ̂2T ].

2.3 Computing heritability estimates and their confidence intervals

Suppose that the variance component corresponding to the kinship matrix is σ2k, which quadratic

form denoted by Qk. We estimate heritability as ĥk = σ̂2k/σ̂
2
T . However, we cannot use the

confidence intervals for σ2k to construct confidence intervals for hk. Instead, we note that the point
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estimate is ĥk is given by:

ĥk =
ε̂TQkε̂
1
n ε̂

T Iε̂
=
xT Σ̂

1/2
QkΣ̂

1/2
x

1
nx

T Σ̂x
=
xTFx

xTGx

where x ∼ N (0, I), for F = Σ̂
1/2
QkΣ̂

1/2
and G = Σ̂/n. Thus, it is a ratio between two quadratic

forms in (what we assume are) normal variables. For the squared root Σ̂
1/2

, we use the Cholesky

decomposition of Σ̂.

Now, we use the saddlepoint approximation for the distribution of a ratio of quadratic forms in

normal variables, proposed by Lieberman (1994). For a given potential value of hk, say h∗k, we can

calculate the survival probability

Pr (hk ≥ h∗k) ∼= 1− Φ(ξ̂) + φ(ξ̂)

[
1

ẑ
− 1

ξ̂

]

where Φ and φ are the standard normal cdf and pdf, and

ẑ = ω̂

{
2

n∑
i=1

d∗2i
(1− 2ω̂d∗i )

2

}1/2

ξ̂ =

{
n∑

i=1

ln(1− 2ω̂d∗i )

}1/2

sgn(ω̂)

and d∗1, . . . , d
∗
n are the eigenvalues of the matrix D∗ = F − h∗kG, and ω̂ is the corresponding

saddlepoint satisfying
n∑

i=1

d∗i
1− 2ω̂d∗i

= 0.

Confidence intervals are then built, as before, using a binary search to find the values satisfying

the required probabilities at the tails.

2.3.1 A faster algorithm when the kinship matrix is the only source of correlation in

the model

Computing the eigenvalues d∗1(h
∗
k), . . . , d∗n(h∗k) takes time. However, in the case where we only have

a single kinship matrix, denoted by K we can compute the eigen decomposition of the matrix

K− once to obtain eigenvalues λ1, . . . , λn, and then transform these eigenvalues to obtain the
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eigenvalues d∗1(h
∗
k), . . . , d∗n(h∗k) for each value h∗k. To see this, suppose that u is an eigenvector of

K− with eigenvalues λ. Then, by definition:

K−u = λu.

Since Σ = σ2k(K− + I) + σ2eI, it is straightforward to see that u is also an eigenvector of Σ:

Σu =
[
σ2k(K− + I) + σ2eI

]
u =

(
σ2kλ+ σ2k + σ2e

)
u.

Similarly, u is an eigenvector of Σ1/2 with eigenvalue
√
σ2kλ+ σ2k + σ2e , which finally leads us to

the transformation between an eigenvalue λ of Λ to an eigenvalue of D∗ = F − h∗kG given by:

d∗i (h
∗
k, λi) =

1

2
∑

i<j v
2
ij

λi(λiσ
2
k + σ2k + σ2e)− h∗k(λiσ

2
k + σ2k + σ2e)/n.

As before, we use the estimated σ̂2k, σ̂
2
e instead of the true unknown quantities.

2.3.2 Meta-analysis of across studies when kinship is the only source of correlation

A meta-analytic estimator. Suppose that there are S studies that we wanted to combined

in meta-analysis. We assume that kinship is the only source of correlation. Each study has a

vector of residuals ε̂s = (ε̂s,1, . . . , ε̂s,ns)
T , s = 1, . . . , S. Consider the Haseman-Elston regression,

but incomplete, so that only the pairs of multiplied residuals within study are used (i.e. only ε̂s,iε̂s,j

are regressed against entries of the kinship covariance matrix, but not ε̂s,iε̂t,j). Therefore, cross-

study kinship estimates are not used in the regression, however no assumption is made on them.

In other words, we do not need to assume that participant in one study is genetically independent

(no alleles shared IBD) of a participant in another study. It is straightforward to show that the

meta-analytic estimator of σe2 is given by σ̂2e =
∑S

s=1

∑ns
i=1 ε̂

2
s,i. Let ε̂ = (ε̂T1 , . . . , ε̂S)T . Then the

meta-analysis kinship variance component estimator is given by

σ̂2k =
1

tr
(
K−

s K−
s

) ε̂TK−
s ε̂

9



where K−
s is the block diagonal matrix that have all the study-specific kinship matrix (without

their diagonal values) arranged diagonally, as

Ks =



K−
1 0 . . . . . .

0 K−
2 0

...
. . .

... 0 0 K−
S


To see that this meta-analytic estimator of σ2k is unbiased, note first that cov(ε̂) = (σ2e+σ2k)I+σ2kK

−,

where now K− is the kinship matrix with kinship coefficients between the individuals across studies.

Now, from characteristics of quadratic forms, we have that

E
[
σ̂2k
]

= E

[
1

tr
(
K−

s K−
s

) ε̂TK−
s ε̂

]
=

1

tr
(
K−

s K−
s

)tr
(
K−

s cov(ε̂)
)

=
1

tr
(
K−

s K−
s

)tr
(
K−

s (σ2e + σ2k)I + σ2kK
−)

=
1

tr
(
K−

s K−
s

)tr
(
K−

s σ
2
kK

−
s

)
= σ2k.

Computing the meta-analytics heritability estimator and confidence intervals. The

eigenvalues result shows that all we need to calculate heritability estimates and confidence intervals

are eigenvalues of the matrix K− (the kinship matrix without the diagonal), estimated σ2e , σ2k, and

the sum of the entries of K− (2
∑

i<j k
2
ij). This result could be used to extend our methods to

meta-analysis of information from multiple studies. Suppose that each of m independent studies

calculated the residuals from a “null model” (i.e. a regression model without genetic fixed effects

other than PCs). Then, each study s reports:

1. Ks = 2
∑

i<j k
2
ij ,

2. σ̂2k,s,

3. σ̂2e,s,

4. The number of participants in the study ns,

5. The eigenvalues λs1, . . . , λ
s
ns

of the matrix K−
s .
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Then, the meta-analysis estimates of the kinship and error variance components, and KS are given

by:

σ̂2k =

∑S
s=1Ksσ̂2k,s∑S

s=1Ks

σ̂2e =

∑S
s=1 nsσ̂

2
e,s∑S

s=1 ns
,

KS =
S∑

s=1

Ks,

and the eigenvalues of the cross-study K− matrix are taken to be λ11, . . . , λ
1
n1
, . . . , λS1 , . . . , λ

S
nS

.

Using these, the central location that can calculate heritability estimates and confidence intervals.

3 The Hispanic Community Health Study/Study of Latinos

The HCHS/SOL, (LaVange et al., 2010; Sorlie et al., 2010)) is a community based cohort study,

following self-identified Hispanic individuals from four field centers (Chicago, IL; Miami, FL; Bronx,

NY; and San Diego, CA). Individuals were sampled via a two-stage sampling scheme, in which

households were randomly sampled from sampled community block units. Almost 13,000 study

participants consented for genotyping. HCHS/SOL individuals are classified into ‘genetic analysis

groups’, classes that are based on self reported ethnicities and genetic similarity (Conomos et al.,

2016). The genetic analysis groups are Central American, Cuban, Dominican, Mexican, Puerto

Rican, and South American. This study was approved by the institutional review boards at each

field center, where all subjects gave written informed consent.

3.1 Genotyping, imputation and quality control

Blood samples from HCHS/SOL individuals were genotyped on a custom array consisting of Illu-

mina Omni 2.5M content plus ∼150,000 custom markers selected to include ancestry-informative

markers, variants characteristic of Amerindian populations, known GWAS hits and other candidate

gene polymorphisms. Quality control was similar to the procedure described in Laurie et al. (2010)

and included checks for sample identity, batch effects, missing call rate, chromosomal anomalies

(Laurie et al., 2012), deviation from Hardy-Weinberg equilibrium, Mendelian errors, and duplicate
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sample discordance. 12,803 samples passed quality control, and 2,232,944 SNPs passed quality

filters. Pairwise kinship coefficients and principal components reflecting ancestry were estimated in

an iterative procedure which accounts for admixture (Conomos et al., 2016). All common variants

were used to estimate kinship coefficients.

3.2 Heritability estimation in the HCHS/SOL

In each group of interest, including all individuals (‘pooled’ analysis), or specific genetic analysis

groups, we randomly removed related individuals, to generate a set of individuals without any pair

having kinship coefficient higher than 2−11. Due to the sampling structure of the HCHS/SOL, the

correlation between individuals is modeled in a kinship matrix, and also via matrices corresponding

to community block units, and households. We estimated variance components via the procedure

described here, with the three correlation matrices. We utilized the availability of environmental

correlation to also estimate the contribution of modeled environmental factors (block unit and

household) to the phenotypic variance. Finally, we also demonstrate the use of our method for

meta-analysis by removing individuals from shared household to generate a restricted set in which

none of the individuals live in the same house, and used the proposed procedure for calculating

heritability in meta-analysis. Note that for this purpose we neglected block unit correlation and

assume that there is no correlation due to block unit sharing.

We estimated heritability for the FEV1 (a measure of lung function), standing height, depression

score (CESD10, a sum of ten questionnaire items related to depression in the past few weeks of

filling the form), SBP (systolic blood pressure), and dental caries, a count of tooth decays and

cavities across all teeth of a participant. Finally, all regression models were adjusted (via the

design matrix W) to the 5 first principal components, study center, age, sex, and genetic analysis

group (in the pooled models). For some traits we used additional covariates. Table 1 provides the

various estimates and confidence intervals.
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4 Additional simulations

We performed additional simulations in simple settings in which we expected that confidence in-

tervals that are based on asymptotic normality will be limited: when the kinship values are small,

and when the kinship and household matrices are somewhat “correlated”. For the following two

settings, we ran 1,000 simulations for each sample size of n = 1, 500, 3, 000, 5, 000, and 12, 784,

with the largest value selected to match the largest HCHS/SOL sample size used. In both settings,

the kinship and household matrices were block diagonal with 3×3 matrices, representing sets of

three individuals who live in the same house. Therefore, the block corresponding to three people

living in the same house in the household matrix was a 3×3 with all values equal to 1. The matrices

describing the correlations for the entire simulated sample were thus:

H =



Hh 0 0 · · ·

0 Hh 0 . . .

0 0 Hh

...
. . .


, K =



Kh 0 0 · · ·

0 Kh 0 . . .

0 0 Kh

...
. . .


,

with

Hh =


1 1 1

1 1 1

1 1 1


in the two settings, and

K1
h =


1 0.4 0.5

0.4 1 0.6

0.5 0.6 1


in the “correlated kinship and household matrices” settings 1, and

K2
h =


1 0.05 0.05

0.05 1 0.1

0.05 0.1 1
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in the “small kinship values” settings 2. In both settings the residuals were sample to have ε ∼

N
(
0, σ2eI + σ2kK + σ2hH

)
, with σ2e = 100, σ2k = 40, and σ2h = 15. To simulate ε with this distribution

we computed the squared root of the matrix Σ = σ2eI + σ2kK + σ2hH. Then, we used this Σ1/2 by

having ε = Σ1/2εiid, where εiid ∼ N (0, I), which is straight forward to sample.

4.1 Results

Tables 2 and 3 provide the results comparing the proposed HE-based method for calculating

confidence intervals with the AI-REML method implemented in the GENESIS R package that uses

normal approximation for the asymptotic distribution of the variance components for settings 1 and

2 respectively. The performance measures are the same as in the main manuscript: coverage (the

proportion of simulations the true value was contained in the confidence interval), width (average

width of the confidence interval), and root-mean-square-error comparing the estimated variance

component to its true value across simulations.

One can see that the performance of both methods improve with the sample size, but HE

confidence intervals always have coverage at least 0.95, and tending to be larger when the sample

sizes are smaller, while the REML (GENESIS) confidence intervals often have poor coverage for

small sample size and/or small values of the correlation matrices. The household matrix is the

same in the two settings. However, in the first settings, the household and kinship matrices are

more similar, and this leads to higher uncertainly - wider confidence intervals and larger RMSEs

- of the corresponding variance component. Interestingly, the coverage of the household variance

component of GENESIS remains poor in setting 2 even in large sample sizes, despite similar width

and RMSE to the HE. This is because the estimated kinship variance component was in fact 0

in many of the simulations. The mean width of the confidence intervals tend to be larger for HE

(which also have more coverage) and becomes almost the same as that of GENESIS (REML) as

the sample size becomes large.
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Kinship Household
n method coverage width RMSE coverage width RMSE

1500 HE 1.00 0.79 0.21 1.00 0.39 0.10
1500 REML - GENESIS 0.61 0.73 0.18 0.59 0.31 0.09
3000 HE 1.00 0.69 0.19 1.00 0.33 0.09
3000 GENESIS 0.70 0.64 0.16 0.69 0.28 0.08
5000 HE 1.00 0.66 0.18 1.00 0.32 0.09
5000 GENESIS 0.73 0.61 0.16 0.72 0.27 0.08
12784 HE 0.97 0.37 0.09 0.96 0.17 0.05
12784 GENESIS 0.95 0.36 0.09 0.95 0.17 0.05

Table 2: Results from simulation setting 1, with K1
h.

Kinship Household
n method coverage width RMSE coverage width RMSE

1500 HE 1.00 1.00 0.44 1.00 0.21 0.05
1500 GENESIS 0.38 0.80 0.43 0.89 0.15 0.04
3000 HE 1.00 1.00 0.42 1.00 0.17 0.04
3000 GENESIS 0.46 0.83 0.41 0.83 0.13 0.04
5000 HE 1.00 1.00 0.37 0.96 0.14 0.03
5000 GENESIS 0.56 0.89 0.36 0.84 0.11 0.03
12784 HE 1.00 0.84 0.27 0.97 0.09 0.02
12784 GENESIS 0.76 0.84 0.27 0.88 0.08 0.02

Table 3: Results from simulation setting 2, with K2
h.
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