BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available. When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to. The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript. BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (http://bmjopen.bmj.com). If you have any questions on BMJ Open's open peer review process please email info.bmjopen@bmj.com BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available. When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to. The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript. BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (http://bmjopen.bmj.com). If you have any questions on BMJ Open's open peer review process please email info.bmjopen@bmj.com # **BMJ Open** # Associations between Healthcare Worker Participation in Workplace Wellness Activities and Job Satisfaction, Occupational Stress, and Burnout: A Cross-Sectional Study in Botswana | 1 | DMI O | |----------------------------------|---| | Journal: | BMJ Open | | Manuscript ID | bmjopen-2017-018492.R1 | | Article Type: | Research | | Date Submitted by the Author: | 15-Dec-2017 | | Complete List of Authors: | Ledikwe, Jenny; University of Washington, Department of Global Health; International Training and Education Center for Health (Botswana) Kleinman, Nora; NJK Consulting; University of Washington, Department of Global Health Mpho, Maureen; Republic of Botswana Ministry of Health Mothibedi, Heather; Republic of Botswana Ministry of Health Mawandia, Shreshth; University of Washington, Department of Global Health; International Training and Education Center for Health (Botswana) Semo, Bazghina-werq; University of Washington, Department of Global Health; International Training and Education Center for Health (Botswana) O'Malley, Gabrielle; University of Washington, Department of Global Health | | Primary Subject Heading : | Health services research | | Secondary Subject Heading: | Global health, Mental health | | Keywords: | workplace wellness, stress, job satisfaction, HIV/AIDS care, Botswana | | | | SCHOLARONE™ Manuscripts **Title:** Associations between Healthcare Worker Participation in Workplace Wellness Activities and Job Satisfaction, Occupational Stress, and Burnout: A Cross-Sectional Study in Botswana Running title: Association Wellness Activities Job Satisfaction, Stress, Burnout #### **Authors** Jenny H. Ledikwe, PhD^{1,2} Nora J Kleinman, MPH ¹⁻³ Maureen Mpho⁴ Heather Mothibedi, MSc⁴ Shreshth Mawandia, MSW, MPH^{1,2} Bazghina-werq Semo, MD MPH, MSc^{1,2*} Gabrielle O'Malley, PhD¹ #### **Affiliations** ¹Department of Global Health, University of Washington, Seattle, Washington, ²Botswana International Training and Education Center for Health (I-TECH), Gaborone, Botswana; ³NJK Consulting ⁴ Botswana Ministry of Health, Gaborone, Botswana * Baz Semo is now affiliated with FHI360, Washington DC, USA. # **Corresponding Author** Jenny H. Ledikwe, PhD P.O. Box AC46 ACH, Riverwalk, Gaborone, Botswana Email: Ledikwe@UW.edu Phone: +267 3900925 Fax: +267 3900952 Conflicts of Interest and Source of Funding: No conflicts of interest exists. This work was supported by the President's Emergency Plan for AIDS Relief (PEPFAR), through funding to the University of Washington and I-TECH from the US Department of Health and Human Services, Health Resources and Services Administration (HRSA) Global HIV/AIDS Bureau, Cooperative Agreement #U91HA06801 and the Afya Bora Consortium Fellowship in Global Health Leadership supported by NIH Office of AIDS Research and CDC/PEPFAR, grant #U91HA06801B. Keywords: workplace wellness; stress; job satisfaction; HIV/AIDS care; Botswana Journal: BMJ Open **Abstract Wordcount:** 242 (250 max) **Wordcount:** 2,344 (4,500 max) **Figures:** 1, **Tables:** 3 (5 figure/tables max) #### **Abstract** # **Objectives** Healthcare workers (HWs) are prone to high levels of stress and burnout, particularly when caring for people with HIV/AIDS. This study assessed whether participation in Botswana's Workplace Wellness Program for HWs (WWP) was associated with job satisfaction, occupational stress, well-being, and burnout. #### Methods Using multi-stage sampling, a paper-based questionnaire was distributed to 1,856 randomly selected HWs at 135 public facilities across Botswana. Well-validated scales assessed key outcomes. ANCOVA models were built for psychosocial factors associated with WWP participation, controlling for associated demographics. #### **Results** Response rate was 73% (n=1,348). The majority of respondents were female (62%), not married (65%) and had children (84%). Mean age was 40.0 years (SD±9.9). Respondents were roughly split between participation in 0 WWP activities (29.4%), 1-6 WWP activities (38.9%), and 7 or more WWP activities (31.7%) in the past year. High participation was associated with older age, being a doctor or other professional, working at hospitals or District Health Management Teams, working longer in health services, or working longer at a facility. In unadjusted analyses, high participation was significantly associated (p<0.05) with higher satisfaction with overall job, work, supervision, promotion, pay, and professional efficacy; and lower stress, exhaustion, and cynicism. All associations remained significant in controlled analyses except cynicism. #### **Conclusions** Results from this study suggest participation in workplace wellness activities is associated with higher satisfaction with multiple job facets and lower stress, exhaustion, and cynicism. Introduction of these activities may help ameliorate high occupational stress levels among HWs. ## Article Summary. Strengths and limitations of this study: - Strengths include a multilevel random sampling methodology and use of previously validated scales. - The survey had a relatively high response rate (73%). - Limitations include an inability to determine the direction of causality due to the cross-sectional nature of the survey. #### Introduction Healthcare professionals are prone to high levels of occupational stress and burnout. This is due to long hours and the emotional weight of treating sick patients⁽¹⁾. It is especially common among providers who work with People Living with HIV/AIDS (PLHA)⁽²⁾. In the early years of the epidemic, the stress was primarily due to stigma around the disease, lack of understanding of transmission and treatment, and the extremely high mortality rate. The introduction of highly active antiretroviral therapy (HAART) and increased community and clinical HIV knowledge has lessened stress on providers. However, many providers still experience burnout from the emotional toll of caring for sick patients, workplace demands, lack of supervision, unresolved grief, feelings of helplessness and ineffectiveness, and an absence of gratitude from individuals and communities.^(3, 4) In sub-Saharan Africa, high demand for services and insufficient resources are still commonplace, resulting in tense environments for health workers involved in HIV treatment, care, and support. This situation may be compound by the new Joint United Nations Programme on HIV/AIDS (UNAIDS) targets of having 90% of PLHA know their status, 90% of people who know they have HIV on ARV treatment, and 90% of PLHA on treatment virally suppressed. (5) Botswana, with an 18.5% prevalence rate, has been one of the countries most affected by the HIV epidemic. A survey conducted in 2006 indicated there were high levels of stress and burnout among health workers in Botswana, due in part to the rising burden of HIV/AIDS patients and the related stress on the healthcare system. In response, the Botswana Ministry of Health (MOH) began implementing a comprehensive Workplace Wellness Program (WWP) for healthcare workers in 2007. This initiative aimed to improve health and well-being and reduce stress among health workers in government facilities by empowering them with knowledge and skills to manage the dynamic demands of the health care system. WWP implementation has been described previously.
Priefly, the program focused on holistic improvements in the health and well-being through activities focusing on: health screening, treatment, and care; health promotion; stress management and team building; occupational health and safety; psychosocial and spiritual care; and therapeutic recreation. Data from high-income settings suggest that workplace wellness programs can have numerous benefits, including lowered healthcare costs, reduced absenteeism, increased productivity, and positive economic impact. (10-14) However the situation is different in less resourced countries, with higher reported levels of anxiety, depression, and health risks⁽¹⁵⁾ and lower nutritional habits and physical activity⁽¹⁶⁾. Thus, little is known about the effectiveness of workplace wellness programs when implemented to improve occupational health among health workers in these settings, outside of a few studies in South Africa.⁽¹⁷⁻²⁰⁾. Therefore, a nationally representative survey of health workers in Botswana was conducted to determine if there were associations between participation in WWP activities with individuals' levels of job satisfaction, psychological well-being, burnout, and sources of stress. #### Methods This was a cross-sectional survey of staff employed at public health facilities in Botswana. Individuals had to be employed in a selected public health facility to be eligible to participate. A self-administered questionnaire was distributed to randomly selected health workers in public health facilities using multi-stage sampling. The first sampling stage was to select the health facilities, using a random number generator to select five facilities in each of Botswana's 27 health districts. For each district, one facility was selected from each of the following five types of health facilities: district health management teams, hospitals, clinics with maternity services, clinics without maternity services, and health posts. When no facility was available in a particular category, an additional facility was selected at random. If a district had less than five facilities, all were chosen. The second stage of sampling was to select healthcare workers. For each selected facility, employees were categorized according to four cadres: doctors and nurses providing clinical care, administrative personnel (doctors and nurses acting in administrative capacity, human resources staff, data clerks), other professionals (social workers, pharmacists, nutritionists, allied health professionals including radiographers and pharmacist technicians, paraprofessionals including lay counsellors and health education assistants), and support staff (drivers, cleaners, gardeners). Four participants and two alternates were randomly selected per cadre at each facility. If a facility had fewer than four employees in a cadre, all were selected. One district had fewer than five facilities and many cadres had fewer than four people. In total, surveys were distributed to 1,856 health workers in 134 facilities (32 clinics with maternity, 29 clinics without maternity, 26 health posts, 26 DHMTs, and 21 health posts), which represents 9.3% of the estimated 20.000 health workers in the country⁽²¹⁾. This sample size was calculated to provide a confidence level of 95% and confidence interval of 5% among the smallest employee category (other professionals, n=4751) working at public health facilities. Surveys were administered by district WWP focal people. To ensure uniform administration, these individuals received a one-week training including general research topics, research ethics, the survey tool, and the distribution process. In rare cases where a participant had limited literacy and/or English skills, focal people supported completion of the survey. Participants completed the questionnaire, sealed it in an envelope, and returned it to the district WWP focal person. Envelopes were sent through government transport, post, or courier to the research team in Gaborone. ## Questionnaire The self-administered questionnaire consisted of quantitative, closed-ended questions assessing demographics (age, gender, marital status, children, education, employment cadre, type of facility, length of time in healthcare, length of time working at current facility, citizenship). It also assessed participation in WWP activities, job satisfaction, stress level, well-being, burnout, and sources of stress. Participation in WWP services was assessed using a question about each of the five activity types (health promotion, psychosocial and spiritual care, stress management and team building, therapeutic recreation, occupational health and safety). The number of times an individual had participated in each activity was assessed. Total number of activities was calculated by averaging the midpoint number from each response category across the five activity types. Job satisfaction was assessed using the abridged Job Descriptive Index (JDI)⁽²²⁾, a shorted form of the JDI, both psychometrically well-validated tools⁽²³⁾ to measure satisfaction with work, co-workers, compensation, promotion opportunity, and supervision. Respondents were asked to think about each job facet and respond to six adjectives/short phrases with "yes", "no", or "cannot decide." Responses were summed using the recommended cleaning and scoring procedures including eliminating "straight line responses", dropping response with significant missing data, and reverse-scoring negative phrases. The eight-item Job In General (JIG) scale was used to measure overall job satisfaction and cleaned in the same fashion. Occupational stress was assessed with the Stress in General scale⁽²⁴⁾, using the same format as the JDI and JIG. Psychological well-being was assessed with the General Health Questionnaire-12 (GHQ-12), a psychometrically well-validated, widely used tool, ⁽²⁵⁾ including in low-income settings. ⁽²⁶⁾ The GHQ is comprised of twelve items such as "Have you recently been able to concentrate on what you're doing?" with responses on a 4-point Likert-type scale (not at all, no more than usual, rather more than usual, much more than usual). Responses were summed using the author-recommended 0/0/1/1 scoring. Burnout was assessed using the sixteen-item Maslach Burnout Inventory-General Survey (MBI-GS), developed over 25 years ago⁽²⁷⁾ show to have strong psychometric properties across settings and occupations⁽²⁸⁻³⁰⁾. The GS version focuses on staff not providing direct human services and measures three subscales of exhaustion, cynicism, and professional efficiency using five or six items each. Sources of stress were measured using an investigator-adapted instrument from the 2006 Botswana Healthcare Worker Survey asking participants to rate whether 10 topics were sources of work-related stress on a 5 point Likert scale (Strong Agree, Agree, Not Sure, Disagree, Strongly Disagree). A response of "Strongly Agree" or "Agree" was used to indicate stress. #### **Statistics** Data were entered in a database developed using REDcap,⁽³¹⁾ a secure web-based application. Data were exported to STATA version 14.2 for analysis. Participants who did not respond to questions on WWP participation were removed from analysis. Descriptive statistics were generated to characterize the respondents' demographics, participation in WWP activities, and psychosocial measures. Respondents were categorized into three WWP participation groups based on number of activities completed in the past year: 0 activities, 1-6 activities, or 7+ activities. Associations between demographics and WWP program participation as well as psychosocial factors and WWP participation were analyzed with chi-squared (categorical) and ANOVA models (continuous). For psychosocial factors found to be associated with WWP participation, ANCOVA models were built, controlling for associated demographics. Post-hoc pairwise comparisons were conducted using the Bonferroni method. No sensitivity analyses were conducted. # Ethics Approval The evaluation was approved by the MOH Health Research and Development Committee Reference #PPME: 13/18/1 Vol VIII (434) and non-research determination was received by the University of Washington's Internal Review Board Application #45194EJ. It was conducted by the International Training and Education Center for Health (I- TECH), which is a collaboration between the University of Washington and University of California, San Francisco under the guidance of a reference group comprised of healthcare stakeholders. The reference group included representation from the Botswana Ministry of Health Departments of Corporate Services, HIV/AIDS Prevention and Care, Clinical Services, and Public Health; the Seventh Day Adventist Mission Hospital in Kanye; Directorate of Public Service Management, Office of the President; the World Health Organization; and CDC Botswana. #### **Results** Of the 1,856 forms distributed, questionnaires were completed and returned by 1,348 health workers, a response rate of 73%. There were 30 respondents who did not answer questions on WWP participation and were removed from the analyses. Nearly two-thirds of respondents were female (62.4%) and similar amounts were not married (65.2%) [Table 1]. Of respondents, 2.9% were doctors, 29.2% were nurses, 27.4% were other professionals, 10.4% were administrative, and 27.2% were support staff. The mean age was 40.0 years (SD±9.9). About half worked in hospitals (26.9%) or clinics with maternity (24.9%). Participants were split into roughly thirds of those who in the last year had participated in 0 WWP activities (n= 387, 29.4%), 1-6 activities (n=513, 38.9%), and 7 or more activities (n=418, 31.7%). Among those who had participated in 7 or more activities in the past year, psychosocial and spiritual care activities were the best attended, with 13.6% of participants attending 7 or more in the last year, while only 2.8% of participants had attended the same quantity of Occupational Health and Safety
(OHSA) activities. High participation in WWP activities was associated with older age, working longer in health services, working longer at a facility, being a doctor or other professional staff, and being posted at hospitals and the District Health Management Teams (DHMT). The strongest association was seen with facility type. In unadjusted analyses, overall job satisfaction assessed by the JIG was significantly higher for health workers that participated in seven or more WWP activities, as compared to those who did not participate in any WWP activities (p<0.001). There were similar findings with the JDI subscales related to satisfaction with work, supervision, promotion opportunities, and pay, with the highest levels found among those participating in seven or more WWP activities (all p≤0.005). Psychological well-being measured by the GHQ-12 did not differ significantly by level of WWP participation. However, levels of stress from the SIG as well as measures of exhaustion and cynicism from the MBI were significantly lower among those with high participation in WWP activities. All associations remained the same in analyses controlled for age, cadre, and facility type, except for the MBI subscale of cynicism, which became non-significant. Post-hoc analyses of differences between groups are presented in Table 2. The three most commonly reported sources of stress were shortages of staff (78.0%), insufficient resources & supplies (76.7%) and too much work (72.7%) [Table 3]. Compared to the 2006 survey, fewer participants in 2014 indicated each category was a source of stress. The only exception was for "non-supportive supervisors" which saw a slight increase from 58% in 2006 to 59.5% in 2013. ## **Discussion** Data from this nationally representative survey of health workers in Botswana found that participation in workplace wellness activities was associated with higher levels of job satisfaction and professional efficacy. Participation in workplace wellness activities was also associated with lower levels of stress and exhaustion. To the authors' knowledge, this is the first report of the effectiveness of a national workplace health promotion initiative for public health workers in middle- or low-income countries. Health workers were more likely to participate in WWP activities if they were of older age, worked longer in health services, worked longer at a facility, were a doctor or other professional staff, or were posted at hospitals and the DHMT. This last, and strongest association was possibly due to greater access to activities at these sites. While there is a large body of literature on health promotion activities in high-income countries, workplace health promotion programs in middle or low-income countries have been reported less frequently^(12, 19, 32), particularly in health care settings.⁽³³⁾ Much of the existing research comes from the Healthy Company Index, which was developed by a large health insurer in South Africa to promote healthy lifestyles among insurees.⁽¹⁶⁻¹⁹⁾ Data from this program indicate workplace wellness programs are associated with employee health. Specifically, employees at companies providing health promotion facilities are more likely to meet the guidelines for physical activity and daily consumption of fruits and vegetables.⁽¹⁷⁾ Related research shows leadership support of workplace wellness programs influences the provision of health promotion facilities and policies, resulting in higher employee wellbeing and increased perceived organizational commitment to wellbeing. The authors argue that the based upon the Social Exchange Theory (SET)⁽³⁴⁾ workplace wellness programs may have benefits beyond created by their direct use. Even employees who do not participate in the programs may still benefit through the perception that the organization they work cares about their health. The importance of enacting such programs and policies is an important implication for policymakers charged with caring for the public health workforce. The data on sources of stress can be directly compared to the 2006 survey conducted before the implementation of the WWP program. In the recent study, fewer respondents reported providing care for HIV/AIDS (42% vs 76%), caring for many patients (49.0% vs. 85%), too much work (72.7% vs. 88%), and staff shortages (78% vs. 91%) as a source of stress. These results are encouraging, as they suggest there have been improvements in reducing workplace stress. However it is unclear what these changes are attributable to, including increased familiarity with HIV/AIDS, more straightforward treatment regimens, programs like WWP, increased human resources in the health field, or other changes. These conclusions must be interpreted within the context of this study design. As a cross-sectional survey, it is impossible to determine the direction of causality. Participation in workplace wellness activities may have increased feelings of job satisfaction and efficacy and decreased stress and burnout. However it is equally plausible that individuals who felt more satisfied and efficacious and less stressed and burnt-out were more likely to participate in workplace wellness activities. Strengths of this study include a multilevel random sampling methodology, use of previously validated scales, and a relatively high response rate (73%). The health systems of middle- and low-income countries are facing a particularly important and challenging time. There has been marked progress towards key international initiatives including the UNDP sustainable development goals, the UNAIDS 90-90-90 HIV treatment goals, and the WHO initiatives for the elimination of mother to child transmission of HIV and syphilis. However, achievement of these ambitious goals requires intensified efforts. This can create tense environments for healthcare workers, leading high levels of stress, burnout, and job dissatisfaction. This study has highlighted workplace wellness programs as a potential avenue to support these vital staff. Further, it is possible that providing these types of activities may facilitate higher job satisfaction and lower levels of stress and burnout. Further, SET reinforces the implications of having such programs formally codified as organizational policy. Piloting of similar programs in similar strained healthcare systems could be extremely helpful in the attainment of key international public health and development goals. Table 1. Demographic characteristics and WWP participation in the past year of 1,318 WWP national survey participants WWP Participation in Last Year | | 1 | Total | 0 A | ctivities | 1-6 | Activities | 7+ | Activities | • | |-------------------------------------|-------|----------------------|------|-----------------|------|--------------------|------|--------------------|-----------------------| | Characteristic | % | n=1,318 [#] | % | n=387# | % | n=513 [#] | % | n=418 [#] | p-value ^{\$} | | Age (years)* | | 39.9 ±9.9 | | 39.9 ± 10.1 | | 39.2 ±9.6 | | 40.9 ± 10.1 | 0.027 | | Gender | | | | | | | | | | | Female | 62.2 | 820 | 66.7 | 258 | 60.6 | 311 | 60.0 | 251 | 0.116 | | Male | 37.5 | 494 | 33.3 | 129 | 38.8 | 199 | 39.7 | 166 | | | Marital Status | | | | | | | | | | | Not Married | 65.2 | 859 | 65.6 | 254 | 66.9 | 343 | 62.7 | 262 | | | Married | 33.8 | _ 445 | 33.1 | 128 | 32.2 | 165 | 36.4 | 152 | 0.364 | | Number of Children | | | | | | | | | | | 0 | 16.2 | 213 | 17.6 | 68 | 17.5 | 90 | 13.2 | 55 | 0.407 | | 1-2 | 47.7 | 629 | 47.0 | 182 | 47.4 | 243 | 48.8 | 204 | | | 3-4 | 27.6 | 364 | 28.9 | 112 | 26.3 | 135 | 28.0 | 117 | | | 5+ | 7.2 | 95 | 5.9 | 23 | 7.0 | 36 | 8.6 | 36 | | | Highest Education Completed | | | | | | | | | | | Less than High School | 30.5 | 402 | 30.0 | 116 | 27.7 | 142 | 34.4 | 144 | 0.292 | | Senior Secondary School | 16.0 | 211 | 15.2 | 59 | 17.2 | 88 | 15.3 | 64 | | | More than High School | 50.5 | 666 | 50.6 | 196 | 52.4 | 269 | 48.1 | 201 | | | Botswana Citizen | 93.8 | 1,236 | 95.6 | 370 | 93.4 | 479 | 92.6 | 387 | 0.341 | | Years worked in Health Services* | | 11.9 ± 9.0 | | 11.7 ± 8.7 | | 11.2 ± 8.7 | | 12.9 ± 9.4 | 0.014 | | Years worked in Facility* | | 3.1 ± 1.3 | | 2.9 ± 1.3 | | 3.1 ± 1.3 | | 3.2 ± 1.3 | 0.001 | | Cadre | | | | | | | | | | | Doctor | 2.9 | 38 | 2.1 | 8 | 2.9 | 15 | 3.6 | 15 | 0.001 | | Nurse | 29.2 | 385 | 35.1 | 136 | 29.6 | 152 | 23.2 | 97 | | | Other Professional | 27.4 | 361 | 21.4 | 83 | 28.3 | 145 | 31.8 | 133 | | | Administrative | 10.4 | 137 | 10.3 | 40 | 12.3 | 63 | 8.1 | 34 | | | Support | 27.2 | 358 | 27.9 | 108 | 23.8 | 122 | 30.6 | 128 | | | Facility Type | | | | | | | | | | | Hospital | 26.8 | 353 | 17.6 | 68 | 29.8 | 153 | 31.6 | 132 | < 0.001 | | Clinic with maternity | 24.8 | 327 | 30.7 | 119 | 24.8 | 127 | 19.4 | 81 | | | District Health Management Team | 19.9 | 262 | 15.2 | 59 | 19.3 | 99 | 24.9 | 104 | | | Clinic without maternity | 17.6 | 232 | 24.0 | 93 | 15.0 | 77 | 14.8 | 62 | | | Health Post | 8.8 | 116 | 10.3 | 40 | 8.6 | 44 | 7.7 | 32 | | | WWP Activity Participation* | (n) | | | | | | | | | | Health Promotion | 1,290 | 1.8 ± 2.9 | | 0 | | 1.4 ± 1.3 | | 4.0 ± 4.0 | | | Psychosocial and Spiritual Care | 1,281 | 2.2 ± 3.9 | | 0 | | 0.7 ± 1.2 | | 6.0 ± 5.0 | | | Stress Management and Team Building | 1,298 | 0.9 ± 2.2 | | 0 | | 0.4 ± 0.8 | | 2.4 ± 3.3 | | | Therapeutic Recreation | 1,278 | 0.9 ± 2.5 | 0 | 0.4 ± 0.8 | 2.5 ± 3.8 | | |--------------------------------|-------|---------------|---|---------------|---------------|--| | Occupational Health and Safety | 1,288 | 0.7 ± 2.0 | 0 | 0.4 ± 0.8 | 1.9 ± 3.2 | | ^{*} mean ±SD Table 2. Association of job satisfaction, stress, well-being, and burnout with WWP participation in the past year among 1,291 WWP national survey participants WWD Darticipation in the Last Voor | | | | w w P Pa | rticipation in the | e Last Year | | |
------------------------------|---------|----------------|--------------------|---------------------|--------------------|--------------|------------| | | 0 | verall | 0 Activities | 1-6 Activities | 7+ Activities | p-value | p-value | | | n=1,291 | Mean ±SD | n=376 | n=503 | n=412 | (unadjusted) | (adjusted) | | Job In General | 1,012 | 15.0 ± 6.8 | 13.9 ± 7.4^{a} | 14.7 ± 6.5^{ab} | 16.5 ± 6.3^{b} | < 0.001 | 0.004 | | Job Descriptive Index | | | | | | | | | Co-workers | 1,031 | 12.2 ± 6.0 | 12.0 ± 6.0 | 12.3 ± 5.9 | 12.3 ± 6.0 | 0.759 | 0.703 | | Work in present job | 1,027 | 10.3 ± 5.6 | 9.1 ± 5.8^{a} | 10.1 ± 5.6^{ab} | 11.6 ± 5.4^{b} | < 0.001 | < 0.001 | | Supervision | 989 | 10.3 ± 5.8 | 9.6 ± 6.1^{a} | 10.0 ± 5.7^{ab} | 11.4 ± 5.6^{b} | < 0.001 | 0.043 | | Opportunities for promotion | 986 | 5.9 ± 5.0 | 5.0 ± 4.7^{a} | 6.0 ± 4.9^{b} | 6.6 ± 5.2^{b} | < 0.001 | 0.003 | | Pay | 1,023 | 4.4 ± 4.6 | 3.9 ± 4.6^{a} | 4.2 ± 4.3^{ab} | 5.1 ± 5.0^{b} | 0.005 | 0.007 | | Stress in General | 970 | 12.9 ± 7.7 | 14.1 ± 8.0^{a} | 13.1 ± 7.6^{ab} | 11.7 ± 7.4^{b} | < 0.001 | 0.006 | | General Health Questionnaire | 1,278 | 4.0 ± 2.6 | 4.2 ± 2.7 | 4.1 ± 2.7 | 3.8 ± 2.4 | 0.138 | 0.307 | | Maslach Burnout Inventory | | | | | | | | | Professional Efficacy | 1,257 | 4.9 ± 1.1 | 4.9 ± 1.1^{a} | 4.9 ± 1.1^{a} | 5.1 ± 0.9^{b} | 0.043 | 0.017 | | Exhaustion | 1,260 | 2.3 ± 1.7 | 2.6 ± 1.8^{a} | 2.3 ± 1.7^{b} | 2.0 ± 1.5^{b} | < 0.001 | < 0.001 | | Cynicism | 1,246 | 2.4 ± 1.4 | 2.5 ± 1.4 | 2.4 ± 1.4 | 2.2 ± 1.4 | 0.022 | 0.418 | | A 11 4 | 1 4 4 | 1 '/1 | ANTOTA | A 1° , 1 1 | 1 43100174 | 4 11° C | / | All outcome variables were continuous and tested with one-way ANOVAs. Adjusted analyses used ANCOVAs, controlling for age (continuous), cadre (5 levels), and facility type (5 levels). Mean values with different superscript letters are significantly different using Bonferroni pairwise comparisons. [#] N(%) may not equal total due to missing data or rounding. %s are calculated using missing data ^{\$} p-value calculated from chi-square test for categorical variables and ANOVA for continuous variables Table 3. Comparison of sources of stress between participants in the 2013 WWP national survey and 2006 healthcare worker survey | | 201 | 13 | 2006 | | | |---|------|------------|------|---------|--| | Sources of Stress (Agree/Strongly Agree) | % | (n=1,313) | % | (n=223) | | | Shortage of staff | 78.0 | 1,051 | 91 | 201 | | | Insufficient resources and supplies | 76.7 | 1,034 | - | - | | | Too much work | 72.7 | 980 | 88 | 196 | | | Not being appreciated for the work I do | 64.1 | 864 | 76 | 169 | | | Non-supportive supervisors | 59.5 | 802 | 58 | 129 | | | Balancing demands of work and family | 51.3 | 691 | - | - | | | Providing care for many patients | 49.0 | 660 | 85 | 190 | | | Providing care for many HIV/AIDS patients | 42.3 | 570 | 76 | 169 | | | | 41.3 | 557 | 55 | 123 | | | Conflict with co-workers | 39.7 | 535 | - | - | | | | | 557
535 | | | | #### **Authors' contributions** JL and NJK prepared the first draft; JL, NJK, MM, HM, SM, BS, GO reviewed the manuscript and provided comments; JL and NJK finalized the report based on feedback from other authors; JL and NJK analyzed and interpreted the data; JL, MM, HM, SM, BS, GO helped provide overall guidance to the conduct of the study; and JL, MM, HM, SM, BS, GO were involved in the origination and development of the concept of the study. # **Data Sharing Statement** Extra data is available by emailing Dr. Ledikwe @ ledikwe@uw.edu Conflicts of Interest and Source of Funding: No conflicts of interest exists. This work was supported by the President's Emergency Plan for AIDS Relief (PEPFAR), through funding to the University of Washington and I-TECH from the US Department of Health and Human Services, Health Resources and Services Administration (HRSA) Global HIV/AIDS Bureau, Cooperative Agreement #U91HA06801 and the Afya Bora Consortium Fellowship in Global Health Leadership supported by NIH Office of AIDS Research and CDC/PEPFAR, grant #U91HA06801B. #### References - **Felton, J.S.:** Burnout as a clinical entity--its importance in health care workers. *Occup Med (Lond)* 48(4): 237-250 (1998). - **Silverman, D.C.:** Psychosocial impact of HIV-related caregiving on health providers: a review and recommendations for the role of psychiatry. *Am J Psychiatry* 150(5): 705-712 (1993). - **Kerr, Z.Y., K.R. Miller, D. Galos, R. Love, and C. Poole:** Challenges, coping strategies, and recommendations related to the HIV services field in the HAART era: a systematic literature review of qualitative studies from the United States and Canada. *AIDS Patient Care STDS* 27(2): 85-95 (2013). - **Demmer, C.:** Burnout: the health care worker as survivor. *AIDS Read* 14(10): 522-523, 528-530, 535-527 (2004). - **UNAIDS:** 90-90-90 An ambitious treatment target to help end the AIDS epidemic(2014). - 6 Government of Botswana: "Botswana AIDS Impact Survey IV (BAIS IV)", 2012. - **Botswana Ministry of Health:** "Wellness Program for Health Workers (WHW): Implementation Plan 2006-2009", 2006. - 8 Ledikwe, J.H., B.-w. Semo, M. Sebego, M. Mpho, H. Mothibedi, S. Mawandia et al.: Implementation of a National Workplace Wellness Program for Health Workers in Botswana. *J Occup Environ Med* 59(9): 867-874 (2017). - **Government of Botswana:** "Botswana workplace wellness program operational guidelines". Gaborone, Botswana: Ministry of Health, 2007. - Baicker, K., D. Cutler, and Z. Song: Workplace wellness programs can generate savings. *Health Aff (Millwood)* 29(2): 304-311 (2010). - Goetzel, R.Z., R.M. Henke, M. Tabrizi, K.R. Pelletier, R. Loeppke, D.W. Ballard et al.: Do workplace health promotion (wellness) programs work? *J Occup Environ Med* 56(9): 927-934 (2014). - 12 Kolbe-Alexander, T.L., K.I. Proper, E.V. Lambert, M.F. van Wier, J.D. Pillay, C. Nossel et al.: Working on wellness (WOW): a worksite health promotion intervention programme. *BMC Public Health* 12: 372 (2012). - Astrella, J.A.: Return on Investment: Evaluating the Evidence Regarding Financial Outcomes of Workplace Wellness Programs. *J Nurs Adm* 47(7-8): 379-383 (2017). - **Kaspin, L.C., K.M. Gorman, and R.M. Miller:** Systematic review of employer-sponsored wellness strategies and their economic and health-related outcomes. *Popul Health Manag* 16(1): 14-21 (2013). - Howarth, A., J. Quesada, and P.R. Mills: A global, cross cultural study examining the relationship between employee health risk status and work performance metrics. *Ann Occup Environ Med* 29: 17 (2017). - Milner, K., R. da Silva, D. Patel, and S. Salau: How do we measure up? A comparison of lifestyle-related health risk factors among sampled employees in South African and UK companies. *Glob Health Promot* (2016). - 17 Kolbe-Alexander, T., M. Greyling, R. da Silva, K. Milner, D. Patel, L. Wyper et al.: The relationship between workplace environment and employee health behaviors in a South African workforce. *J Occup Environ Med* 56(10): 1094-1099 (2014). - Milner, K., M. Greyling, R. Goetzel, R. Da Silva, T. Kolbe-Alexander, D. Patel et al.: The relationship between leadership support, workplace health promotion and employee wellbeing in South Africa. *Health Promot Int* 30(3): 514-522 (2013). - 19 Patel, D., R.Z. Goetzel, M. Beckowski, K. Milner, M. Greyling, R. da Silva et al.: The Healthiest Company Index: a campaign to promote worksite wellness in South Africa. *J Occup Environ Med* 55(2): 172-178 (2013). - **Conradie, C.S., E. van der Merwe Smit, and D.P. Malan:** Corporate Health and Wellness and the Financial Bottom Line: Evidence From South Africa. *J Occup Environ Med* 58(2): e45-53 (2016). - **Government of Botswana:** National Health Service Situational Analysis Report(2009). - 22 Stanton, J.M., E.F. Sinar, W.K. Balzer, A.L. Julian, P. Thoresen, S. Aziz et al.: Development of a Compact Measure of Job Satisfaction: The Abridged Job Descriptive Index. *Educational and Psychological Measurement* 62(1): 173-191 (2002). - **Kinicki, A.J., F.M. McKee-Ryan, C.A. Schriesheim, and K.P. Carson:** Assessing the construct validity of the job descriptive index: a review and meta-analysis. *J Appl Psychol* 87(1): 14-32 (2002). - 24 Stanton, J.M., W.K. Balzer, P.C. Smith, L. Fernardo, and P.G. Ironson: A General Measure of Work Stress: The Stress in General Scale. *Educational and Psychological Measurement* 61(5): 866-888 (2001). - Jackson, C.: The general health questionnaire. *Occupational Medicine* 57(79)(2007). - Ali, G.C., G. Ryan, and M.J. De Silva: Validated Screening Tools for Common Mental Disorders in Low and Middle Income Countries: A Systematic Review. *PLoS One* 11(6): e0156939 (2016). - **Schaufeli, W.B., and E.R. Greenglass:** Introduction to special issue on burnout and health. *Psychol Health* 16(5): 501-510 (2001). - Poghosyan, L., L.H. Aiken, and D.M. Sloane: Factor structure of the Maslach burnout inventory: an analysis of data from large scale cross-sectional surveys of nurses from eight countries. *Int J Nurs Stud* 46(7): 894-902 (2009). - Worley, J., M. Vassar, D. Wheeler, and L. Barnes: Factor structure of scores from the Maslach Burnout Inventory: A review and meta-analysis of 45 exploratory and confirmatory factor-analytic studies. *Educational and Psychological Measurement* 68: 797-823 (2008). - Langballe, E.M., E. Falkum, S.T. Innstrand, and O.G. Aasland: Langballe, Falkum, Innstrand, Aasland (2006). The Factorial Validity of the Maslach Burnout Inventory—General Survey in Representative Samples of Eight Different Occupational Groups. Journal of Career Assessment. *Journal of Career Assessment* 14(3): 370-384 (2006). - Harris, P.A., R. Taylor, R. Thielke, J. Payne, N. Gonzalez, and J.G. Conde: Research electronic data capture
(REDCap)--a metadata-driven methodology and workflow process for providing translational research informatics support. *J Biomed Inform* 42(2): 377-381 (2009). - Yassi, A., L.M. O'Hara, K. Lockhart, and J.M. Spiegel: Workplace programmes for HIV and tuberculosis: a systematic review to support development of international guidelines for the health workforce. *AIDS Care* 25(5): 525-543 (2013). - Basson, H.A., and L. Roets: Workplace wellness for HIV/AIDS-affected nurses in South Africa. *Br J Nurs* 22(1): 38-44 (2013). - **Cropanzano, R., and M.S. Mitchell:** Social Exchange Theory: An Interdisciplinary Review. *Journal of Management* 31(6): 874-900 (2005). - **Botswana Ministry of Health, and ITECH-Botswana:** "Evaluation of the Botswana Ministry of Health's Workplace Wellness Programme to Improve Implementation, Utilization, Impact and Sustainability", 2014. STROBE Statement—Checklist of items that should be included in reports of *cross-sectional studies* | | Item
No | Recommendation | |---|------------|---| | Title and abstract | 1 | (a) Indicate the study's design with a commonly used term in the title or the abstract p1 | | | | (b) Provide in the abstract an informative and balanced summary of what was done | | | | and what was found p2 | | Introduction | | | | Background/rationale | 2 | Explain the scientific background and rationale for the investigation being reported p3 | | Objectives | 3 | State specific objectives, including any prespecified hypotheses p4 | | Methods | | | | Study design | 4 | Present key elements of study design early in the paper p4 | | Setting | 5 | Describe the setting, locations, and relevant dates, including periods of recruitment, | | - | | exposure, follow-up, and data collection p4 | | Participants | 6 | (a) Give the eligibility criteria, and the sources and methods of selection of | | • | | participants p4 | | Variables | 7 | Clearly define all outcomes, exposures, predictors, potential confounders, and effect | | | | modifiers. Give diagnostic criteria, if applicable p5-6 | | Data sources/ | 8* | For each variable of interest, give sources of data and details of methods of | | measurement | | assessment (measurement). Describe comparability of assessment methods if there is | | | | more than one group p5-6 | | Bias | 9 | Describe any efforts to address potential sources of bias p6 | | Study size | 10 | Explain how the study size was arrived at p4 | | Quantitative variables | 11 | Explain how quantitative variables were handled in the analyses. If applicable, | | Quantitative variables | 11 | describe which groupings were chosen and why p6 | | Statistical methods | 12 | (a) Describe all statistical methods, including those used to control for confounding | | Statistical methods | 12 | p6 | | | | (b) Describe any methods used to examine subgroups and interactions p6 | | | | | | | | (c) Explain how missing data were addressed p6 | | | | (d) If applicable, describe analytical methods taking account of sampling strategy NA | | | | | | | | (e) Describe any sensitivity analyses p6 | | Results | | | | Participants | 13* | (a) Report numbers of individuals at each stage of study—eg numbers potentially | | | | eligible, examined for eligibility, confirmed eligible, included in the study, | | | | completing follow-up, and analysed p7 | | | | (b) Give reasons for non-participation at each stage p7 | | | | (c) Consider use of a flow diagram NA | | Descriptive data | 14* | (a) Give characteristics of study participants (eg demographic, clinical, social) and | | | | information on exposures and potential confounders p7 & Table 1 on p10 | | | | (b) Indicate number of participants with missing data for each variable of interest | | | | Table 1 on p10 | | Outcome data | 15* | Report numbers of outcome events or summary measures p7-8 | | Main results | 16 | (a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and | | | | , 11 , | | 111111111111111111111111111111111111111 | | their precision (eg, 95% confidence interval). Make clear which confounders were | | | | (b) Report category boundaries when continuous variables were categorized NA | |-------------------|----|---| | | | (c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period NA | | Other analyses | 17 | Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses p8 | | Discussion | | | | Key results | 18 | Summarise key results with reference to study objectives p8 | | Limitations | 19 | Discuss limitations of the study, taking into account sources of potential bias or | | | | imprecision. Discuss both direction and magnitude of any potential bias p9 | | Interpretation | 20 | Give a cautious overall interpretation of results considering objectives, limitations, | | | | multiplicity of analyses, results from similar studies, and other relevant evidence p8- | | | | 9 | | Generalisability | 21 | Discuss the generalisability (external validity) of the study results p9 | | Other information | | | | Funding | 22 | Give the source of funding and the role of the funders for the present study and, if | | | | applicable, for the original study on which the present article is based p13 | ^{*}Give information separately for exposed and unexposed groups. Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org. # **BMJ Open** # Associations between Healthcare Worker Participation in Workplace Wellness Activities and Job Satisfaction, Occupational Stress, and Burnout: A Cross-Sectional Study in Botswana | Journal: | BMJ Open | |----------------------------------|---| | Manuscript ID | bmjopen-2017-018492.R2 | | Article Type: | Research | | Date Submitted by the Author: | 16-Feb-2018 | | Complete List of Authors: | Ledikwe, Jenny; University of Washington, Department of Global Health; International Training and Education Center for Health (Botswana) Kleinman, Nora; NJK Consulting; University of Washington, Department of Global Health Mpho, Maureen; Republic of Botswana Ministry of Health Mothibedi, Heather; Republic of Botswana Ministry of Health Mawandia, Shreshth; University of Washington, Department of Global Health; International Training and Education Center for Health (Botswana) Semo, Bazghina-werq; University of Washington, Department of Global Health; International Training and Education Center for Health (Botswana) O'Malley, Gabrielle; University of Washington, Department of Global Health | | Primary Subject Heading : | Health services research | | Secondary Subject Heading: | Global health, Mental health | | Keywords: | workplace wellness, stress, job satisfaction, HIV/AIDS care, Botswana | | | | SCHOLARONE™ Manuscripts **Title:** Associations between Healthcare Worker Participation in Workplace Wellness Activities and Job Satisfaction, Occupational Stress, and Burnout: A Cross-Sectional Study in Botswana Running title: Association Wellness Activities Job Satisfaction, Stress, Burnout #### **Authors** Jenny H. Ledikwe, PhD^{1,2} Nora J Kleinman, MPH ¹⁻³ Maureen Mpho⁴ Heather Mothibedi, MSc⁴ Shreshth Mawandia, MSW, MPH^{1,2} Bazghina-werq Semo, MD MPH, MSc^{1,2*} Gabrielle O'Malley, PhD¹ #### **Affiliations** ¹Department of Global Health, University of Washington, Seattle, Washington, ²Botswana International Training and Education Center for Health (I-TECH), Gaborone, Botswana; ³ NJK Consulting ⁴ Botswana Ministry of Health, Gaborone, Botswana * Baz Semo is now affiliated with FHI360, Washington DC, USA. # **Corresponding Author** Jenny H. Ledikwe, PhD P.O. Box AC46 ACH, Riverwalk, Gaborone, Botswana Email: Ledikwe@UW.edu Phone: +267 3900925 Fax: +267 3900952 Conflicts of Interest and Source of Funding: No conflicts of interest exist. This work was supported by the President's Emergency Plan for AIDS Relief (PEPFAR), through funding to the University of Washington and I-TECH from the US Department of Health and Human Services, Health Resources and Services Administration (HRSA) Global HIV/AIDS Bureau, Cooperative Agreement #U91HA06801 and the Afya Bora Consortium Fellowship in Global Health Leadership supported by NIH Office of AIDS Research and CDC/PEPFAR, grant #U91HA06801B. Keywords: workplace wellness; stress; job satisfaction; HIV/AIDS care; Botswana Journal: BMJ Open **Abstract Wordcount:** 242 (250 max) **Wordcount:** 2,344 (4,500 max) **Figures:** 1, **Tables:** 3 (5 figure/tables max) #### **Abstract** # **Objectives** Healthcare workers (HWs) are prone to high levels of stress and burnout, particularly when caring for people with HIV/AIDS. This study assessed
whether participation in Botswana's Workplace Wellness Program for HWs (WWP) was associated with job satisfaction, occupational stress, well-being, and burnout. #### Methods Using multi-stage sampling, a paper-based questionnaire was distributed to 1,856 randomly selected HWs at 135 public facilities across Botswana. Well-validated scales assessed key outcomes. ANCOVA models were built for psychosocial factors associated with WWP participation, controlling for associated demographics. #### **Results** Response rate was 73% (n=1,348). The majority of respondents were female (62%), not married (65%) and had children (84%). Mean age was 40.0 years (SD±9.9). Respondents were roughly split between participation in 0 WWP activities (29.4%), 1-6 WWP activities (38.9%), and 7 or more WWP activities (31.7%) in the past year. High participation was associated with older age, being a doctor or other professional, working at hospitals or District Health Management Teams, working longer in health services, or working longer at a facility. In unadjusted analyses, high participation was significantly associated (p<0.05) with higher satisfaction with overall job, work, supervision, promotion, pay, and professional efficacy; and lower stress, exhaustion, and cynicism. All associations remained significant in controlled analyses except cynicism. #### **Conclusions** Results from this study suggest participation in workplace wellness activities is associated with higher satisfaction with multiple job facets and lower stress, exhaustion, and cynicism. Introduction of these activities may help ameliorate high occupational stress levels among HWs. ## Article Summary. Strengths and limitations of this study: - Strengths include a multilevel random sampling methodology and use of previously validated scales. - The survey had a relatively high response rate (73%). - Limitations include an inability to determine the direction of causality due to the cross-sectional nature of the survey. #### Introduction Healthcare professionals are prone to high levels of occupational stress. When stress is experienced chronically, it results in burnout, an exhaustion of physical and emotional resources⁽¹⁾. This is due to long hours and the emotional weight of treating sick patients⁽²⁾ and is especially common among providers who work with People Living with HIV/AIDS (PLHA)⁽³⁾. In the early years of the HIV epidemic, the stress was primarily due to stigma around the disease, lack of understanding of transmission and treatment, and the extremely high mortality rate.⁽⁴⁾ The introduction of highly active antiretroviral therapy (HAART) and increased community and clinical HIV knowledge has lessened stress on providers. However, many providers still experience stress from the emotional toll of caring for sick patients, workplace demands, lack of supervision, unresolved grief, feelings of helplessness and ineffectiveness, and an absence of gratitude from individuals and communities.^(4, 5) Accordingly to the Maslach Burnout Model, this persistent stress eventually results in burnout, comprised of "overwhelming" exhaustion, cynicism, and a sense of ineffectiveness⁽¹⁾. In sub-Saharan Africa, high demand for services and insufficient resources are still commonplace, resulting in tense environments for health workers involved in HIV treatment, care, and support. This situation may be compound by the new Joint United Nations Programme on HIV/AIDS (UNAIDS) targets of having 90% of PLHA know their status, 90% of people who know they have HIV on ARV treatment, and 90% of PLHA on treatment virally suppressed. (6) Botswana, with an 18.5% prevalence rate, has been one of the countries most affected by the HIV epidemic. A survey conducted in 2006 indicated there were high levels of stress and burnout among health workers in Botswana, due in part to the rising burden of HIV/AIDS patients and the related pressure on the healthcare system. In response, the Botswana Ministry of Health (MOH) began implementing a comprehensive Workplace Wellness Program (WWP) for healthcare workers in 2007. This initiative aimed to improve health and well-being and reduce stress among health workers in government facilities by empowering them with knowledge and skills to manage the dynamic demands of the health care system. WWP implementation has been described previously. Priefly, the program focused on holistic improvements in health and well-being through activities focusing on: health screening, treatment, and care; health promotion; stress management and team building; occupational health and safety; psychosocial and spiritual care; and therapeutic recreation. Data from high-income settings suggest that workplace wellness programs can have numerous benefits, including lowered healthcare costs, reduced absenteeism, increased productivity, and positive economic impact. However the situation is different in less resourced countries, with higher reported levels of anxiety, depression, and health risks and lower nutritional habits and physical activity. Thus, little is known about the effectiveness of workplace wellness programs when implemented to improve occupational health among health workers in these settings, outside of a few studies in South Africa. Therefore, a nationally representative survey of health workers in Botswana was conducted to determine if there were associations between participation in WWP activities with individuals levels of job satisfaction, psychological well-being, burnout, and sources of stress. #### Methods This was a cross-sectional survey of staff employed at public health facilities in Botswana. Individuals had to be employed in a selected public health facility to be eligible to participate. A self-administered questionnaire was distributed to randomly selected health workers in public health facilities using multi-stage sampling. The first sampling stage was to select the health facilities, using a random number generator to select five facilities in each of Botswana's 27 health districts. For each district, one facility was selected from each of the following five types of health facilities: district health management teams, hospitals, clinics with maternity services, clinics without maternity services, and health posts. When no facility was available in a particular category, an additional facility was selected at random. If a district had less than five facilities, all were chosen. The second stage of sampling was to select healthcare workers. For each selected facility, employees were categorized according to four cadres: doctors and nurses providing clinical care, administrative personnel (doctors and nurses acting in administrative capacity, human resources staff, data clerks), other professionals (social workers, pharmacists, nutritionists, allied health professionals including radiographers and pharmacist technicians, paraprofessionals including lay counsellors and health education assistants), and support staff (drivers, cleaners, gardeners). Four participants and two alternates were randomly selected per cadre at each facility. If a facility had fewer than four employees in a cadre, all were selected. One district had fewer than five facilities and many cadres had fewer than four people. In total, surveys were distributed to 1,856 health workers in 134 facilities (32 clinics with maternity, 29 clinics without maternity, 26 health posts, 26 DHMTs, and 21 health posts), which represents 9.3% of the estimated 20,000 health workers in the country⁽²²⁾. This sample size was calculated to provide a confidence level of 95% and confidence interval of 5% among the smallest employee category (other professionals, n=4751) working at public health facilities. Surveys were administered by district WWP focal people. To ensure uniform administration, these individuals received a one-week training including general research topics, research ethics, the survey tool, and the distribution process. In rare cases where a participant had limited literacy and/or English skills, focal people supported completion of the survey. Participants completed the questionnaire, sealed it in an envelope, and returned it to the district WWP focal person. Envelopes were sent through government transport, post, or courier to the research team in Gaborone. #### Questionnaire The self-administered questionnaire consisted of quantitative, closed-ended questions assessing demographics (age, gender, marital status, children, education, employment cadre, type of facility, length of time in healthcare, length of time working at current facility, citizenship). It also assessed participation in WWP activities, job satisfaction, stress level, well-being, burnout, and sources of stress. Participation in WWP services was assessed using a question about each of the five activity types (health promotion, psychosocial and spiritual care, stress management and team building, therapeutic recreation, occupational health and safety). The number of times an individual had participated in each activity was assessed. Total number of activities was calculated by averaging the midpoint number from each response category across the five activity types. Job satisfaction was assessed using the abridged Job Descriptive Index (JDI)⁽²³⁾, a shortened form of the JDI, both psychometrically well-validated tools⁽²⁴⁾ to measure satisfaction with work, co-workers, compensation, promotion opportunity, and supervision. Respondents were asked to think about each job facet and respond to six adjectives/short phrases with "yes", "no", or "cannot decide." Responses were summed using the recommended cleaning and scoring procedures including eliminating "straight line responses", dropping response with significant missing data, and reverse-scoring negative phrases. The eight-item Job In General (JIG) scale was used to measure overall job satisfaction and cleaned in the same fashion. Occupational stress was assessed with the
Stress in General scale⁽²⁵⁾, using the same format as the JDI and JIG. Psychological well-being was assessed with the General Health Questionnaire-12 (GHQ-12), a psychometrically well-validated, widely used tool, (26) including in low-income settings. (27) The GHQ is comprised of twelve items such as "Have you recently been able to concentrate on what you're doing?" with responses on a 4-point Likert-type scale (not at all, no more than usual, rather more than usual, much more than usual). Responses were summed using the author-recommended 0/0/1/1 scoring. Burnout was assessed using the sixteen-item Maslach Burnout Inventory-General Survey (MBI-GS), developed over 25 years ago⁽²⁸⁾ show to have strong psychometric properties across settings and occupations⁽²⁹⁻³¹⁾. The GS version focuses on staff not providing direct human services and measures three subscales of exhaustion, cynicism, and professional efficiency using five or six items each. Sources of stress were measured using an investigator-adapted instrument from the 2006 Botswana Healthcare Worker Survey asking participants to rate whether 10 topics were sources of work-related stress on a 5 point Likert scale (Strong Agree, Agree, Not Sure, Disagree, Strongly Disagree). A response of "Strongly Agree" or "Agree" was used to indicate stress. # Statistics Data were entered and managed using REDcap electronic data capture tools hosted at University of Washington. (32) REDCap (Research Electronic Data Capture) is a secure, webbased application designed to support data capture for research studies, providing an intuitive interface for validated data entry; audit trails for tracking data manipulation and export procedures; automated export procedures for seamless data downloads to common statistical packages; and procedures for importing data from external sources. Data were exported to STATA version 14.2 for analysis. Participants who did not respond to questions on WWP participation were removed from analysis. Descriptive statistics were generated to characterize the respondents' demographics, participation in WWP activities, and psychosocial measures. Respondents were categorized into three WWP participation groups based on number of activities completed in the past year: 0 activities, 1-6 activities, or 7+ activities. Associations between demographics and WWP program participation as well as psychosocial factors and WWP participation were analysed with chisquared (categorical) and ANOVA models (continuous). For psychosocial factors found to be associated with WWP participation, ANCOVA models were built, controlling for associated demographics. Post-hoc pairwise comparisons were conducted using the Bonferroni method. No sensitivity analyses were conducted. # Ethics Approval The evaluation was approved by the MOH Health Research and Development Committee Reference #PPME: 13/18/1 Vol VIII (434) and non-research determination was received by the University of Washington's Internal Review Board Application #45194EJ. It was conducted by the International Training and Education Center for Health (I- TECH), which is a collaboration between the University of Washington and University of California, San Francisco under the guidance of a reference group of healthcare stakeholders which included representation from the Botswana Ministry of Health Departments of Corporate Services, HIV/AIDS Prevention and Care, Clinical Services, and Public Health; the Seventh Day Adventist Mission Hospital in Kanye; Directorate of Public Service Management, Office of the President; the World Health Organization; and CDC Botswana. #### Results Of the 1,856 forms distributed, questionnaires were completed and returned by 1,348 health workers, a response rate of 73%. There were 30 respondents who did not answer questions on WWP participation and were removed from the analyses. Nearly two-thirds of respondents were female (62.4%) and similar amounts were not married (65.2%) [Table 1]. Of respondents, 2.9% were doctors, 29.2% were nurses, 27.4% were other professionals, 10.4% were administrative, and 27.2% were support staff. The mean age was 40.0 years (SD±9.9). About half worked in hospitals (26.9%) or clinics with maternity (24.9%). Participants were split into roughly thirds of those who in the last year had participated in 0 WWP activities (n= 387, 29.4%), 1-6 activities (n=513, 38.9%), and 7 or more activities (n=418, 31.7%). Among those who had participated in 7 or more activities in the past year, psychosocial and spiritual care activities were the best attended, with 13.6% of participants attending 7 or more in the last year, while only 2.8% of participants had attended the same quantity of Occupational Health and Safety (OHSA) activities. High participation in WWP activities was associated with older age, working longer in health services, working longer at a facility, being a doctor or other professional staff, and being posted at hospitals and the District Health Management Teams (DHMT). The strongest association was seen with facility type. In unadjusted analyses, overall job satisfaction assessed by the JIG was significantly higher for health workers that participated in seven or more WWP activities, as compared to those who did not participate in any WWP activities (p<0.001). There were similar findings with the JDI subscales related to satisfaction with work, supervision, promotion opportunities, and pay, with the highest levels found among those participating in seven or more WWP activities (all p≤0.005). Psychological well-being measured by the GHQ-12 did not differ significantly by level of WWP participation. However, levels of stress from the SIG as well as measures of exhaustion and cynicism from the MBI were significantly lower among those with high participation in WWP activities. All associations remained the same in analyses controlled for age, cadre, and facility type, except for the MBI subscale of cynicism, which became non-significant. Post-hoc analyses of differences between groups are presented in Table 2. The three most commonly reported sources of stress were shortages of staff (78.0%), insufficient resources & supplies (76.7%) and too much work (72.7%) [Table 3]. Compared to the 2006 survey, fewer participants in 2014 indicated each category was a source of stress. The only exception was for "non-supportive supervisors" which saw a slight increase from 58% in 2006 to 59.5% in 2013. #### **Discussion** Data from this nationally representative survey of health workers in Botswana found that participation in workplace wellness activities was associated with higher levels of job satisfaction and professional efficacy. Participation in workplace wellness activities was also associated with lower levels of stress and exhaustion. To the authors' knowledge, this is the first report of the effectiveness of a national workplace health promotion initiative for public health workers in middle- or low-income countries. Health workers were more likely to participate in WWP activities if they were of older age, worked longer in health services, worked longer at a facility, were a doctor or other professional staff, or were posted at hospitals and the DHMT. This last, and strongest association was possibly due to greater access to activities at these sites. While there is a large body of literature on health promotion activities in high-income countries, workplace health promotion programs in middle or low-income countries have been reported less frequently^(13, 20, 33), particularly in health care settings.⁽³⁴⁾ Much of the existing research comes from the Healthy Company Index, which was developed by a large health insurer in South Africa to promote healthy lifestyles among insurees.⁽¹⁷⁻²⁰⁾ Data from this program indicate workplace wellness programs are positively associated with employee health. Specifically, employees at companies providing health promotion facilities are more likely to meet the guidelines for physical activity and daily consumption of fruits and vegetables.⁽¹⁸⁾ The Maslach Burnout Model indicates that burnout is a result of chronic stress⁽¹⁾, however a recent literature review indicates the interplay between workplace stress, burnout, job satisfaction, and general health is not well understood.⁽³⁵⁾ Thus the mechanism by which workplace wellness programs may improve wellbeing is unclear. Additional research from the Healthy Company Index shows leadership support of workplace wellness programs influences the provision of health promotion facilities and policies, resulting in higher employee wellbeing and increased perceived organizational commitment to wellbeing. The authors argue based upon Social Exchange Theory (SET) workplace wellness programs may have benefits beyond those created by their direct use. Even employees who do not participate in the programs may still benefit through the perception that the organization they work cares about their health. The importance of enacting such programs and policies is an important implication for policymakers charged with caring for the public health workforce. The data on sources of stress can be directly compared to the 2006 survey conducted before the implementation of the WWP program. In the recent study, fewer respondents reported providing care for HIV/AIDS (42% vs 76%), caring for many patients (49.0% vs. 85%), too much work (72.7% vs. 88%), and staff shortages (78% vs. 91%) as a source of stress. These results are encouraging, as they suggest there have been improvements in reducing workplace stress. However it is unclear what these changes are attributable to, including increased familiarity with HIV/AIDS, more straightforward treatment regimens, programs like WWP, increased human resources in the health field, or other changes. In addition, the continuing high level of staff shortages and slight rise in non-supportive supervisors (59.5% vs. 58%) is notable, as other research in the region highlights
that stress related to staff issues may be a key factor for burnout among healthcare professionals. (38) These conclusions must be interpreted within the context of this study design. As a cross-sectional survey, it is impossible to determine the direction of causality. Participation in workplace wellness activities may have increased feelings of job satisfaction and efficacy and decreased stress and burnout. However it is equally plausible that individuals who felt more satisfied and efficacious and less stressed and burnt-out were more likely to participate in workplace wellness activities. Strengths of this study include a multilevel random sampling methodology, use of previously validated scales, and a relatively high response rate (73%). Given the representative nature of the study, the results are likely generalizable to public health workforces in other low- and middle- income countries. The health systems of middle- and low-income countries are facing a particularly important and challenging time. There has been marked progress towards key international initiatives including the UNDP sustainable development goals, the UNAIDS 90-90-90 HIV treatment goals, and the WHO initiatives for the elimination of mother to child transmission of HIV and syphilis. However, achievement of these ambitious goals requires intensified efforts. This can create tense environments for healthcare workers, leading high levels of stress, burnout, and job dissatisfaction. This study has highlighted workplace wellness programs as a potential avenue to support these vital staff. Further, it is possible that providing these types of activities may facilitate higher job satisfaction and lower levels of stress and burnout. Further, SET reinforces the implications of having such programs formally codified as organizational policy. Piloting of similar programs in similar strained healthcare systems could be extremely helpful in the attainment of key international public health and development goals. Table 1. Demographic characteristics and WWP participation in the past year of 1,318 WWP national survey participants WWP Participation in Last Year | | 1 | Total | 0 A | ctivities | 1-6 | Activities | 7+ | Activities | • | |-------------------------------------|-------|----------------------|------|-----------------|------|--------------------|------|--------------------|-----------------------| | Characteristic | % | n=1,318 [#] | % | n=387# | % | n=513 [#] | % | n=418 [#] | p-value ^{\$} | | Age (years)* | | 39.9 ±9.9 | | 39.9 ± 10.1 | | 39.2 ±9.6 | | 40.9 ± 10.1 | 0.027 | | Gender | | | | | | | | | | | Female | 62.2 | 820 | 66.7 | 258 | 60.6 | 311 | 60.0 | 251 | 0.116 | | Male | 37.5 | 494 | 33.3 | 129 | 38.8 | 199 | 39.7 | 166 | | | Marital Status | | | | | | | | | | | Not Married | 65.2 | 859 | 65.6 | 254 | 66.9 | 343 | 62.7 | 262 | | | Married | 33.8 | _ 445 | 33.1 | 128 | 32.2 | 165 | 36.4 | 152 | 0.364 | | Number of Children | | | | | | | | | | | 0 | 16.2 | 213 | 17.6 | 68 | 17.5 | 90 | 13.2 | 55 | 0.407 | | 1-2 | 47.7 | 629 | 47.0 | 182 | 47.4 | 243 | 48.8 | 204 | | | 3-4 | 27.6 | 364 | 28.9 | 112 | 26.3 | 135 | 28.0 | 117 | | | 5+ | 7.2 | 95 | 5.9 | 23 | 7.0 | 36 | 8.6 | 36 | | | Highest Education Completed | | | | | | | | | | | Less than High School | 30.5 | 402 | 30.0 | 116 | 27.7 | 142 | 34.4 | 144 | 0.292 | | Senior Secondary School | 16.0 | 211 | 15.2 | 59 | 17.2 | 88 | 15.3 | 64 | | | More than High School | 50.5 | 666 | 50.6 | 196 | 52.4 | 269 | 48.1 | 201 | | | Botswana Citizen | 93.8 | 1,236 | 95.6 | 370 | 93.4 | 479 | 92.6 | 387 | 0.341 | | Years worked in Health Services* | | 11.9 ± 9.0 | | 11.7 ± 8.7 | | 11.2 ± 8.7 | | 12.9 ± 9.4 | 0.014 | | Years worked in Facility* | | 3.1 ± 1.3 | | 2.9 ± 1.3 | | 3.1 ± 1.3 | | 3.2 ± 1.3 | 0.001 | | Cadre | | | | | | | | | | | Doctor | 2.9 | 38 | 2.1 | 8 | 2.9 | 15 | 3.6 | 15 | 0.001 | | Nurse | 29.2 | 385 | 35.1 | 136 | 29.6 | 152 | 23.2 | 97 | | | Other Professional | 27.4 | 361 | 21.4 | 83 | 28.3 | 145 | 31.8 | 133 | | | Administrative | 10.4 | 137 | 10.3 | 40 | 12.3 | 63 | 8.1 | 34 | | | Support | 27.2 | 358 | 27.9 | 108 | 23.8 | 122 | 30.6 | 128 | | | Facility Type | | | | | | | | | | | Hospital | 26.8 | 353 | 17.6 | 68 | 29.8 | 153 | 31.6 | 132 | < 0.001 | | Clinic with maternity | 24.8 | 327 | 30.7 | 119 | 24.8 | 127 | 19.4 | 81 | | | District Health Management Team | 19.9 | 262 | 15.2 | 59 | 19.3 | 99 | 24.9 | 104 | | | Clinic without maternity | 17.6 | 232 | 24.0 | 93 | 15.0 | 77 | 14.8 | 62 | | | Health Post | 8.8 | 116 | 10.3 | 40 | 8.6 | 44 | 7.7 | 32 | | | WWP Activity Participation* | (n) | | | | | | | | | | Health Promotion | 1,290 | 1.8 ± 2.9 | | 0 | | 1.4 ± 1.3 | | 4.0 ± 4.0 | | | Psychosocial and Spiritual Care | 1,281 | 2.2 ± 3.9 | | 0 | | 0.7 ± 1.2 | | 6.0 ± 5.0 | | | Stress Management and Team Building | 1,298 | 0.9 ± 2.2 | | 0 | | 0.4 ± 0.8 | | 2.4 ± 3.3 | | | Therapeutic Recreation | 1,278 | 0.9 ± 2.5 | 0 | 0.4 ± 0.8 | 2.5 ± 3.8 | | |--------------------------------|-------|---------------|---|---------------|---------------|--| | Occupational Health and Safety | 1,288 | 0.7 ± 2.0 | 0 | 0.4 ± 0.8 | 1.9 ± 3.2 | | ^{*} mean ±SD Table 2. Association of job satisfaction, stress, well-being, and burnout with WWP participation in the past year among 1,291 WWP national survey participants WWD Darticipation in the Last Voor | | | | w w P Pa | rticipation in the | e Last Year | | | |------------------------------|---------|----------------|--------------------|---------------------|--------------------|--------------|------------| | | 0 | verall | 0 Activities | 1-6 Activities | 7+ Activities | p-value | p-value | | | n=1,291 | Mean ±SD | n=376 | n=503 | n=412 | (unadjusted) | (adjusted) | | Job In General | 1,012 | 15.0 ± 6.8 | 13.9 ± 7.4^{a} | 14.7 ± 6.5^{ab} | 16.5 ± 6.3^{b} | < 0.001 | 0.004 | | Job Descriptive Index | | | | | | | | | Co-workers | 1,031 | 12.2 ± 6.0 | 12.0 ± 6.0 | 12.3 ± 5.9 | 12.3 ± 6.0 | 0.759 | 0.703 | | Work in present job | 1,027 | 10.3 ± 5.6 | 9.1 ± 5.8^{a} | 10.1 ± 5.6^{ab} | 11.6 ± 5.4^{b} | < 0.001 | < 0.001 | | Supervision | 989 | 10.3 ± 5.8 | 9.6 ± 6.1^{a} | 10.0 ± 5.7^{ab} | 11.4 ± 5.6^{b} | < 0.001 | 0.043 | | Opportunities for promotion | 986 | 5.9 ± 5.0 | 5.0 ± 4.7^{a} | 6.0 ± 4.9^{b} | 6.6 ± 5.2^{b} | < 0.001 | 0.003 | | Pay | 1,023 | 4.4 ± 4.6 | 3.9 ± 4.6^{a} | 4.2 ± 4.3^{ab} | 5.1 ± 5.0^{b} | 0.005 | 0.007 | | Stress in General | 970 | 12.9 ± 7.7 | 14.1 ± 8.0^{a} | 13.1 ± 7.6^{ab} | 11.7 ± 7.4^{b} | < 0.001 | 0.006 | | General Health Questionnaire | 1,278 | 4.0 ± 2.6 | 4.2 ± 2.7 | 4.1 ± 2.7 | 3.8 ± 2.4 | 0.138 | 0.307 | | Maslach Burnout Inventory | | | | | | | | | Professional Efficacy | 1,257 | 4.9 ± 1.1 | 4.9 ± 1.1^{a} | 4.9 ± 1.1^{a} | 5.1 ± 0.9^{b} | 0.043 | 0.017 | | Exhaustion | 1,260 | 2.3 ± 1.7 | 2.6 ± 1.8^{a} | 2.3 ± 1.7^{b} | 2.0 ± 1.5^{b} | < 0.001 | < 0.001 | | Cynicism | 1,246 | 2.4 ± 1.4 | 2.5 ± 1.4 | 2.4 ± 1.4 | 2.2 ± 1.4 | 0.022 | 0.418 | | A 11 4 | 1 4 4 | 1 '/1 | ANTOTA | A 1° , 1 1 | 1 43100174 | 4 11° C | / | All outcome variables were continuous and tested with one-way ANOVAs. Adjusted analyses used ANCOVAs, controlling for age (continuous), cadre (5 levels), and facility type (5 levels). Mean values with different superscript letters are significantly different using Bonferroni pairwise comparisons. [#] N(%) may not equal total due to missing data or rounding. %s are calculated using missing data ^{\$} p-value calculated from chi-square test for categorical variables and ANOVA for continuous variables Table 3. Comparison of sources of stress between participants in the 2013 WWP national survey and 2006 healthcare worker survey | | 201 | 13 | 2006 | | | |---|------|------------|------|---------|--| | Sources of Stress (Agree/Strongly Agree) | % | (n=1,313) | % | (n=223) | | | Shortage of staff | 78.0 | 1,051 | 91 | 201 | | | Insufficient resources and supplies | 76.7 | 1,034 | - | - | | | Too much work | 72.7 | 980 | 88 | 196 | | | Not being appreciated for the work I do | 64.1 | 864 | 76 | 169 | | | Non-supportive supervisors | 59.5 | 802 | 58 | 129 | | | Balancing demands of work and family | 51.3 | 691 | - | - | | | Providing care for many patients | 49.0 | 660 | 85 | 190 | | | Providing care for many HIV/AIDS patients | 42.3 | 570 | 76 | 169 | | | | 41.3 | 557 | 55 | 123 | | | Conflict with co-workers | 39.7 | 535 | - | - | | | | | 557
535 | | | | #### Authors' contributions JL and NJK prepared the first draft; JL, NJK, MM, HM, SM, BS, GO reviewed the manuscript and provided comments; JL and NJK finalized the report based on feedback from other authors; JL and NJK analyzed and interpreted the data; JL, MM, HM, SM, BS, GO helped provide overall guidance to the conduct of the study; and JL, MM, HM, SM, BS, GO were involved in the origination and development of the concept of the study. # **Data Sharing Statement** Extra data is available by emailing Dr. Ledikwe @ ledikwe@uw.edu Conflicts of Interest and Source of Funding: No conflicts of interest exists. This work was supported by the President's Emergency Plan for AIDS Relief (PEPFAR), through funding to the University of Washington and I-TECH from the US Department of Health and Human Services, Health Resources and Services Administration (HRSA) Global HIV/AIDS Bureau, Cooperative Agreement #U91HA06801 and the Afya Bora Consortium Fellowship in Global Health Leadership supported by NIH Office of AIDS Research and CDC/PEPFAR, grant #U91HA06801B. #### References - 1 Maslach, C., W. Schaufeli, and M. Leiters: Job Burnout. *Annu. Rev. Psychol.* 52: 397-422 (2001). - **Felton, J.S.:** Burnout as a clinical entity--its importance in health
care workers. *Occup Med (Lond)* 48(4): 237-250 (1998). - **Silverman, D.C.:** Psychosocial impact of HIV-related caregiving on health providers: a review and recommendations for the role of psychiatry. *Am J Psychiatry* 150(5): 705-712 (1993). - **Demmer, C.:** Burnout: the health care worker as survivor. *AIDS Read* 14(10): 522-523, 528-530, 535-527 (2004). - **Kerr, Z.Y., K.R. Miller, D. Galos, R. Love, and C. Poole:** Challenges, coping strategies, and recommendations related to the HIV services field in the HAART era: a systematic literature review of qualitative studies from the United States and Canada. *AIDS Patient Care STDS* 27(2): 85-95 (2013). - **UNAIDS:** 90-90-90 An ambitious treatment target to help end the AIDS epidemic(2014). - 7 Government of Botswana: "Botswana AIDS Impact Survey IV (BAIS IV)", 2012. - **Botswana Ministry of Health:** "Wellness Program for Health Workers (WHW): Implementation Plan 2006-2009", 2006. - 9 Ledikwe, J.H., B.-w. Semo, M. Sebego, M. Mpho, H. Mothibedi, S. Mawandia et al.: Implementation of a National Workplace Wellness Program for Health Workers in Botswana. *J Occup Environ Med* 59(9): 867-874 (2017). - **Government of Botswana:** "Botswana workplace wellness program operational guidelines". Gaborone, Botswana: Ministry of Health, 2007. - **Baicker, K., D. Cutler, and Z. Song:** Workplace wellness programs can generate savings. *Health Aff (Millwood)* 29(2): 304-311 (2010). - Goetzel, R.Z., R.M. Henke, M. Tabrizi, K.R. Pelletier, R. Loeppke, D.W. Ballard et al.: Do workplace health promotion (wellness) programs work? *J Occup Environ Med* 56(9): 927-934 (2014). - 13 Kolbe-Alexander, T.L., K.I. Proper, E.V. Lambert, M.F. van Wier, J.D. Pillay, C. Nossel et al.: Working on wellness (WOW): a worksite health promotion intervention programme. *BMC Public Health* 12: 372 (2012). - Astrella, J.A.: Return on Investment: Evaluating the Evidence Regarding Financial Outcomes of Workplace Wellness Programs. *J Nurs Adm* 47(7-8): 379-383 (2017). - Kaspin, L.C., K.M. Gorman, and R.M. Miller: Systematic review of employer-sponsored wellness strategies and their economic and health-related outcomes. *Popul Health Manag* 16(1): 14-21 (2013). - **Howarth, A., J. Quesada, and P.R. Mills:** A global, cross cultural study examining the relationship between employee health risk status and work performance metrics. *Ann Occup Environ Med* 29: 17 (2017). - Milner, K., R. da Silva, D. Patel, and S. Salau: How do we measure up? A comparison of lifestyle-related health risk factors among sampled employees in South African and UK companies. *Glob Health Promot* (2016). - 18 Kolbe-Alexander, T., M. Greyling, R. da Silva, K. Milner, D. Patel, L. Wyper et al.: The relationship between workplace environment and employee health behaviors in a South African workforce. *J Occup Environ Med* 56(10): 1094-1099 (2014). - Milner, K., M. Greyling, R. Goetzel, R. Da Silva, T. Kolbe-Alexander, D. Patel et al.: The relationship between leadership support, workplace health promotion and employee wellbeing in South Africa. *Health Promot Int* 30(3): 514-522 (2013). - Patel, D., R.Z. Goetzel, M. Beckowski, K. Milner, M. Greyling, R. da Silva et al.: The Healthiest Company Index: a campaign to promote worksite wellness in South Africa. *J Occup Environ Med* 55(2): 172-178 (2013). - 21 Conradie, C.S., E. van der Merwe Smit, and D.P. Malan: Corporate Health and Wellness and the Financial Bottom Line: Evidence From South Africa. *J Occup Environ Med* 58(2): e45-53 (2016). - 22 Government of Botswana: National Health Service Situational Analysis Report(2009). - Stanton, J.M., E.F. Sinar, W.K. Balzer, A.L. Julian, P. Thoresen, S. Aziz et al.: Development of a Compact Measure of Job Satisfaction: The Abridged Job Descriptive Index. *Educational and Psychological Measurement* 62(1): 173-191 (2002). - Kinicki, A.J., F.M. McKee-Ryan, C.A. Schriesheim, and K.P. Carson: Assessing the construct validity of the job descriptive index: a review and meta-analysis. *J Appl Psychol* 87(1): 14-32 (2002). - Stanton, J.M., W.K. Balzer, P.C. Smith, L. Fernardo, and P.G. Ironson: A General Measure of Work Stress: The Stress in General Scale. *Educational and Psychological Measurement* 61(5): 866-888 (2001). - Jackson, C.: The general health questionnaire. *Occupational Medicine* 57(79)(2007). - **Ali, G.C., G. Ryan, and M.J. De Silva:** Validated Screening Tools for Common Mental Disorders in Low and Middle Income Countries: A Systematic Review. *PLoS One* 11(6): e0156939 (2016). - Schaufeli, W.B., and E.R. Greenglass: Introduction to special issue on burnout and health. *Psychol Health* 16(5): 501-510 (2001). - Poghosyan, L., L.H. Aiken, and D.M. Sloane: Factor structure of the Maslach burnout inventory: an analysis of data from large scale cross-sectional surveys of nurses from eight countries. *Int J Nurs Stud* 46(7): 894-902 (2009). - Worley, J., M. Vassar, D. Wheeler, and L. Barnes: Factor structure of scores from the Maslach Burnout Inventory: A review and meta-analysis of 45 exploratory and confirmatory factor-analytic studies. *Educational and Psychological Measurement* 68: 797-823 (2008). - Langballe, E.M., E. Falkum, S.T. Innstrand, and O.G. Aasland: Langballe, Falkum, Innstrand, Aasland (2006). The Factorial Validity of the Maslach Burnout Inventory–General Survey in Representative Samples of Eight Different Occupational Groups. Journal of Career Assessment. *Journal of Career Assessment* 14(3): 370-384 (2006). - Harris, P.A., R. Taylor, R. Thielke, J. Payne, N. Gonzalez, and J.G. Conde: Research electronic data capture (REDCap)--a metadata-driven methodology and workflow process for providing translational research informatics support. *J Biomed Inform* 42(2): 377-381 (2009). - **Yassi, A., L.M. O'Hara, K. Lockhart, and J.M. Spiegel:** Workplace programmes for HIV and tuberculosis: a systematic review to support development of international guidelines for the health workforce. *AIDS Care* 25(5): 525-543 (2013). - **Basson, H.A., and L. Roets:** Workplace wellness for HIV/AIDS-affected nurses in South Africa. *Br J Nurs* 22(1): 38-44 (2013). - **Khamisa**, **N.**, **K. Peltzer**, **and B. Oldenburg**: Burnout in relation to specific contributing factors and health outcomes among nurses: a systematic review. *Int J Environ Res Public Health* 10(6): 2214-2240 (2013). - **Cropanzano, R., and M.S. Mitchell:** Social Exchange Theory: An Interdisciplinary Review. *Journal of Management* 31(6): 874-900 (2005). - **Botswana Ministry of Health, and ITECH-Botswana:** "Evaluation of the Botswana Ministry of Health's Workplace Wellness Programme to Improve Implementation, Utilization, Impact and Sustainability", 2014. - 38 Khamisa, N., B. Oldenburg, K. Peltzer, and D. Ilic: Work related stress, burnout, job satisfaction and general health of nurses. Int J Environ Res Public Health 12(1): 652-666 (2015). STROBE Statement—Checklist of items that should be included in reports of *cross-sectional studies* | | Item
No | Recommendation | |------------------------|------------|--| | Title and abstract | 1 | (a) Indicate the study's design with a commonly used term in the title or the abstract p1 | | | | (b) Provide in the abstract an informative and balanced summary of what was done | | | | and what was found p2 | | Introduction | | | | Background/rationale | 2 | Explain the scientific background and rationale for the investigation being reported p3 | | Objectives | 3 | State specific objectives, including any prespecified hypotheses p4 | | Methods | | | | Study design | 4 | Present key elements of study design early in the paper p4 | | Setting | 5 | Describe the setting, locations, and relevant dates, including periods of recruitment, | | | | exposure, follow-up, and data collection p4 | | Participants | 6 | (a) Give the eligibility criteria, and the sources and methods of selection of | | | | participants p4 | | Variables | 7
 Clearly define all outcomes, exposures, predictors, potential confounders, and effect | | | | modifiers. Give diagnostic criteria, if applicable p5-6 | | Data sources/ | 8* | For each variable of interest, give sources of data and details of methods of | | measurement | | assessment (measurement). Describe comparability of assessment methods if there is | | | | more than one group p5-6 | | Bias | 9 | Describe any efforts to address potential sources of bias p6 | | Study size | 10 | Explain how the study size was arrived at p4 | | Quantitative variables | 11 | Explain how quantitative variables were handled in the analyses. If applicable, | | | 11 | describe which groupings were chosen and why p6 | | Statistical methods | 12 | (a) Describe all statistical methods, including those used to control for confounding | | | 12 | p6 | | | | (b) Describe any methods used to examine subgroups and interactions p6 | | | | (c) Explain how missing data were addressed p6 | | | | | | | | (d) If applicable, describe analytical methods taking account of sampling strategy | | | | NA (A) Paradia and a salidation of the salidati | | | | (e) Describe any sensitivity analyses p6 | | Results | | | | Participants | 13* | (a) Report numbers of individuals at each stage of study—eg numbers potentially | | | | eligible, examined for eligibility, confirmed eligible, included in the study, | | | | completing follow-up, and analysed p7 | | | | (b) Give reasons for non-participation at each stage p7 | | | | (c) Consider use of a flow diagram NA | | Descriptive data | 14* | (a) Give characteristics of study participants (eg demographic, clinical, social) and | | | | information on exposures and potential confounders p7 & Table 1 on p10 | | | | (b) Indicate number of participants with missing data for each variable of interest | | | | Table 1 on p10 | | Outcome data | 15* | Report numbers of outcome events or summary measures p7-8 | | Main results | 16 | (a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and | | IVIGIII I COUITO | | | | Widin results | | their precision (eg, 95% confidence interval). Make clear which confounders were | | | | (b) Report category boundaries when continuous variables were categorized NA | |-------------------|----|---| | | | (c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period NA | | Other analyses | 17 | Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses p8 | | Discussion | | | | Key results | 18 | Summarise key results with reference to study objectives p8 | | Limitations | 19 | Discuss limitations of the study, taking into account sources of potential bias or | | | | imprecision. Discuss both direction and magnitude of any potential bias p9 | | Interpretation | 20 | Give a cautious overall interpretation of results considering objectives, limitations, | | | | multiplicity of analyses, results from similar studies, and other relevant evidence p8- | | | | 9 | | Generalisability | 21 | Discuss the generalisability (external validity) of the study results p9 | | Other information | | | | Funding | 22 | Give the source of funding and the role of the funders for the present study and, if | | | | applicable, for the original study on which the present article is based p13 | ^{*}Give information separately for exposed and unexposed groups. Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.