

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Diagnosis of the cause of death without autopsy: can virtual autopsy with postmortem CT improve clinical diagnosis?

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-018834
Article Type:	Research
Date Submitted by the Author:	24-Jul-2017
Complete List of Authors:	Sonnemans, Lianne; Radboudumc, Radiology and Nuclear Medicine Kubat, Bela; Nederlands Forensisch Instituut, Pathology; Maastricht UMC+, Pathology Prokop, Mathias; Radboudumc, Radiology and Nuclear Medicine Klein, Willemijn; Radboudumc, Radiology and Nuclear Medicine; Maastricht UMC+, Radiology
Keywords:	Computed tomography < RADIOLOGY & IMAGING, cause of death, postmortem, autopsy, sensitivity, specificity

SCHOLARONE[™] Manuscripts

1		
2		
3	1	
4		
5	2	
6		
7 8		
o 9	3	Diagnosis of the cause of death without autopsy: can virtual autopsy
10	4	with postmortem CT improve clinical diagnosis?
11		with postmortem er improve ennieur diagnosis.
12	5	
13	6	
14	7	LIP Sonnemans ^{1#} PhD candidate in post-mortem radiology
15		
16	8	B Kubat ^{2,3} Forensic and clinical pathologist
17 18	9	WM Prokop ¹ Radiologist
19	10	
20	10	WM Klein ^{1,4} Radiologist
21	11	
22		
23	12	¹ Department of Radiology and Nuclear Medicine, Radboudumc, Geert Grooteplein Zuid 10 6500 HB
24	13	Nijmegen, The Netherlands
25 26	14	² Department of Pathology, Netherlands Forensic Institute, Laan van Ypenburg 6 2497 GB Den Haag,
27 28	15	The Netherlands
29	16	³ Department of Pathology, Maastricht UMC+, P. Debyelaan 25 6229 HX Maastricht, The Netherlands
30 31	17	4 Department of Radiology and Nuclear Medicine, Maastricht UMC+, P. Debyelaan 25 6229 HX
32	18	Maastricht, The Netherlands
33 34	19	
35	20	Study design: retrospective observational cohort study
36	20	Study design: retrospective observational conort study
37	21	Word count: 2958
38 39		
40	22	
41	23	
42	25	
43	24	
44		
45 46	25	# Address for correspondence:
47	26	Ms. Lianne J.P. Sonnemans, M.D.
48	27	Department of Radiology and Nuclear Medicine
49	28	Radboudumc
50	29	Geert Grooteplein Zuid 10
51	30	6500 HB Nijmegen
52	31	The Netherlands
53	32	E-mail: <u>lianne.sonnemans@radboudumc.nl</u>
54	33	Tel: +31 24 361 1111
55 56		
50 57		
58		а а
59		1
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

cause of death, postmortem, computed tomography, autopsy, sensitivity, specificity

95% confidence interval

2	
3	34
4	35
5	
6	
7 8	36
8 9	
J0	37
11	38
12	
13	39
14	
15	
16	
17	
18 19	
20	
21	
22	
23	
24	
25	
26	
27 28	
28 29	
30	
31	
32	
33	
34	
35	
36	
37 38	
39	
40	
41	
42	
43	
44	
45	
46	
47 48	
48 49	
50	
51	
52	
53	
54	
55	
56	
57 58	

59

60

1

Key Words

95% CI

PMCT

List of abbreviations

BMJ Open

1		
2 3	40	Abstract
4	41	
5 6	42	Objective: To investigate whether virtual autopsy with postmortem CT (PMCT) improves clinical
7	43	diagnosis of the immediate cause of death.
8 9	44	Design: Retrospective observational cohort study. Inclusion criteria: in- and out-of-hospital deaths
10	45	over the age of one year in whom virtual autopsy with PMCT and conventional autopsy were
11 12	46	performed. Exclusion criteria: forensic cases, organ donors and cases with incomplete scanning
13 14	47	procedures. Cadavers were examined by virtual autopsy with PMCT prior to conventional autopsy.
15	48	The clinically determined cause of death was recorded before virtual autopsy and was then adjusted
16 17	49	with the findings of virtual autopsy. Using conventional autopsy as the standard of reference, we
18	50	compared the correctly identified causes of death, types of pathology and anatomical system
19 20	51	involved before and after virtual autopsy using McNemar tests.
21	52	Setting: Tertiary referral center.
22 23	53	Participants: 86 cadavers who underwent conventional and virtual autopsy between July 2012 and
24 25	54	June 2016.
26	55	Intervention: PMCT consisted of brain, cervical spine and chest-abdomen-pelvis imaging.
27 28	56	Conventional autopsy consisted of thoraco-abdominal examination with or without brain autopsy.
29	57	Primary and secondary outcome measures: The number of correctly identified causes of death,
30 31	58	types of pathology (infection, hemorrhage, perfusion disorder, other or not assigned) and anatomical
32 33	59	system (pulmonary, cardiovascular, gastrointestinal, other or not assigned) involved.
34	60	Results: Using PMCT, the number of correctly identified immediate causes of death increased from
35 36	61	53% (95% CI 41 to 64) to 64% (53 to 75) (p=0.05), type of pathology increased from 65% (54 to 76) to
37	62	83% (73 to 91) (p=0.001) and the identification of the anatomical system increased from 65% (53 to
38 39	63	75) to 84% (74 to 92) (p=0.001).
40	64	Conclusion: While postmortem CT cannot substitute for conventional autopsy, it can significantly
41 42	65	improve diagnosis of the immediate cause of death over clinical diagnosis alone and should therefore
43 44	66	be considered whenever autopsy would be desired but is turned down by the deceased's relatives.
45		
46 47		
47 48		
49		
50		
51		
52 53		
55 54		
55		

Article summary

Strengths and limitations of this study

- In light of decreased autopsy rates, this study investigated whether virtual autopsy with postmortem
- CT improves clinical diagnosis of the immediate cause of death, with autopsy as the reference
- standard, rather than only describing the diagnostic accuracy of postmortem CT.

- In addition to scoring the type of pathology and anatomical system involved, the diagnostic accuracy
- of a detailed immediate cause of death diagnosis was investigated.
- - Retrospective observational cohort study, with relative small sample sizes per type of pathology and
 - anatomical system.

 - Cause of death was not a categorical variable, so specificity for immediate cause of death diagnosis lic, .
 - could not be calculated.

Page 5 of 28

1

60

BMJ Open

2		
2 3	81	Contributors: LJPS had full access to all of the data in the study and takes responsibility for the
4	82	integrity of the data and the accuracy of the data analysis. LIPS acquired and analyzed the data. LIPS
5 6	83	and WMK interpreted the data. LIPS drafted the manuscript. WMK and WMP supervised the study.
7	84	LIPS, WMK and WMP contributed to the overall conception and design of the study. All authors
8 9	85	revised the manuscript for intellectual content.
10	86	Funding: This research received no specific grant from any funding agency in the public, commercial
11 12	87	or not-for-profit sectors.
13		
14 15	88	Competing interests: All authors have completed the ICMJE uniform disclosure form and declare no
16	89	support from any organization for the submitted work, no financial relationships with any
17 18	90	organizations that might have an interest in the submitted work in the previous three years, and no
19	91	other relationships or activities that could appear to have influenced the submitted work.
20	92	Ethical approval: This study was approved by the local ethical committee in the form of a waiver in
21 22	93	accordance with Dutch national law.
23	94	Data sharing: Details on how to obtain additional data from the study (eg, statistical code, datasets)
24 25	95	are available from the corresponding author.
26	96	Transparency: The lead author affirms that this manuscript is an honest, accurate, and transparent
27 28	97	account of the study being reported; that no important aspects of the study have been omitted; and
29	98	that any discrepancies from the study as planned (and, if relevant, registered) have been explained.
30 31		
32	99	Exclusive license: "I [Lianne Sonnemans] The Corresponding Author of this article contained within
33 34	100	the original manuscript which includes any diagrams & photographs within and any related or stand
35 35	101	alone film submitted (the Contribution") has the right to grant on behalf
36	102	of all authors and does grant on behalf of all authors, a licence to the BMJ Publishing Group Ltd and
37 38	103	its licencees, to permit this Contribution (if accepted) to be published in the BMJ and any other BMJ
39	104	Group products and to exploit all subsidiary rights, as set out in our licence set out at:
40	105	http://www.bmj.com/about-bmj/resources-authors/forms-policies-and-checklists/copyright-open-
41 42	106	access-and-permission-reuse."
43		
44		
45		
46 47		
48		
49		
50		
51 52		
53		
54		
55		
56		
57 58		
58 59		

107 Introduction

Autopsies are regarded as the 'gold standard' in quality monitoring of health care. It is therefore remarkable that in a time of heightened interest in patient safety, error prevention and healthcare quality, worldwide autopsy rates continue to decline from roughly 40% in the nineteen sixties, to below 10% nowadays ¹⁻⁷. Both religious and emotional objections against the invasiveness of conventional autopsies, both by the relatives and the doctors, are considered as some of the reasons for this decline. At present, determination of the cause of death relies heavily on clinical assessment. Despite an increase in the use and improvement of diagnostic techniques in the last decades, major error rates of approximately 25% for the primary cause of death have not substantially decreased ^{8,9}. Accuracy rates of clinical diagnoses of the immediate cause of death are probably even lower ^{10,11}. Therefore, there is a need to improve clinical diagnoses using techniques that are widely available and acceptable, for example, postmortem CT (PMCT). Previous studies have shown that, as yet, PMCT is insufficient to substitute for conventional autopsy ^{12,13}. This study investigates whether virtual autopsy with PMCT improves clinical diagnosis of the immediate cause of death.

Page 7 of 28

BMJ Open

2		
3	122	Material and methods
4	123	Study design
5		
6 7	124	All cadavers of in- and out-of-hospital deaths over the age of one year, who underwent both PMCT
8 9	125	and conventional autopsy in our hospital, between July 2012 and June 2016, were included. Forensic
10 11	126	cases, post mortal donors and cases with incomplete scanning procedures or without full thorax-
12 13	127	abdomen autopsy, were excluded. Informed consent was obtained from the relatives for PMCT and
14 15 16	128	autopsy. This retrospective study was approved by the local ethical committee in the form of a
16 17 18	129	waiver in accordance with Dutch national law.
19 20	130	PMCT and conventional autopsy
21 22	131	PMCT was performed as soon as possible after death and prior to autopsy. If scanning within a few
23 24 25	132	hours was not possible, the cadaver was stored in the mortuary at 4°C. CT-scanners used were
25 26 27	133	Siemens Somatom Sensation 16, Siemens Sensation 64 (Siemens Healthcare, Germany) and Aquilion
28 29	134	ONE (Toshiba Medical Systems, Japan). All with a detector collimation of 1mm, reconstruction
30 31	135	interval of 0.8mm and 120 kV. The Siemens scanners used a tube current of 400mA and 1s rotation
32 33	136	time. The Toshiba scanner used Automatic Exposure Control (SD 17.5) with a rotation time of 0.5s.
34 35 26	137	PMCT protocol consisted of a scan of the head and neck, in bone, soft tissue and cerebral setting,
36 37 38	138	interpreted by a neuro-radiologist; a scan of thorax and abdomen in bone, lung and abdominal
39 40	139	settings, interpreted by a specialist cardiothoracic and abdominal radiologist; summarized in a single
41 42	140	consensus report, all with minimal previous experience in interpreting PMCT images. Conventional
43 44	141	autopsy consisted of thoracic-abdominal autopsy with or without examination of the brain, and
45 46	142	included full macroscopic and microscopic inspection. Radiologists and pathologists were blinded to
47 48	143	each other's results, and compiled a report based on their own findings and the clinical information
49 50 51	144	present on the requisition form.
52 53	145	Data collection
54 55	146	For each cadaver the immediate cause of death, type of pathology and anatomical system involved,
56 57 58 59	147	were collected in retrospect at three moments: before virtual autopsy, after virtual autopsy and

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

based on autopsy findings. The cause of death before virtual autopsy was based on clinical findings only. The cause of death after virtual autopsy was based on both clinical findings and PMCT. If no cause of death could be assigned at PMCT, the cause of death was based on clinical findings only. Symptoms (for example, respiratory failure, sepsis etc.) and risk factors (atherosclerosis, hypertension) were not considered as cause of death. Only when the primary source of sepsis (for example pneumonia) was unknown, sepsis was diagnosed as cause of death. In cases of trauma, the physical injury rather than the mechanism of trauma was assigned as cause of death. Type of pathology was scored according to the following categories; infection, hemorrhage, perfusion disorder, other or not assigned. Perfusion disorders comprised all cardiac and vascular perfusion disorders not due to infection, hemorrhage or neoplasm (for example, myocardial infarction, heart failure, pulmonary embolism, volvulus etc.). Type A aortic dissections with hemopericardium were grouped in the hemorrhage category. The type of anatomical system was scored as; pulmonary, cardiovascular, gastrointestinal, other or not assigned. This strategy and pathologies as used by Roberts and Wichmann et al. ^{4,12}. subcategories used were derived from the classifications of anatomical regions and groups of **Statistical analysis** The number of correctly identified causes of death, type of pathology and anatomical system were calculated with autopsy as the standard of reference. Sensitivity and specificity were calculated for type of pathology and anatomical system subgroups. Cases where the outcome was not assigned after autopsy were excluded from statistical analysis. McNemar tests (2-sided) were used to test for significant differences before and after virtual autopsy. Logistic regression analysis was performed to evaluate the influence of radiologists' experience. P values of 0.05 or less were considered significant. IBM SPSS Statistics, version 22 was used.

1		
2 3	171	Results
4 5	172	Of 2155 clinically examined in- and out-of-hospital deaths in our hospital, a full thorax-abdomen
6 7	173	autopsy was performed on 304 (14%) cadavers, a complete PMCT on 120 (6%) cadavers and both on
8 9	174	78 (4%) cadavers. One case was excluded due to organ donation prior to PMCT. A further nine out-
10 11	175	of-hospitals deaths on which PMCT and autopsy were performed, but who were not clinically
12 13	176	examined in our hospital or by our emergency medical service, were included, leading to a total of 86
14 15	177	cases (51 men, 35 women, with a mean age of 59 years). 54% of the deaths were after a resuscitation
16 17	178	attempt. The mean postmortem interval between death and PMCT was 11 hours. In 69% there was
18 19	179	no consent for brain autopsy and, in those cases, conventional autopsy consisted of a thorax-
20 21	180	abdomen examination only.
22 23		
24 25	181	An immediate cause of death was not found by autopsy in ten cadavers (12%). In 29 (34%) cadavers
26 27	182	the immediate cause of death was not assigned before virtual autopsy, and not in seventeen (20%)
28 29	183	cadavers after virtual autopsy. In two of the cases without an immediate autopsy cause of death, an
30 31	184	intracerebral hemorrhage and a pulmonary embolism (Figure 1A), there was consensus between the
32 33	185	clinicians and the radiologists as for the cause of death. In the first case, there was lack of consent to
34 35	186	a brain autopsy and in the second case, the pulmonary embolism was not diagnosed at autopsy. In
36 37	187	two other cases with unknown cause of death at autopsy, aspiration and heart failure were
38 39	188	diagnosed as the cause of death after imaging, whereas previously sepsis with unknown abdominal
40 41	189	focus and myocardial infarction were diagnosed by the clinicians. Both before and after PMCT, the
42 43	190	cause of death was unknown in the remaining six cases.
44 45	191	The additional value of PMCT
46 47	191	
48 49	192	The number of correctly identified causes of death before virtual autopsy was 53% (95% CI: 41-64%)
50 51	193	and increased to 64% (95% CI 53-75%) after performing a PMCT scan. This improvement was
52 53	194	statistically significant (p=0.05). The potential value of PMCT increased further, when PMCT was used
54 55	195	to indicate the type of pathology (p=0.001) or anatomical system (p=0.001) involved in the cause of
56 57	196	death. The number of cases in which type of pathology was correctly identified increased from 65%
58		9
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

ך ג	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
12 13 14 15 16	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
41	
42 43	
43 44	
44 45	
45 46	
40 47	
47 48	
48 49	
49 50	
50 51	
51	
53	
54	
55	
56	
57	
58	
59	
60	

1 2

197 (95% CI: 54-76) to 83% (95% CI: 73-91), and from 65% (95% CI: 53-75) to 84% (95% CI: 74-92) for

anatomical system (Table 1).

199 Evaluation of cause of death, per type of pathology

200 Table 2 shows all autopsy causes of death, classified by type of pathology and whether they were

201 correctly appointed as cause of death before and after PMCT.

202 Pneumonia was the most common infectious cause of death. After PMCT, pneumonia was correctly 203 diagnosed and assigned as the cause of death in 73%. In the other 27%, pneumonia was recognized, 204 but not assigned as the cause of death. In two other patients, who had died from cerebral 205 aspergillosis and heart failure, the ancillary pneumonia was incorrectly assigned as the cause of 206 death on PMCT. Using PMCT, two cases of peritonitis (due to a misplaced gastrostomy button and 207 ventriculoperitoneal drain) and one case of pancreatitis, which were clinically missed, were correctly 208 diagnosed as cause of death. In one case, pneumonia was correctly diagnosed as cause of death after 209 PMCT, where clinicians had incorrectly attributed death to interstitial lung disease.

209 PMCT, where clinicians had incorrectly attributed death to interstitial lung disease.

210 In the group of perfusion disorders, all pulmonary embolisms were diagnosed at PMCT as cause of 211 death. Furthermore, radiologists correctly diagnosed two arrhythmias, one heart failure and one 212 volvulus which were initially missed as cause of death by the clinicians. Cardiac arrhythmia was 213 suspected based on local hyperdensity of myocardial tissue corresponding to fibrosis and, in the 214 other case, heart failure was based upon secondary characteristics, such as dilated atria and pleural 215 effusion, in the absence of other significant findings. Myocardial infarction was correctly diagnosed 216 as cause of death in 44% after PMCT. However, in 71% of these cases, radiologists did not appoint a 217 cause of death, mostly due to absence of significant findings, and myocardial infarction as the cause 218 of death was based on clinical findings only. In the other 29% (n=2), myocardial infarction was also 219 suspected by the radiologists; in one case due to an intravascular hypodensity proximal of a coronary 220 stent and in the other case due to the combination of significant coronary calcifications, enlarged 221 right atrium, clinical history and absence of other significant findings.

60

BMJ Open

2 3	222	Using PMCT, hemorrhagic causes of death were correctly diagnosed in 85%. All five aortic dissections
4 5 6	223	were correctly diagnosed on PMCT, including a clinically missed dissection. In a traumatic case,
6 7 8	224	radiologists diagnosed hemothorax and a spleen rupture where pathologists diagnosed hemothorax
9 10	225	and a liver and kidney rupture (Figure 1B). In another traumatic case were death was attributed to
11 12	226	hemorrhagic shock due to hemothorax, radiologists diagnosed an air embolus in the left coronary
13 14	227	artery (Figure 1C).
15 16 17	228	In the category of other pathologies, PMCT showed an esophageal mass which was determined by
18 19	229	conventional autopsy as the primary tumor in a case with cerebral metastases where the primary
20 21	230	tumor was clinically unidentified. Two other cases of metastasized cancer (esophageal and breast)
22 23	231	were both before and after PMCT correctly diagnosed as cause of death. Three other cases with
24 25	232	cancer at time of death died from complications (septic cholecystitis, carotid artery bleeding and
26 27 28	233	endocarditis due to immunodeficiency).
29 30 31	234	Sensitivity and specificity for type of pathology and anatomical system subgroups
32 33	235	Based on type of pathology, the subgroup of perfusion disorders showed a significant improvement
34 35	236	(p=0.04) in sensitivity from 56% to 76%, using PMCT (Table 3). When categorized based on
36 37	237	anatomical system, the cardiovascular subgroup showed a significant improvement (p=0.02) in
38 39	238	sensitivity from 62% to 82%. There were no significant differences in specificity within the subgroups
40 41 42	239	before and after PMCT.
43 44	240	Performance of radiologists
45 46	241	Logistic regression analysis showed no trend in the number of correctly identified causes of death
47 48	242	(p=0.41), type of pathology (p=0.81) or anatomical system (p=0.41) as diagnosed by the radiologists,
49 50 51 52 53 54	243	over the four years of initial experience in interpreting PMCT images.
55 56		
57 58		
59		11

11

2	
3	
4	
5	
6	
/	
8	
9	
10 11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22 22 23	
23	
24	
25	
26	
27	
28 29	
29 30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44 45	
45 46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58 50	
59 60	
60	

244 **Discussion**

245 The number of correctly identified clinical diagnosis of the immediate cause of death increased from 246 53% to 64% (p=0.05) after performing PMCT, using conventional autopsy as the reference standard. 247 Our analysis showed that the value of PMCT is variable per subcategory and depends on the cause of 248 death. Where infections played a role, the added value of PMCT is moderate. Normal postmortem 249 changes, such as the occurrence of pulmonary edema, could mask pneumonia (Figure 1D)¹⁴. In the 250 subgroup of perfusion disorders, pulmonary embolisms, as diagnosed by radiologists, were not 251 confirmed during autopsy in three of the six cases (Figure 1A). This could be due to difficulty to 252 distinguish an ante-mortem thrombus from a post-mortem blood clot with PMCT, or the possibility that the embolus was lost during the autopsy procedure ¹⁵⁻¹⁷. There were no false-negative findings 253 254 for pulmonary embolisms as cause of death on PMCT. Furthermore, most causes of death in this 255 subgroup were cardiac related. Clinicians are restricted in their ability to differentiate a cause of 256 death, for example, cardiac malfunction, significant internal bleeding, aortic dissection or 257 pneumothorax, due to the acute nature and time constraints of the situations (resuscitation setting) 258 these patients present with. Cardiac causes of death are also difficult to diagnose with PMCT and by 259 autopsy. For example, heart failure and cardiac arrhythmias are clinically diagnosed by means of 260 dynamic examinations, such as echocardiography and electrocardiography. Postmortem 261 angiography, now being developed and validated, can be effective in demonstrating any obstructing thrombi¹⁸. Autopsy can only detect a myocardial infarction in cases where patients have survived 262 two to three hours post-infarction¹⁹. However, when secondary characteristics, such as dilated atria, 263 264 or pulmonary edema are observed in the absence of other significant pathologies, both PMCT and 265 autopsy can indicate a cardiac cause of death.

Table 1 shows increasing value of PMCT in identifying the type of pathology or anatomical system
involved, indicating that even when the cause of death is inconclusive after PMCT, it is still a valuable
tool in targeting the region of interest or excluding some of the differential diagnostic possibilities.
This particularly applies to cardiac causes of death, as shown by the significant increase in sensitivity

Page 13 of 28

1

BMJ Open

1 2	
2 3	
4	
5	
6	
5 6 7 8 9	
9	
10	
11	
12 12	
14	
15	
16	
13 14 15 16 17 18 19 20	
19	
20	
21	
22	
23 24	
25	
26 27	
27 28	
28 29	
30	
31	
32 33	
34	
35	
36 37	
37 38	
39	
40	
41	
42 43	
44	
45	
46 47	
47 48	
49	
50	
51 52	
52 53	
54	
55	
56 57	
58	
59	
60	

270	for perfusion disorders as type of pathology and the cardiovascular system as anatomical system
271	involved (Table 3). Clinical evaluation of the cause of death often indicates the failing system (for
272	example, respiratory failure) rather than the underlying illness or structural changes, whereas
273	radiologists appear to be more adept at ascertaining the involved anatomical system. Based on how
274	confident radiologists are of their findings, they can guide the pathologist to the region(s) of interest.
275	Amongst non-invasive techniques, Blokker et al. conclude that PMCT and postmortem MRI yield the
276	highest diagnostic performance in adults, with PMCT performing somewhat better when only one of
277	the modalities is used ^{12,13} . PMCT is less expensive than a conventional autopsy, however, cost-
278	effective analyses have not been formulated. Images can be stored digitally (useful for legal or
279	educational purposes) and results can be audited and promptly reviewed by one or more
280	radiologists. Amongst minimally invasive methods, the highest performance is reported in studies
281	combining PMCT and CT-angiography. PMCT, enhanced with targeted coronary angiography, showed
282	a sensitivity of 92% for cause of death ¹⁷ . Two studies combining CT, CT-angiography and CT-guided
283	tissue biopsies achieved a pooled sensitivity of 91% for cause of death ^{20,21} .
284	To our knowledge this is the second study which has investigated the additional value of PMCT
285	compared to clinical diagnoses. The first study by Inai et al. showed a significant increase in
286	sensitivity from 46% to 74% for the immediate cause of death in 50 non-forensic deaths ²² . This is
287	somewhat higher than we found in our study, one reason could be the fact that less specific causes
288	of death were used. Other previous studies have investigated the diagnostic accuracy of PMCT
289	compared to autopsy and not to clinical diagnoses. Those studies are difficult to compare, as some
290	use broadly defined categorizations and others use well-defined specific causes of death, or some
291	use the immediate cause of death and others the intermediate or underlying cause of death, or do
292	not state their definition of cause of death at all. Furthermore, most previous studies consisted of
293	small sample sizes (n<50) and used different study populations, different outcome parameters (for
294	example, cause of death, major or minor diagnoses) and different parameters of accuracy ^{4,23-25} . A

large prospective study of 182 adult deaths by Roberts et al. showed a major discrepancy rate of 32% in determining the cause of death with PMCT compared to autopsy ¹². Another study showed a sensitivity of 82% and a specificity of 97% for PMCT regarding the categorization of cause death in 101 cases ²⁶. This is in accordance with our results regarding the categorization of cause of death per type of pathology or anatomical system. Westphal et al. showed a sensitivity of 18/27=67% for cause of death and 5/17=19% for a more specific description of the involved pathogenetic mechanism ²³. Another study by Takahashi et al. found a sensitivity of 12% for definite findings and 53% for both definite and possible findings with PMCT as to cause of death²⁴. The study by Puranik et al. supports our results regarding the difficulty in diagnosing cardiac causes of death with unenhanced PMCT²⁵. A sensitivity of 25% for cause of death was found in a population of seventeen young patients with sudden cardiac death. Certain diagnoses, for example fractures or those related to the accumulation of gasses or air (Figure 1D), are more confidently diagnosed with PMCT than autopsy ^{12,27}. Therefore, the presented performance of PMCT will probably be underestimated in cases were pathologies are difficult to confirm due to the limitations of autopsy. Generally, in our experience we find that autopsy can no longer be considered as the gold standard for all postmortem diagnoses, not only due to the limitations of dissection, but also due to the decline in the number of autopsies performed, leading to a decrease in pathologists' expertise. We would suggest a gold standard involving a multidisciplinary consensus evaluation amongst clinicians, radiologists and pathologists. Prospective studies with larger sample sizes are required to investigate the additional value of PMCT in specific subgroups of causes of death. Even with the aid of improved non- or minimally invasive techniques, conventional autopsy will still be required in complex cases where clinical and radiological diagnosis as to cause of death is inconclusive.

BMJ Open

2	
2 3 4 5	318 319
6 7	320
8 9	321
10 11	322
12 13	323
14 15	324
16 17	
18 19	
20 21	
22 23	
24 25	
26 27	
28 29	
30 31	
32 33	
34 35	
36 37	
38 39	
40 41	
42 43	
44 45	
46 47	
48 49	
49 50 51	
51 52 53	
53 54 55	
56	
57 58	

59

60

19 While virtual autopsy with postmortem CT cannot substitute for conventional autopsy, it can

Conclusion

- 20 significantly improve diagnosis of the immediate cause of death over clinical diagnosis alone. Even in
- 21 cases where no immediate cause of death can be assigned after virtual autopsy, radiologists may
- 22 indicate a region of interest, so directing pathologists at autopsy. Future studies are needed to
- , t ,CT is able 23 investigate whether PMCT is able to reduce the invasiveness of autopsy or even avoid an autopsy
 - 24 altogether.

2	
4	
5	
5 6 7	
, 8	
9	
10	
12	
13	
14	
15 16	
17	
18	
19 20	
20	
22	
23	
24 25	
26	
27	
28 29	
30	
31	
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39	
34	
35	
30 37	
38	
39 40	
40 41	
42	
43 44	
44 45	
46	
47	
48 49	
50	
51 52	
52 53	
54	
55	
56 57	
58	
59	
60	

1 2

325 326	Refer	rences Harrington DE, Sayre EA. Managed care and measuring medical outcomes: did the rise of	
327		HMOs contribute to the fall in the autopsy rate? Soc Sci Med. 2010;70(2):191-198.	
328	2.	Blokker BM, Weustink AC, Hunink MGM, Oosterhuis JW. Autopsy rates in the Netherlands	::
329		35 years of decline. PloS One. 2017;12(6):e0178200.	
330	3.	Kretzschmar H. Brain banking: opportunities, challenges and meaning for the future. Nat F	?ev
331		Neurosci. 2009;10(1):70-78.	
332	4.	Wichmann D, Obbelode F, Vogel H, et al. Virtual autopsy as an alternative to traditional	
333		medical autopsy in the intensive care unit: a prospective cohort study. Ann Intern Med.	
334		2012;156(2):123-130.	
335	5.	Burton JL, Underwood J. Clinical, educational, and epidemiological value of autopsy. Lance	et.
336		2007;369(9571):1471-1480.	
337	6.	Royal College of Pathologists of Australasia Autopsy Working Party. The decline of the	
338		hospital autopsy: a safety and quality issue for healthcare in Australia. Med J Aust.	
339		2004;180(6):281-285.	
340	7.	Chariot P, Witt K, Pautot V, et al. Declining autopsy rate in a French hospital: physician's	
341		attitudes to the autopsy and use of autopsy material in research publications. Arch Pathol	
342		Lab Med. 2000;124(5):739-745.	
343	8.	Shojania KG, Burton EC, McDonald KM, Goldman L. Changes in rates of autopsy-detected	
344		diagnostic errors over time: a systematic review. JAMA. 2003;289(21):2849-2856.	
345	9.	Kuijpers CC, Fronczek J, van de Goot FR, Niessen HW, van Diest PJ, Jiwa M. The value of	
346		autopsies in the era of high-tech medicine: discrepant findings persist. J Clin Pathol.	
347		2014;67(6):512-519.	
348	10.	Attems J, Arbes S, Bohm G, Bohmer F, Lintner F. The clinical diagnostic accuracy rate	
349		regarding the immediate cause of death in a hospitalized geriatric population; an autopsy	
350		study of 1594 patients. Wien Med Wochenschr. 2004;154(7-8):159-162.	
			16

Page 17 of 28

BMJ Open

1				
2 3	351	11.	Ermenc B. Comparison of the clinical and post mortem diagnoses of the causes of death.	
4 5 6	352		Forensic Sci Int. 2000;114(2):117-119.	
7 8	353	12.	Roberts IS, Benamore RE, Benbow EW, et al. Post-mortem imaging as an alternative to	
9 10	354		autopsy in the diagnosis of adult deaths: a validation study. Lancet. 2012;379(9811):136-14	2.
11 12	355	13.	Blokker BM, Wagensveld IM, Weustink AC, Oosterhuis JW, Hunink MG. Non-invasive or	
13 14	356		minimally invasive autopsy compared to conventional autopsy of suspected natural deaths	in
15 16	357		adults: a systematic review. Eur Radiol. 2016;26(4):1159-1179.	
17 18	358	14.	Klein WM. The common pattern of postmortem changes on whole body CT scans. JOFRI.	
19 20	359		2016;4:47-52.	
21 22	360	15.	Jackowski C, Thali M, Aghayev E, et al. Postmortem imaging of blood and its characteristics	
23 24	361		using MSCT and MRI. Int J Legal Med. 2006;120(4):233-240.	
25 26 27	362	16.	Ross SG, Bolliger SA, Ampanozi G, Oesterhelweg L, Thali MJ, Flach PM. Postmortem CT	
27 28 29	363		angiography: capabilities and limitations in traumatic and natural causes of death.	
30 31	364		Radiographics. 2014;34(3):830-846.	
32 33	365	17.	Rutty GN, Morgan B, Robinson C, et al. Diagnostic accuracy of post-mortem CT with targete	d
34 35	366		coronary angiography versus autopsy for coroner-requested post-mortem investigations: a	
36 37	367		prospective, masked, comparison study. Lancet. 2017;May24. [Epub ahead of print]	
38 39	368	18.	Grabherr S, Grimm J, Baumann P, Mangin P. Application of contrast media in post-mortem	
40 41	369		imaging (CT and MRI). Radiol Med. 2015;120(9):824-834.	
42 43	370	19.	Kubat K, Smedts F. The usefulness of the lactate dehydrogenase macroreaction in autopsy	
44 45 46	371		practice. <i>Mod Pathol.</i> 1993;6(6):743-747.	
40 47 48	372	20.	Ross SG, Thali MJ, Bolliger S, Germerott T, Ruder TD, Flach PM. Sudden death after chest	
49 50	373		pain: feasibility of virtual autopsy with postmortem CT angiography and biopsy. Radiology.	
51 52	374		2012;264(1):250-259.	
53 54				
55 56				
57 58				17
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

1 2

2	375	21.	Bolliger SA, Filograna L, Spendlove D, Thali MJ, Dirnhofer S, Ross S. Postmortem imaging-	
4 5	376		guided biopsy as an adjuvant to minimally invasive autopsy with CT and postmortem	
6 7	377		angiography: a feasibility study. AJR Am J Roentgenol. 2010;195(5):1051-1056.	
8 9	378	22.	Inai K, Noriki S, Kinoshita K, et al. Postmortem CT is more accurate than clinical diagnosis fo	or
10 11	379		identifying the immediate cause of death in hospitalized patients: a prospective autopsy-	
12 13	380		based study. Virchows Arch. 2016;469(1):101-109.	
14 15 16	381	23.	Westphal SE, Apitzsch J, Penzkofer T, Mahnken AH, Knuchel R. Virtual CT autopsy in clinical]
17 18	382		pathology: feasibility in clinical autopsies. <i>Virchows Arch.</i> 2012;461(2):211-219.	
19 20	383	24.	Takahashi N, Higuchi T, Shiotani M, et al. The effectiveness of postmortem multidetector	
21 22	384		computed tomography in the detection of fatal findings related to cause of non-traumatic	
23 24	385		death in the emergency department. <i>Eur Radiol.</i> 2012;22(1):152-160.	
25 26	386	25.	Puranik R, Gray B, Lackey H, et al. Comparison of conventional autopsy and magnetic	
27 28	387		resonance imaging in determining the cause of sudden death in the young. J Cardiovasc	
29 30	388		magn Reson. 2014;16:44.	
31 32	389	26.	Ampanozi G, Thali YA, Schweitzer W, et al. Accuracy of non-contrast PMCT for determining	
33 34	390	20.	cause of death. <i>Forensic Sci Med Pathol.</i> 2017;Jun15. [Epub ahead of print].	
35 36		27		
37 38	391	27.	Dirnhofer R, Jackowski C, Vock P, Potter K, Thali MJ. VIRTOPSY: minimally invasive, imaging-	-
39 40	392		guided virtual autopsy. <i>Radiographics</i> .2006;26(5):1305-1333.	
41				
42 43				
44				
45				
46 47				
48				
49				
50				
51				
52 53				
55 54				
55				
56				
57				
58				18
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

BMJ Open

2		
3	393	Figure legends
4	394	Figure 1. Examples of discrepant imaging and autopsy findings.
5 6 7	395	A. A 70 year old man died after a resuscitation attempt, three days post re-laparotomy due to a hernia
8	396	cicatricalis correction with invagination complications. An ultrasound scan during resuscitation revealed
9 10	397	pulmonary embolisms. PMCT (postmortem interval of 2 hours) confirmed embolisms in the left (1) and right (2)
11 12 13	398	pulmonary arteries. Autopsy did not assign a cause of death.
14 15	399	B. A 47 year old man died after a resuscitation attempt following a scooter accident with impact on the right
16 17	400	side. Initial trauma screening revealed no significant pathologies. PMCT suggested exsanguinations due to a
18 19	401	spleen laceration. Autopsy diagnosed exsanguinations due to lacerations of the liver and right kidney. Further
20 21	402	findings: (1) abdominal wall hematoma, (2) rib fracture, (3) small rim of blood along the liver, (4) intra-
22 23	403	abdominal blood along the spleen.
24 25	404	C. A 40 year old man died during a mid-transport resuscitation attempt following a car accident. Initial clinical
26 27	405	examination found a hemothorax, however, it was unclear if the patient died due to blood loss or from some
28 29	406	other underlying pathology which may have caused the accident. During air ambulance transportation,
30 31	407	ventricular fibrillation occurred. PMCT showed an air embolus in the left anterior descending artery (1),
32 33	408	probably due to extensive lung trauma and the decrease in atmospheric pressure during the flight. This was not
34 35	409	diagnosed at autopsy, with death being attributed to a hemorrhagic shock due to hemothorax. Also, the
36 37 38	410	pneumothorax, pneumopericardium and pneumomediastinum were not mentioned in the autopsy report.
39 40	411	D. A 60 year old man with a clinical history of allogeneic stem cell transplantation due to multiple myeloma.
41	412	Clinical examination and antemortem MRI of the brain suggested a post-transplant lymphoproliferative
42 43	413	disorder (PTLD). Autopsy diagnosed bronchopneumonia (left upper lobe and right lower lobe) as the cause of
44 45	414	death and did not show PTLD, nor recurrence of multiple myeloma or other malignancy. PMCT showed pleural
46 47	415	fluid and interstitial pulmonary edema, which were interpreted as normal postmortem findings.
48 49	416	Bronchopneumonia was not diagnosed at PMCT.
50		
51		
52		
53 54		

Tables

Table 1. Number of correctly identified causes of death, types of pathology and anatomical system involved, before and after virtual autopsy with PMCT.

Immediate cause of death	Before PMCT (95% Cl)	After PMCT (95% Cl)	Significance (p-value)
			(P-value)
Identified at CA (n=76) ^a	53% (41-64%)	64% (53-75%)	0.05
Type of pathology			
Identified at CA (n=78) ^a	65% (54-76%)	83% (73-91%)	0.001
Anatomical system		,	
Identified at CA (n=77) ^a	65% (53-75%)	84% (74-92%)	0.001
^a Group sizes differ as autops	sy was did not assign a c	ause of death in ten cases, a	a type of pathology in eight
			,, ,,,
cases and anatomical system	in nine cases.		

^a Group sizes differ as autopsy was did not assign a cause of death in ten cases, a type of pathology in eight

cases and anatomical system in nine cases.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

423 Table 2. Overview of all autopsy causes of death, classified by type pathology and whether they were
--

424 correctly diagnosed as the immediate cause of death before and after virtual autopsy. Incorrect causes of

	425	death, as diagnosed after virtual autopsy, are stated in italics.
--	-----	---

	Correct COD, both before and after PMCT.	Incorrect COD before PMCT. Correct COD after PMCT.	Correct COD before PMCT. Incorrect COD after PMCT.	Incorrect COD, both before and after PMCT.	
Infections	10x pneumonia 1x infected liver cysts 1x sepsis e.c.i. ^b 1x pancreatitis 1x cholecystitis / cholangitis	1x pneumonia 2x peritonitis ^a 1x diverticulitis and pancreatitis	1x endocarditis (pericarditis) 1x HSV hepatitis (urosepsis) 1x cerebral aspergillosis (pneumonia)	4x pneumonia (1x COPD, 1x PTLD, 1x fibrotic lung disease, 1x not assigned) 1x endocarditis / pericarditis (fistula ureter vs. bowel)	
Perfusion disorders	7x myocardial infarction 1x heart failure 1x pulmonary embolism	2x pulmonary embolism 2x arrhythmia 1x volvulus 1x heart failure	1x heart failure (pneumonia)	9x myocardial infarction (7x not appointed, 1x mediastinitis, 1x pulmonary embolism) 3x arrhythmia (1x pulmonary embolism, 1x myocardial infarction, 1x not assigned 2x heart failure (1x pulmonary air embolism, 1x not assigned) 1x pulmonary veno- occlusive disease (not assigned) 1x bowel ischemia due to adhesions (infected aorta graft)	
Hemorrhages	4x type A aortic dissection 1x subarachnoidal hemorrhage 1x gastric hemorrhage 1x arteria carotis hemorrhage 1x arteria iliaca communis sinistra hemorrhage 1x hemorrhage from fistula; gastric tube vs. aorta	1x type A aortic dissection 1x hemothorax + intrapulmonary hemorrhage	200	1x hemothorax (coronary artery air embolism) 1x liver and kidney ruptur + hemothorax (spleen rupture + hemothorax)	
Other	1x breast cancer 1x esophageal cancer 1x anaphylaxis 1x (auto-)intoxication	1x esophageal cancer			

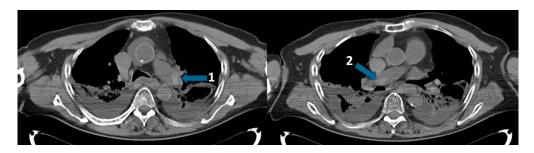
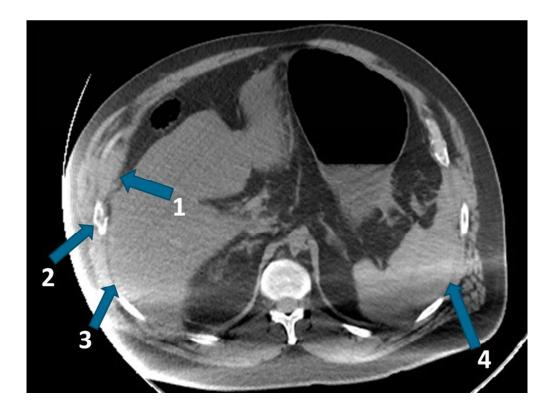

426 ^a Peritonitis was due to a misplaced gastrostomy button in one case, and due to a mispla
 427 ventriculoperitoneal drain in another case. ^b sepsis e causa ignota. COD: cause of death.

Table 3. Sensitivity and specificity per subgroup of type of pathology and anatomical system, diagnosed before and after virtual autopsy with PMCT.

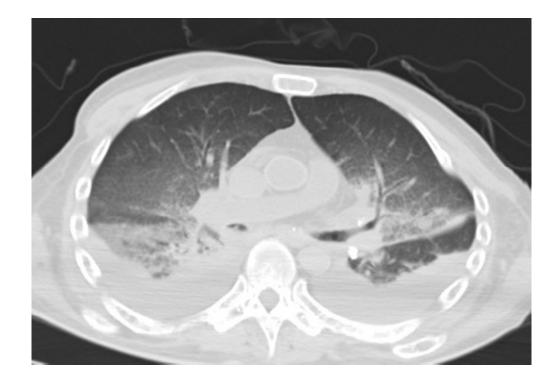
	Sensitivity	/		Specificity		
	Before	After	Sign ^a	Before	After	Sign ^a
	РМСТ	РМСТ		РМСТ	PMCT	
A. Type of pathology (n=78) ^c						
1. Infection (n=26)	69%	85%	NS ^b	96%	92%	NS ^b
2. Hemorrhage (n=13)	69%	92%	NS ^b	98%	100%	NS ^b
3. Perfusion disorder (n=34)	56%	76%	0.04	95%	93%	NS ^b
4. Other (n=5)	100%	100%	N/A ^d	99%	99%	NS ^b
B. Anatomical system (n=77) ^c						
1. Pulmonary (n=18)	72%	89%	NS ^b	95%	95%	NS ^b
2. Cardiovascular (n=39)	62%	82%	0.02	100%	95%	NS ^b
3. Gastrointestinal (n=13)	54%	85%	NS ^b	98%	100%	NS ^b
4. Other (n=7)	86%	86%	NS ^b	97%	94%	NS ^b


oeer er er ong

430 ^a Significance (p-value). ^b NS: not significant. ^c Autopsy was not able to establish the type of pathology and 431 anatomical system involved in eight and nine deaths respectively. ^d Not applicable.

A 70 year old man died after a resuscitation attempt, three days post re-laparotomy due to a hernia cicatricalis correction with invagination complications. An ultrasound scan during resuscitation revealed pulmonary embolisms. PMCT (postmortem interval of 2 hours) confirmed embolisms in the left (1) and right (2) pulmonary arteries. Autopsy did not assign a cause of death.

757x203mm (96 x 96 DPI)


A 47 year old man died after a resuscitation attempt following a scooter accident with impact on the right side. Initial trauma screening revealed no significant pathologies. PMCT suggested exsanguinations due to a spleen laceration. Autopsy diagnosed exsanguinations due to lacerations of the liver and right kidney. Further findings: (1) abdominal wall hematoma, (2) rib fracture, (3) small rim of blood along the liver, (4) intra-abdominal blood along the spleen.

268x200mm (96 x 96 DPI)

A 40 year old man died during a mid-transport resuscitation attempt following a car accident. Initial clinical examination found a hemothorax, however, it was unclear if the patient died due to blood loss or from some other underlying pathology which may have caused the accident. During air ambulance transportation, ventricular fibrillation occurred. PMCT showed an air embolus in the left anterior descending artery (1), probably due to extensive lung trauma and the decrease in atmospheric pressure during the flight. This was not diagnosed at autopsy, with death being attributed to a hemorrhagic shock due to hemothorax. Also, the pneumothorax, pneumopericardium and pneumomediastinum were not mentioned in the autopsy report.

380x284mm (96 x 96 DPI)

A 60 year old man with a clinical history of allogeneic stem cell transplantation due to multiple myeloma. Clinical examination and antemortem MRI of the brain suggested a post-transplant lymphoproliferative disorder (PTLD). Autopsy diagnosed bronchopneumonia (left upper lobe and right lower lobe) as the cause of death and did not show PTLD, nor recurrence of multiple myeloma or other malignancy. PMCT showed pleural fluid and interstitial pulmonary edema, which were interpreted as normal postmortem findings. Bronchopneumonia was not diagnosed at PMCT.

241x166mm (96 x 96 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 27 of 28

Section & Topic	No	Item	Reported on p
TITLE OR ABSTRACT			
	1	Identification as a study of diagnostic accuracy using at least one measure of accuracy	3
		(such as sensitivity, specificity, predictive values, or AUC)	
ABSTRACT			
	2	Structured summary of study design, methods, results, and conclusions	3
		(for specific guidance, see STARD for Abstracts)	
INTRODUCTION			
	3	Scientific and clinical background, including the intended use and clinical role of the index test	4
	4	Study objectives and hypotheses	4
METHODS	-		
Study design	5	Whether data collection was planned before the index test and reference standard	5
orday acongn	•	were performed (prospective study) or after (retrospective study)	9
Participants	6	Eligibility criteria	5
T un trespunts	0 7	On what basis potentially eligible participants were identified	5
	'	(such as symptoms, results from previous tests, inclusion in registry)	5
	8	Where and when potentially eligible participants were identified (setting, location and dates)	5
	9	Whether participants formed a consecutive, random or convenience series	5
Toot worth o do			
Test methods	10a	Index test, in sufficient detail to allow replication	5
	10b	Reference standard, in sufficient detail to allow replication	5
	11	Rationale for choosing the reference standard (if alternatives exist)	5
	12a	Definition of and rationale for test positivity cut-offs or result categories	6
		of the index test, distinguishing pre-specified from exploratory	
	12b	Definition of and rationale for test positivity cut-offs or result categories	6
		of the reference standard, distinguishing pre-specified from exploratory	
	13a	Whether clinical information and reference standard results were available	5
		to the performers/readers of the index test	
	13b	Whether clinical information and index test results were available	5
		to the assessors of the reference standard	
Analysis	14	Methods for estimating or comparing measures of diagnostic accuracy	6
	15	How indeterminate index test or reference standard results were handled	6
	16	How missing data on the index test and reference standard were handled	6
	17	Any analyses of variability in diagnostic accuracy, distinguishing pre-specified from exploratory	6
	18	Intended sample size and how it was determined	
RESULTS			
Participants	19	Flow of participants, using a diagram	
	20	Baseline demographic and clinical characteristics of participants	7
	21a	Distribution of severity of disease in those with the target condition	
	21b	Distribution of alternative diagnoses in those without the target condition	
	22	Time interval and any clinical interventions between index test and reference standard	7
Test results	23	Cross tabulation of the index test results (or their distribution)	20,22
		by the results of the reference standard	
	24	Estimates of diagnostic accuracy and their precision (such as 95% confidence intervals)	20,22
	25	Any adverse events from performing the index test or the reference standard	·
DISCUSSION	-		
	26	Study limitations, including sources of potential bias, statistical uncertainty, and generalisability	11-13
	20	Implications for practice, including the intended use and clinical role of the index test	11 15
OTHER			±-7
INFORMATION			
	20	Pogistration number and name of registry	
	28	Registration number and name of registry	
	29 20	Where the full study protocol can be accessed	45
	30	Sources of funding and other support; role of funders	15

60

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

STARD 2015

AIM

STARD stands for "Standards for Reporting Diagnostic accuracy studies". This list of items was developed to contribute to the completeness and transparency of reporting of diagnostic accuracy studies. Authors can use the list to write informative study reports. Editors and peer-reviewers can use it to evaluate whether the information has been included in manuscripts submitted for publication.

EXPLANATION

A **diagnostic accuracy study** evaluates the ability of one or more medical tests to correctly classify study participants as having a **target condition**. This can be a disease, a disease stage, response or benefit from therapy, or an event or condition in the future. A medical test can be an imaging procedure, a laboratory test, elements from history and physical examination, a combination of these, or any other method for collecting information about the current health status of a patient.

The test whose accuracy is evaluated is called **index test.** A study can evaluate the accuracy of one or more index tests. Evaluating the ability of a medical test to correctly classify patients is typically done by comparing the distribution of the index test results with those of the **reference standard**. The reference standard is the best available method for establishing the presence or absence of the target condition. An accuracy study can rely on one or more reference standards.

If test results are categorized as either positive or negative, the cross tabulation of the index test results against those of the reference standard can be used to estimate the **sensitivity** of the index test (the proportion of participants *with* the target condition who have a positive index test), and its **specificity** (the proportion *without* the target condition who have a negative index test). From this cross tabulation (sometimes referred to as the contingency or "2x2" table), several other accuracy statistics can be estimated, such as the positive and negative **predictive values** of the test. Confidence intervals around estimates of accuracy can then be calculated to quantify the statistical **precision** of the measurements.

If the index test results can take more than two values, categorization of test results as positive or negative requires a **test positivity cut-off**. When multiple such cut-offs can be defined, authors can report a receiver operating characteristic (ROC) curve which graphically represents the combination of sensitivity and specificity for each possible test positivity cut-off. The **area under the ROC curve** informs in a single numerical value about the overall diagnostic accuracy of the index test.

The **intended use** of a medical test can be diagnosis, screening, staging, monitoring, surveillance, prediction or prognosis. The **clinical role** of a test explains its position relative to existing tests in the clinical pathway. A replacement test, for example, replaces an existing test. A triage test is used before an existing test; an add-on test is used after an existing test.

Besides diagnostic accuracy, several other outcomes and statistics may be relevant in the evaluation of medical tests. Medical tests can also be used to classify patients for purposes other than diagnosis, such as staging or prognosis. The STARD list was not explicitly developed for these other outcomes, statistics, and study types, although most STARD items would still apply.

DEVELOPMENT

This STARD list was released in 2015. The 30 items were identified by an international expert group of methodologists, researchers, and editors. The guiding principle in the development of STARD was to select items that, when reported, would help readers to judge the potential for bias in the study, to appraise the applicability of the study findings and the validity of conclusions and recommendations. The list represents an update of the first version, which was published in 2003.

More information can be found on <u>http://www.equator-network.org/reporting-guidelines/stard.</u>

BMJ Open

Can virtual autopsy with postmortem CT improve clinical diagnosis of cause of death? A retrospective observational cohort study in a Dutch tertiary referral centre.

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-018834.R1
Article Type:	Research
Date Submitted by the Author:	30-Oct-2017
Complete List of Authors:	Sonnemans, Lianne; Radboudumc, Radiology and Nuclear Medicine Kubat, Bela; Nederlands Forensisch Instituut, Pathology; Maastricht UMC+, Pathology Prokop, Mathias; Radboudumc, Radiology and Nuclear Medicine Klein, Willemijn; Radboudumc, Radiology and Nuclear Medicine; Maastricht UMC+, Radiology
Primary Subject Heading :	Radiology and imaging
Secondary Subject Heading:	Diagnostics, Pathology
Keywords:	Computed tomography < RADIOLOGY & IMAGING, cause of death, postmortem, autopsy, sensitivity, specificity

SCHOLARONE[™] Manuscripts

1			
2			
3	1		
4 5			
6	2		
7			
8	2	Con virtual auto	psy with postmortem CT improve clinical diagnosis of
9	3		
10	4	cause of death?	A retrospective observational cohort study in a Dutch
11 12	5	tertiary referral	centre.
12	6	-	
14			
15	7		
16	8	LIP Sonnemans ^{1#}	PhD candidate in post-mortem radiology
17 18	9	B Kubat ^{2,3}	Pathologist
19	10	WM Prokop ¹	Radiologist
20	11	WM Klein ^{1,4}	
21	11		Radiologist
22 23	12		
23	13	¹ Doportmont of Podiol	ogy and Nuclear Medicine, Radboudumc, Geert Grooteplein Zuid 10 6500 HB
25	13		
26	14	Nijmegen, The Netherla	
27 28	15	² Department of Pathol	ogy, Netherlands Forensic Institute, Laan van Ypenburg 6 2497 GB Den Haag,
29	16	The Netherlands	
30 31	17	³ Department of Pathol	ogy, Maastricht UMC+, P. Debyelaan 25 6229 HX Maastricht, The Netherlands
32	18	⁴ Department of Radiol	ogy and Nuclear Medicine, Maastricht UMC+, P. Debyelaan 25 6229 HX
33 34	19	Maastricht, The Nether	lands
35	20		
36			
37	21	Study design: retrospectiv	ve observational cohort study
38 39	22	Word count: 3164	
40			
41	23		
42 43	24	# Address for correspondence	
43			
45	25	Ms. Lianne J.P. Sonnemans, I	
46	26	Department of Radiology and	d Nuclear Medicine
47	27 28	Radboudumc Geert Grooteplein Zuid 10	
48	29	6500 HB Nijmegen	
49 50	30	The Netherlands	
50	31	E-mail: <u>lianne.sonnemans@r</u>	adboudumc.nl
52	32	Tel: +31 24 361 1111	
53			
54			
55			
56 57			
57 58			
59			1
60		For peer re	eview only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	22	Vou Words	
3 4	33	Key Words	
4 5	34	cause of death, postm	nortem, computed tomography, autopsy, sensitivity, specificity
6			
7	35		
8	55		
9	36	List of abbreviat	ions
10	37	95% CI	95% confidence interval
11	57	95% CI	
12	38	COD	immediate cause of death
13	50	000	
14 15	39	РМСТ	postmortem CT
15	55	T WICT	postiliortein er
17			
18			
19			
20			
21			
22			
23			
24			
25			
26 27			
27			
29			
30			
31			
32			
33			
34			
35			
36 37			
38			
39			
40			
41			
42			
43			
44 45			
45 46			
40 47			
48			
49			
50			
51			
52			
53			
54 55			
55 56			
57			
58			
59			

60

Page 3 of 31

60

BMJ Open

1		
2 3	40	Abstract
4	41	
5 6	42	Objective: To investigate whether virtual autopsy with postmortem CT (PMCT) improves clinical
7	43	diagnosis of the immediate cause of death.
8 9	44	Design: Retrospective observational cohort study. Inclusion criteria: in- and out-of-hospital deaths
10	45	over the age of one year in whom virtual autopsy with PMCT and conventional autopsy were
11 12	46	performed. Exclusion criteria: forensic cases, post mortal organ donors and cases with incomplete
13 14	47	scanning procedures. Cadavers were examined by virtual autopsy with PMCT prior to conventional
15	48	autopsy. The clinically determined cause of death was recorded before virtual autopsy and was then
16 17	49	adjusted with the findings of virtual autopsy. Using conventional autopsy as the reference standard,
18	50	we investigated the increase in sensitivity for immediate cause of death, type of pathology and
19 20	51	anatomical system involved before and after virtual autopsy using McNemar tests.
21	52	Setting: Tertiary referral centre.
22 23	53	Participants: 86 cadavers who underwent conventional and virtual autopsy between July 2012 and
24 25	54	June 2016.
26	55	Intervention: PMCT consisted of brain, cervical spine and chest-abdomen-pelvis imaging.
27 28	56	Conventional autopsy consisted of thoraco-abdominal examination with or without brain autopsy.
29	57	Primary and secondary outcome measures: Sensitivity for the immediate cause of death, type of
30 31	58	pathology (infection, hemorrhage, perfusion disorder, other or not assigned) and anatomical system
32	59	(pulmonary, cardiovascular, gastrointestinal, other or not assigned) involved, before and after virtual
33 34	60	autopsy.
35 36	61	Results: Using PMCT, the sensitivity for immediate cause of death increased from 53% (95% CI: 41 to
37	62	64) to 64% (53 to 75) (p=0.049), for type of pathology from 65% (54 to 76) to 83% (73 to 91)
38 39	63	(p=0.001) and for anatomical system from 65% (53 to 75) to 84% (74 to 92) (p=0.001).
40	64	Conclusion: While postmortem CT cannot substitute for conventional autopsy, it can significantly
41 42	65	improve diagnosis of the immediate cause of death over clinical diagnosis alone and should therefore
43 44	66	be considered whenever autopsy is not performed.
45		
46 47		
48		
49		
50		
51 52		
53		
54		
55		
56		
57		
58		3
59		

67 Article summary

68 Strengths and limitations of this study

69		
70	•	This study investigated the diagnostic performance for clinical cause of death determination
71		by use of postmortem CT and takes into account the added value over clinical diagnosis
72		alone.
73	•	The immediate cause of death (i.e. direct cause of death) was the main outcome rather than
74		the primary cause of death (i.e. underlying cause of death or basic illness) as from a clinical
75		point of view, diagnosis and treatment of the immediate cause of death is the most urgent.
76	•	The sensitivity for clinical cause of death determination, with and without postmortem CT, is
77		investigated on multiple levels of precision; both the determination of the immediate cause
78		of death as well as the involved type of pathology and anatomical location were investigated.
79	•	The retrospective design in a tertiary care centre has probably introduced a selection-bias
80		towards patients with diagnostic difficulties or unresolved issues, resulting in an
81		underestimation of the diagnostic performance compared to more general causes of death.
82	•	Subgroups for type of pathology and anatomical system were relatively small due to the
83		unexpected low consent rate for postmortem CT in general, as well as in cases with consent
84		for conventional autopsy.
85		

BMJ Open

1		
2 3	86	Contributors: LIPS had full access to all of the data in the study and takes responsibility for the
4 5	87	integrity of the data and the accuracy of the data analysis. LIPS acquired and analyzed the data. LIPS,
6	88	WMK, BK and WMP interpreted the data. LJPS drafted the manuscript. WMK and WMP supervised
7 8	89	the study. LIPS, WMK and WMP contributed to the overall conception and design of the study. All
9	90	authors revised the manuscript for intellectual content.
10 11	91	Funding: This research received no specific grant from any funding agency in the public, commercial
12	92	or not-for-profit sectors.
13 14	93	Competing interests: All authors have completed the ICMJE uniform disclosure form and declare no
15 16	94	support from any organization for the submitted work, no financial relationships with any
17	95	organizations that might have an interest in the submitted work in the previous three years, and no
18 19	96	other relationships or activities that could appear to have influenced the submitted work.
20	97	Ethical approval: This study was approved by the local ethical committee in the form of a waiver in
21 22	98	accordance with Dutch national law.
23	99	Data sharing: Details on how to obtain additional data from the study (eg, statistical code, datasets)
24 25	100	are available from the corresponding author.
26 27	101	Transparency: The lead author affirms that this manuscript is an honest, accurate, and transparent
27	102	account of the study being reported; that no important aspects of the study have been omitted; and
29 30	103	that any discrepancies from the study as planned (and, if relevant, registered) have been explained.
31	104	Exclusive license: "I [Lianne Sonnemans] The Corresponding Author of this article contained within
32 33	105	the original manuscript which includes any diagrams & photographs within and any related or stand
34	106	alone film submitted (the Contribution") has the right to grant on behalf
35 36	107	of all authors and does grant on behalf of all authors, a licence to the BMJ Publishing Group Ltd and
37 38	108	its licencees, to permit this Contribution (if accepted) to be published in the BMJ and any other BMJ
39	109	Group products and to exploit all subsidiary rights, as set out in our licence set out at:
40 41	110	http://www.bmj.com/about-bmj/resources-authors/forms-policies-and-checklists/copyright-open-
42	111	access-and-permission-reuse."
43 44		
45		
46 47		
48 40		
49 50		
51		

112 Introduction

Autopsies are traditionally regarded as the 'gold standard' in quality monitoring of health care. It is therefore remarkable that in a time of heightened interest in improving patient safety, healthcare quality and error prevention, worldwide autopsy rates continue to decline from roughly 40% in the nineteen sixties, to below 10% nowadays.¹⁻⁷ Religious and emotional objections to the invasiveness of conventional autopsies, both by the relatives and the doctors, are considered as some of the reasons given for this decline. At present, determination of the cause of death relies heavily on clinical assessment. Despite an increase in the use and improvement of diagnostic techniques in the last decades, major error rates of approximately 25% have not substantially decreased.⁸⁻¹⁰ According to the Goldman classification system, major errors are defined as clinically missed diagnoses related to the cause of death. In half of these cases this might have led to a change in therapy and prolonged survival, if known before death.⁸ National mortality statistics are generally based on the primary cause of death (i.e. underlying cause or basic illness), which could be a longstanding, chronic disease.¹¹ However from an individual and clinical point of view, diagnosis and treatment of the immediate cause of death (i.e. direct cause of death) is the most urgent. Accuracy rates for immediate causes of death are probably lower than for underlying causes of death^{12,13}, due to time constraints of the often acute situations these diagnoses present with. The high error rates emphasize the need to improve clinical diagnoses using techniques that are widely available and acceptable, for example, postmortem CT (PMCT). Previous studies have shown that as yet, PMCT is an insufficient substitute but can be used in adjunct to a conventional autopsy.^{14,15} In order to provide answers and quality control also in cases without consent for conventional autopsy, we investigated whether virtual autopsy with PMCT improves clinical diagnosis of the immediate cause of death.

BMJ Open

2				
3	136	Material and methods		
4	137	Study design		
5 6 7	138	All cadavers of in- and out-of-hospital deaths over the age of one year, who underwent both PMC		
8 9	139	and conventional autopsy in our hospital, between July 2012 and June 2016, were included. Forensic		
10 11	140	cases, post mortal donors and cases with incomplete scanning procedures or without full thorax-		
12 13 14	141	abdomen autopsy, were excluded. Clinicians had to ask consent from relatives for both PMCT and		
15 16	142	conventional autopsy in all cases of death. This retrospective study was approved by the local ethica		
17 18	143	committee in the form of a waiver in accordance with Dutch national law.		
19 20	144	PMCT and conventional autopsy		
21 22 23	145	PMCT was performed as soon as possible after death and prior to autopsy. If scanning within a few		
24 25	146	hours was not possible, the cadaver was stored in the mortuary at 4°C. CT-scanners used were		
26 27	147	Siemens Somatom Sensation 16, Siemens Sensation 64 (Siemens Healthcare, Germany) and Aquilion		
28 29	148	ONE (Toshiba Medical Systems, Japan). All with a detector collimation of 1mm, reconstruction		
30 31 32	149	interval of 0.8mm and 120 kV. The Siemens scanners used a tube current of 400mA and 1s rotation		
32 33 34	150	time. The Toshiba scanner used Automatic Exposure Control (SD 17.5) with a rotation time of 0.5s.		
35 36	151	PMCT protocol consisted of a scan of the head and neck, in bone, soft tissue and cerebral setting,		
37 38	152	interpreted by a neuro-radiologist; a scan of thorax and abdomen in bone, lung and abdominal		
39 40	153 154	settings, interpreted by a specialist cardiothoracic and abdominal radiologist; summarized in a single consensus report. All radiologists had minimal previous experience in interpreting postmortem PMCT		
41 42 43	154	images, as postmortem imaging is a relatively new field of expertise. Conventional autopsy consisted		
44 45	156	of thoracic-abdominal autopsy with or without examination of the brain, and included full		
46 47	157	macroscopic and microscopic inspection. Radiologists and pathologists were blinded to each other's		
48 49	158	results, but had otherwise full access to the electronic patient files. Radiologists and pathologists		
50 51 52	159	compiled a report based on their own findings and clinical findings.		
53 54 55 56	160	Data collection		

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
40 41	
42	
42 43	
44	
45	
46	
40 47	
47	
40 49	
49 50	
50 51	
51 52	
53	
54	
55	
56	
57	
58	
59	
60	

1

161	For each cadaver the immediate cause of death (i.e. direct cause of death), type of pathology and
162	anatomical system involved, were collected in retrospect at three moments: before virtual autopsy,
163	after virtual autopsy and based on autopsy findings. The cause of death before virtual autopsy was
164	based on clinical findings only. The cause of death after virtual autopsy was based on both clinical
165	findings and PMCT. If no cause of death could be assigned at PMCT, the cause of death was based on
166	clinical findings only. Symptoms (for example, respiratory failure, sepsis etc.) and risk factors
167	(atherosclerosis, hypertension) were not considered as cause of death. Only when the primary
168	source of sepsis (for example pneumonia) was unknown, sepsis was diagnosed as cause of death. In
169	cases of trauma, the physical injury rather than the mechanism of trauma was assigned as cause of
170	death.

171 Type of pathology was scored according to the following categories; infection, hemorrhage, 172 perfusion disorder, other or uncertain (i.e. not assigned). Perfusion disorders comprised all cardiac 173 and vascular perfusion disorders not due to infection, hemorrhage or neoplasm (for example, 174 myocardial infarction, heart failure, pulmonary embolism, volvulus etc.). Type A aortic dissections 175 with hemopericardium were grouped in the hemorrhage category. The type of anatomical system 176 was scored as; pulmonary, cardiovascular, gastrointestinal, other or not assigned. This strategy and 177 subcategories used were derived from the classifications of anatomical regions and groups of pathologies as used by Roberts and Wichmann et al.^{4,14} 178

179 Statistical analysis

Sensitivity and specificity were calculated with conventional autopsy as reference standard. Cases where the outcome (cause of death, type of pathology or anatomical system) was uncertain after autopsy were excluded from statistical analysis. McNemar tests (2-sided) were used to test for significant differences in sensitivity or specificity before and after virtual autopsy. Logistic regression analysis was performed to evaluate radiologists' improvement in reporting PMCT-scans over the four years of initial experience. Odds ratios were calculated for each year of experience in reporting

1		
2 3	186	PMCT-scans. P values of 0.05 or less were considered significant. IBM SPSS Statistics, version 22 was
4 5	187	used.
6 7		
8		
9 10		
11		
12 13		
14		
15 16		
17		
18 19		
20		
21 22		
23		
24 25		
26		
27 28		
29		
30 31		
32		
33 34		
35		
36 37		
38		
39 40		
41		
42 43		
44		
45 46		
47		
48 49		
50		
51 52		
53		
54 55		
56		
57 58		
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	
3	
4	
5	
6 7 8	
7	
Q	
0	
9	
10	
11 12	
12	
12	
13	
14	
15	
16	
17	
17	
18	
12 13 14 15 16 17 18 19	
20	
20 21	
21	
22	
22 23 24 25 26 27 28	
24	
25	
25	
26	
27	
28	
29	
29	
30	
31	
32	
33	
27	
34 35	
35	
36 37	
37	
20	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

188 189	Results Of 2155 clinically examined in- and out-of-hospital deaths in our hospital, a full thorax-abdomen
190	autopsy was performed on 304 (14%) cadavers, a complete PMCT on 120 (6%) cadavers and both on
191	78 (4%) cadavers. One case was excluded due to postmortem organ donation prior to PMCT. A
192	further nine cases who deceased at home (n=7) or in another hospital (n=2) were brought to the
193	hospital's mortuary for PMCT and autopsy examination. This led to a total of 86 included cases (51
194	men, 35 women, with a median age of 62 (IQR: 47 to 74) years) (Table 1). 54% of the deaths were
195	after a resuscitation attempt. The median postmortem interval between death and PMCT was 7.6
196	(IQR: 3.1 to 18.8) hours. In 69% there was no consent for brain autopsy and, in those cases,
197	conventional autopsy consisted of a thorax-abdomen examination only.
198	Conventional autopsy, as standard of reference, was not able to assign an immediate cause of death
199	in ten cadavers (12%)(Figure 1). Therefore, these cases were excluded of sensitivity and specificity
200	analyses for cause of death.
201	The additional value of PMCT
202	The number of correctly identified causes of death before virtual autopsy was 53% (95% CI: 41-64%)
202	The number of correctly identified causes of death before virtual autopsy was 53% (95% CI: 41-64%) and increased to 64% (95% CI 53-75%) after performing a PMCT scan. This improvement was
203	and increased to 64% (95% CI 53-75%) after performing a PMCT scan. This improvement was
203 204	and increased to 64% (95% CI 53-75%) after performing a PMCT scan. This improvement was statistically significant (p=0.049). The additional value of PMCT increased further, when PMCT was
203 204 205	and increased to 64% (95% CI 53-75%) after performing a PMCT scan. This improvement was statistically significant (p=0.049). The additional value of PMCT increased further, when PMCT was used to indicate the type of pathology (p=0.001) or anatomical system (p=0.001) involved in the
203 204 205 206	and increased to 64% (95% CI 53-75%) after performing a PMCT scan. This improvement was statistically significant (p=0.049). The additional value of PMCT increased further, when PMCT was used to indicate the type of pathology (p=0.001) or anatomical system (p=0.001) involved in the immediate cause of death. The number of cases in which type of pathology was correctly identified
203 204 205 206 207	and increased to 64% (95% CI 53-75%) after performing a PMCT scan. This improvement was statistically significant (p=0.049). The additional value of PMCT increased further, when PMCT was used to indicate the type of pathology (p=0.001) or anatomical system (p=0.001) involved in the immediate cause of death. The number of cases in which type of pathology was correctly identified increased from 65% (95% CI: 54-76) to 83% (95% CI: 73-91), and from 65% (95% CI: 53-75) to 84%
203 204 205 206 207 208	and increased to 64% (95% CI 53-75%) after performing a PMCT scan. This improvement was statistically significant (p=0.049). The additional value of PMCT increased further, when PMCT was used to indicate the type of pathology (p=0.001) or anatomical system (p=0.001) involved in the immediate cause of death. The number of cases in which type of pathology was correctly identified increased from 65% (95% CI: 54-76) to 83% (95% CI: 73-91), and from 65% (95% CI: 53-75) to 84% (95% CI: 74-92) for anatomical system (Table 2). 2-by-2 tables of the number of correctly diagnosed

BMJ Open

ן ר		
2 3	212	Table 4 shows all autopsy causes of death classified by type of pathology and whether or not they
4 5 6	213	were correctly appointed as cause of death before and after PMCT.
7 8 9	214	Pneumonia was the most common infectious cause of death. It was correctly assigned as cause of
10 11	215	death in 11/15=73% after PMCT, compared to 10/15=67% before PMCT. In the other 27% (n=4),
12 13	216	pneumonia was recognized, but not assigned as cause of death. Vice versa, in two other patients who
14 15	217	had died from cerebral aspergillosis and heart failure, the ancillary pneumonia was incorrectly
16 17	218	assigned as cause of death on PMCT. Furthermore, two cases of peritonitis (due to a misplaced
18 19	219	gastrostomy button and ventriculoperitoneal drain) and one pancreatitis, which were clinically
20 21 22	220	missed (i.e. major errors) were correctly diagnosed at PMCT as cause of death.
23 24	221	In the group of perfusion disorders, all three pulmonary embolisms diagnosed at autopsy were also
25 26	222	assigned as cause of death at PMCT. In a further three cases, including one with pulmonary embolism
27 28	223	diagnosis on antemortem ultrasound (Figure 2), PMCT diagnosed pulmonary embolisms which were
29 30	224	not confirmed during autopsy. Moreover, radiologists correctly diagnosed two arrhythmias, one
31 32	225	heart failure and one volvulus which were initially missed as cause of death by the clinicians. Cardiac
33 34	226	arrhythmia was suspected based on left ventricular hypertrophy and aortic valve stenosis or local
35 36 27	227	hyperdensity of myocardial tissue corresponding to fibrosis in the absence of other significant
37 38	228	findings. In the other case, heart failure was also based upon secondary characteristics, such as
39 40	229	dilated atria and pleural effusion, in the absence of other significant findings. Myocardial infarction
41 42 43	230	was correctly diagnosed as cause of death in 7/16=44% after PMCT. However, in 5/7=71% of these
43 44 45	231	cases, myocardial infarction was not visible on PMCT and diagnosis of myocardial infarction was
46 47	232	based on the combination of clinical findings and absence of significant pathologies at PMCT. In the
48 49	233	two other cases, myocardial infarction was also suspected at imaging; once due to an intravascular
50 51	234	hypodensity proximal of a coronary stent, which might indicate a (fat) embolism, and once due to the
52 53	235	combination of significant coronary calcifications, enlarged right atrium, clinical history and absence
54 55 56	236	of other significant findings.
57		

3	237	Using PMCT, hemorrhagic causes of death were correctly diagnosed in 11/13=85%. All five aortic	
4 5	238	dissections were correctly diagnosed on PMCT, including a clinically missed dissection. In a traumatic	
6 7	239	case, radiologists diagnosed hemothorax and a spleen rupture where pathologists diagnosed	
8 9 10	240	hemothorax and a liver and kidney rupture (Figure 3). In another traumatic case were death was	
11 12	241	attributed to hemorrhagic shock due to hemothorax, radiologists diagnosed an air embolus in the left	
13 14	242	coronary artery (Figure 4).	
15			
16 17	243	In the category of other pathologies, there were three patients who died from malignant disease.	
18 19	244	The cause of death was correctly diagnosed before and after PMCT in two of these cases, one with	
20 21	245	pleural carcinomatosis in breast cancer and one with respiratory failure due to cachexia in	
22 23	246	metastasized esophageal cancer. In the other case, the patient died after an epileptic seizure due to	
24 25	247	(unidentified) brain metastases. There were three other cases with cancer at time of death died, but	
26 27	248	those patients died from complications (septic cholecystitis, carotid artery bleeding and	
28 29 30	249	endocarditis due to immunodeficiency).	
31			
32	250	Sensitivity and specificity for type of pathology and anatomical system subgroups	
	250 251	Sensitivity and specificity for type of pathology and anatomical system subgroups Based on the type of pathology, the subgroup of perfusion disorders showed a significant	
32 33 34			
32 33 34 35 36 37 38 39	251	Based on the type of pathology, the subgroup of perfusion disorders showed a significant	
32 33 34 35 36 37 38 39 40 41	251 252	Based on the type of pathology, the subgroup of perfusion disorders showed a significant improvement (p=0.04) in sensitivity from 19/34=56% to 26/34=76%, using PMCT (Table 5). When	
32 33 34 35 36 37 38 39 40 41 42 43	251 252 253	Based on the type of pathology, the subgroup of perfusion disorders showed a significant improvement (p=0.04) in sensitivity from 19/34=56% to 26/34=76%, using PMCT (Table 5). When categorized based on anatomical system, the cardiovascular subgroup showed a significant	
32 33 34 35 36 37 38 39 40 41 42	251 252 253 254	Based on the type of pathology, the subgroup of perfusion disorders showed a significant improvement (p=0.04) in sensitivity from 19/34=56% to 26/34=76%, using PMCT (Table 5). When categorized based on anatomical system, the cardiovascular subgroup showed a significant improvement (p=0.02) in sensitivity from 24/39=62% to 32/3982%. There were no significant	
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	251 252 253 254	Based on the type of pathology, the subgroup of perfusion disorders showed a significant improvement (p=0.04) in sensitivity from 19/34=56% to 26/34=76%, using PMCT (Table 5). When categorized based on anatomical system, the cardiovascular subgroup showed a significant improvement (p=0.02) in sensitivity from 24/39=62% to 32/3982%. There were no significant	
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	251 252 253 254 255	Based on the type of pathology, the subgroup of perfusion disorders showed a significant improvement (p=0.04) in sensitivity from 19/34=56% to 26/34=76%, using PMCT (Table 5). When categorized based on anatomical system, the cardiovascular subgroup showed a significant improvement (p=0.02) in sensitivity from 24/39=62% to 32/3982%. There were no significant differences in specificity within the subgroups before and after PMCT.	
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	251 252 253 254 255 256	Based on the type of pathology, the subgroup of perfusion disorders showed a significant improvement (p=0.04) in sensitivity from 19/34=56% to 26/34=76%, using PMCT (Table 5). When categorized based on anatomical system, the cardiovascular subgroup showed a significant improvement (p=0.02) in sensitivity from 24/39=62% to 32/3982%. There were no significant differences in specificity within the subgroups before and after PMCT. Performance of radiologists	
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	251 252 253 254 255 256 257	Based on the type of pathology, the subgroup of perfusion disorders showed a significant improvement (p=0.04) in sensitivity from 19/34=56% to 26/34=76%, using PMCT (Table 5). When categorized based on anatomical system, the cardiovascular subgroup showed a significant improvement (p=0.02) in sensitivity from 24/39=62% to 32/3982%. There were no significant differences in specificity within the subgroups before and after PMCT. Performance of radiologists Logistic regression analysis showed no significant improvement in radiologists' performance over the	
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	251 252 253 254 255 256 257 258	Based on the type of pathology, the subgroup of perfusion disorders showed a significant improvement (p=0.04) in sensitivity from 19/34=56% to 26/34=76%, using PMCT (Table 5). When categorized based on anatomical system, the cardiovascular subgroup showed a significant improvement (p=0.02) in sensitivity from 24/39=62% to 32/3982%. There were no significant differences in specificity within the subgroups before and after PMCT. Performance of radiologists Logistic regression analysis showed no significant improvement in radiologists' performance over the four years of initial experience in reporting PMCT-scans. Odds ratios for each year of experience were	
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	251 252 253 254 255 256 257 258 259	Based on the type of pathology, the subgroup of perfusion disorders showed a significant improvement (p=0.04) in sensitivity from 19/34=56% to 26/34=76%, using PMCT (Table 5). When categorized based on anatomical system, the cardiovascular subgroup showed a significant improvement (p=0.02) in sensitivity from 24/39=62% to 32/3982%. There were no significant differences in specificity within the subgroups before and after PMCT. Performance of radiologists Logistic regression analysis showed no significant improvement in radiologists' performance over the four years of initial experience in reporting PMCT-scans. Odds ratios for each year of experience were 0.85 (95% CI: 0.56 to 1.27, (p=0.41) for correct assignment of the immediate cause of death, 0.95	
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56	251 252 253 254 255 256 257 258 259 260	Based on the type of pathology, the subgroup of perfusion disorders showed a significant improvement (p=0.04) in sensitivity from 19/34=56% to 26/34=76%, using PMCT (Table 5). When categorized based on anatomical system, the cardiovascular subgroup showed a significant improvement (p=0.02) in sensitivity from 24/39=62% to 32/3982%. There were no significant differences in specificity within the subgroups before and after PMCT. Performance of radiologists Logistic regression analysis showed no significant improvement in radiologists' performance over the four years of initial experience in reporting PMCT-scans. Odds ratios for each year of experience were 0.85 (95% CI: 0.56 to 1.27, (p=0.41) for correct assignment of the immediate cause of death, 0.95 (95% CI: 0.61 to 1.48, p=0.81) for type of pathology and 0.82 (95% CI: 0.51 to 1.32, p=0.41) for	

Page 13 of 31

1

59

60

BMJ Open

2			
3	262	Discussion	
4 5	263	The number of correctly identified clinical diagnoses of the immediate cause of death increased from	om
6 7	264	53% to 64% (p=0.049) after performing PMCT. Analyses showed that the value of PMCT is variable	
8 9	265	per subcategory and depends on the cause of death. Unfortunately, subgroups were a lot smaller	
10 11	266	than expected. The main reason for this was the unexpected low consent rate for PMCT in cases w	vith
12 13	267	consent for conventional autopsy. We did not investigate the reason for this low consent rate as	
14 15	268	motives for performing or not performing a PMCT-scan were not extensively documented. In case	of
16 17	269	death, clinicians had to ask consent for both PMCT and autopsy. Though some clinicians mentioned	d
18 19	270	that they only requested for PMCT in case of refusal of conventional autopsy.	
20 21	271	Pneumonia was the most common missed infectious cause of death, both before and after PMCT.	
22 23 24	272	Normal postmortem changes, such as the occurrence of pulmonary edema, could mask pneumonia	a
24 25	272		a
26 27	273	(Figure 5). ¹⁶ In the subgroup of perfusion disorders, diagnosis of pulmonary embolism at unenhance	ced
28 29	274	PMCT is challenging as it is notoriously difficult to distinguish an ante-mortem thrombus from a po	st-
30 31	275	mortem blood clot. ¹⁷⁻¹⁹ This, or the possibility that the embolus was lost during the autopsy	
32 33	276	procedure, may explain why in three cases the pulmonary embolism was not confirmed during	
34 35	277	autopsy. Postmortem angiography, now being developed and validated, can be effective in	
36 37	278	demonstrating any obstructing thrombi. ²⁰ Most causes of death in the subgroup of perfusion	
38 39	279	disorders were cardiac related. Clinicians are often restricted in their ability to differentiate a cause	e
40 41	280	of death due to the acute nature and time constraints of the situations (resuscitation setting) these	е
42 43	281	patients present with. On the contrary, cardiac arrhythmia and heart failure are impossible to	
44 45 46	282	diagnose by postmortem examinations only. Furthermore, an autopsy can only detect a myocardia	al
46 47 48	283	infarction in cases where patients have survived two to three hours post-infarction. ²¹ ATherefore,	
48 49 50	284	radiologists and pathologists had access to clinical information in order to assign the most probabl	e
51 52	285	cause of death based on postmortem findings and clinical finings as well. Accordingly, both PMCT	
53 54	286	and autopsy could indicate a cardiac cause of death, based on clinical findings and secondary	
55 56	287	characteristics in the absence of other significant pathologies.	
57			
58 50			13

1	
2	
3	
4 5	
6 7	
7 8	
o 9	
9 10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26 27	
27 28	
20 29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41 42	
42 43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55 56	
56 57	
57 58	
50 59	
60	

311

1

288	Table 1 and 5 show an increased additional value of PMCT when PMCT is used to identify the type of
289	pathology or anatomical system involved. This indicates that even when the cause of death is
290	uncertain after PMCT, it is still a valuable tool in targeting the region of interest or excluding some of
291	the differential diagnostic possibilities. By using PMCT, the sensitivity for type of pathology and
292	anatomical system increased by approximately 20% for all three main subgroups with the use of
293	PMCT (Table 5). Clinical evaluation of the cause of death often indicates the failing system (for
294	example, respiratory failure) rather than the underlying illness or structural changes, whereas
295	radiologists appear to be more adept at ascertaining the involved anatomical system. Based on how
296	confident radiologists are of their findings, they can guide the pathologist to the region(s) of interest.
297	Amongst non-invasive techniques, Blokker et al. conclude that PMCT in combination with
298	postmortem MRI yield the highest diagnostic performance in adults, with PMCT performing
299	somewhat better when only one of the modalities is used. ^{14,15} PMCT is less expensive than a
300	conventional autopsy, however, cost-effective analyses have not been formulated. ²² Images can be
301	stored digitally (useful for legal or educational purposes) and results can be audited and promptly
302	reviewed by one or more radiologists. Amongst minimally invasive methods, the highest
303	performance is reported in studies combining PMCT and CT-angiography. PMCT, enhanced with
304	targeted coronary angiography, showed a sensitivity of 92% for cause of death. ¹⁹ Two studies
305	combining CT, CT-angiography and CT-guided tissue biopsies achieved a pooled sensitivity of 91% for
306	cause of death. ^{23,24}
307	To our knowledge this is the second study which has investigated the additional value of unenhanced
308	PMCT compared to clinical diagnoses. The first study by Inai et al. showed a significant increase in
309	sensitivity from 46% to 74% for the immediate cause of death in 50 non-forensic deaths. ²⁵ This is
310	somewhat higher than we found in our study, one reason could be the fact that less specific causes

- of death were used. Other previous studies have investigated the diagnostic accuracy of PMCT
- compared to autopsy and not to clinical diagnoses. Those studies are difficult to compare, as some 312

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 15 of 31

1

BMJ Open

1 2	
2	
-	
5	
4 5 6	
7	
8	
9	
10	
11	
12	
13	
14	
16	
17	
18	
19	
20	
21	
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	
23	
24	
25	
20	
28	
29	
30	
31	
32	
33	
34 35	
35	
36 37	
38	
39	
40	
41	
42	
43	
44	
45	
46 47	
47 48	
40 49	
50	
51	
52	
53	
54	
55	
56	
57 58	
58 59	
59 60	
50	

313	use broadly defined categorizations and others use well-defined specific causes of death, or some
314	use the immediate cause of death and others the intermediate or underlying cause of death, or do
315	not state their definition of cause of death at all. Furthermore, most previous studies consisted of
316	small sample sizes (n<50) and used different study populations, different outcome parameters (for
317	example, cause of death, major or minor diagnoses) and different parameters of accuracy. ^{4,26-28} A
318	large prospective study of 182 adult deaths by Roberts et al. showed a major discrepancy rate of 32%
319	in determining the cause of death with PMCT compared to autopsy. ¹⁴ Another study showed a
320	sensitivity of 82% and a specificity of 97% for PMCT regarding the categorization of cause death in
321	101 cases. ²⁹ This is in accordance with our results regarding the categorization of cause of death per
322	type of pathology or anatomical system. Westphal et al. showed a sensitivity of 18/27=67% for cause
323	of death and a sensitivity of 5/17=19% for a more specific description of the involved pathogenetic
324	mechanism. ²⁶ Takahashi et al. found a sensitivity of 12% for definite findings and 53% for both
325	definite and possible findings with PMCT as to cause of death. ²⁷ The study by Puranik et al. supports
326	our results regarding the difficulty in diagnosing cardiac causes of death with unenhanced PMCT. ²⁸ A
327	sensitivity of 25% for cause of death was found in a population of seventeen young patients with
328	sudden cardiac death.
329	Certain diagnoses, for example fractures or those related to the accumulation of gasses or air (Figure
330	4), are more confidently diagnosed with PMCT than autopsy. ^{14,30} Therefore, the presented
331	performance of PMCT will probably be underestimated in cases were pathologies are difficult to
332	confirm due to the limitations of autopsy. Generally, in our experience we find that autopsy can no
333	longer be considered as the gold standard for all postmortem diagnoses, not only due to the
334	limitations of dissection, but also due to the decline in the number of autopsies performed, leading

- to a decrease in pathologists' expertise. We would suggest a gold standard involving a
- 336 multidisciplinary consensus evaluation amongst clinicians, radiologists and pathologists. Prospective
- 337 studies with larger sample sizes are required to investigate the additional value of PMCT in specific
- 338 subgroups of causes of death. Even with the aid of improved non- or minimally invasive techniques,

- conventional autopsy will still be required in complex cases where clinical and radiological diagnosis
 - as to cause of death is inconclusive.

1 2	
2 3	34
4	34
5 6	24
7	34
8	34
9 10	
11	34
12 13	34
14	
15	34
16 17	
18	
19 20	
20 21	
22	
23	
24 25	
26	
27	
28	
29 30	
31	
32	
33 34	
35	
36	
37	
38 39	
40	
41	
42 43	
44	
45	
46 47	
47	
49	
50 51	
51 52	
53	
54	
55 56	
50 57	
58	

59

60

Conclusion 1

- 12 While virtual autopsy with postmortem CT cannot substitute for conventional autopsy, it can
- 13 significantly improve diagnosis of the immediate cause of death over clinical diagnosis alone. Even in
- 4 cases where no immediate cause of death can be assigned after virtual autopsy, radiologists may
- 15 indicate a region of interest, so directing pathologists at autopsy. Future studies are needed to
- . is able 16 investigate whether PMCT is able to reduce the invasiveness of autopsy or even avoid an autopsy
 - 17 altogether.

2		5	
3	348	Refe	erences
4	349	1.	Harrington DE, Sayre EA. Managed care and measuring medical outcomes: did the rise of
5	350		HMOs contribute to the fall in the autopsy rate? Social science & medicine (1982).
6	351		2010;70(2):191-198.
7	352	2.	Blokker BM, Weustink AC, Hunink MGM, Oosterhuis JW. Autopsy rates in the Netherlands:
8	353		35 years of decline. PloS one. 2017;12(6):e0178200.
9	354	3.	Kretzschmar H. Brain banking: opportunities, challenges and meaning for the future. Nature
10	355		reviews Neuroscience. 2009;10(1):70-78.
11	356	4.	Wichmann D, Obbelode F, Vogel H, et al. Virtual autopsy as an alternative to traditional
12 12	357		medical autopsy in the intensive care unit: a prospective cohort study. Annals of internal
13 14	358		medicine. 2012;156(2):123-130.
14	359	5.	Burton JL, Underwood J. Clinical, educational, and epidemiological value of autopsy. Lancet
16	360		(London, England). 2007;369(9571):1471-1480.
17	361	6.	The decline of the hospital autopsy: a safety and quality issue for healthcare in Australia. The
18	362		Medical journal of Australia. 2004;180(6):281-285.
19	363	7.	Chariot P, Witt K, Pautot V, et al. Declining autopsy rate in a French hospital: physician's
20	364		attitudes to the autopsy and use of autopsy material in research publications. Archives of
21	365		pathology & laboratory medicine. 2000;124(5):739-745.
22	366	8.	Goldman L, Sayson R, Robbins S, Cohn LH, Bettmann M, Weisberg M. The value of the
23	367		autopsy in three medical eras. The New England journal of medicine. 1983;308(17):1000-
24	368		1005.
25	369	9.	Shojania KG, Burton EC, McDonald KM, Goldman L. Changes in rates of autopsy-detected
26	370		diagnostic errors over time: a systematic review. Jama. 2003;289(21):2849-2856.
27	371	10.	Kuijpers CC, Fronczek J, van de Goot FR, Niessen HW, van Diest PJ, Jiwa M. The value of
28	372		autopsies in the era of high-tech medicine: discrepant findings persist. Journal of clinical
29	373		pathology. 2014;67(6):512-519.
30	374	11.	Group OfNSDCA. Guidance for doctors completing medical certificates of cause of death in
31	375		England and Wales 2010. Accessed 3 June, 2016.
32	376	12.	Attems J, Arbes S, Bohm G, Bohmer F, Lintner F. The clinical diagnostic accuracy rate
33	377		regarding the immediate cause of death in a hospitalized geriatric population; an autopsy
34 35	378		study of 1594 patients. Wiener medizinische Wochenschrift (1946). 2004;154(7-8):159-162.
36	379	13.	Ermenc B. Comparison of the clinical and post mortem diagnoses of the causes of death.
37	380		Forensic science international. 2000;114(2):117-119.
38	381	14.	Roberts IS, Benamore RE, Benbow EW, et al. Post-mortem imaging as an alternative to
39	382		autopsy in the diagnosis of adult deaths: a validation study. Lancet (London, England).
40	383		2012;379(9811):136-142.
41	384	15.	Blokker BM, Wagensveld IM, Weustink AC, Oosterhuis JW, Hunink MG. Non-invasive or
42	385		minimally invasive autopsy compared to conventional autopsy of suspected natural deaths in
43	386		adults: a systematic review. European radiology. 2016;26(4):1159-1179.
44	387	16.	Klein WM. The common pattern of postmortem changes on whole body CT scans. <i>Journal of</i>
45	388		Forensic Radiology and Imaging. 2016;4:47-52.
46	389	17.	Jackowski C, Thali M, Aghayev E, et al. Postmortem imaging of blood and its characteristics
47	390		using MSCT and MRI. International journal of legal medicine. 2006;120(4):233-240.
48	391	18.	Ross SG, Bolliger SA, Ampanozi G, Oesterhelweg L, Thali MJ, Flach PM. Postmortem CT
49	392	_ 2.	angiography: capabilities and limitations in traumatic and natural causes of death.
50	393		Radiographics : a review publication of the Radiological Society of North America, Inc.
51	394		2014;34(3):830-846.
52	395	19.	Rutty GN, Morgan B, Robinson C, et al. Diagnostic accuracy of post-mortem CT with targeted
53	396		coronary angiography versus autopsy for coroner-requested post-mortem investigations: a
54 55	397		prospective, masked, comparison study. <i>Lancet (London, England)</i> . 2017.
55 56			· · · · · · · · · · · · · · · · · · ·
56 57			
57 58			
58 59			18
55			For peer review only - http://hmionen.hmi.com/site/about/quidelines.yhtml

BMJ Open

1			
2	398	20.	Grabherr S, Grimm J, Baumann P, Mangin P. Application of contrast media in post-mortem
3 4	399	20.	imaging (CT and MRI). La Radiologia medica. 2015;120(9):824-834.
4 5	400	21.	Kubat K, Smedts F. The usefulness of the lactate dehydrogenase macroreaction in autopsy
6	401	£1.	practice. Modern pathology : an official journal of the United States and Canadian Academy
7	402		of Pathology, Inc. 1993;6(6):743-747.
8	402	22.	Weustink AC, Hunink MG, van Dijke CF, Renken NS, Krestin GP, Oosterhuis JW. Minimally
9	403	22.	invasive autopsy: an alternative to conventional autopsy? <i>Radiology</i> . 2009;250(3):897-904.
10	405	23.	Ross SG, Thali MJ, Bolliger S, Germerott T, Ruder TD, Flach PM. Sudden death after chest
11	405	25.	pain: feasibility of virtual autopsy with postmortem CT angiography and biopsy. <i>Radiology</i> .
12	400		2012;264(1):250-259.
13	407	24.	Bolliger SA, Filograna L, Spendlove D, Thali MJ, Dirnhofer S, Ross S. Postmortem imaging-
14	409	24.	guided biopsy as an adjuvant to minimally invasive autopsy with CT and postmortem
15	405		angiography: a feasibility study. AJR American journal of roentgenology. 2010;195(5):1051-
16	410		1056.
17	412	25.	Inai K, Noriki S, Kinoshita K, et al. Postmortem CT is more accurate than clinical diagnosis for
18	412	25.	identifying the immediate cause of death in hospitalized patients: a prospective autopsy-
19	414		based study. Virchows Archiv : an international journal of pathology. 2016;469(1):101-109.
20	414	26.	Westphal SE, Apitzsch J, Penzkofer T, Mahnken AH, Knuchel R. Virtual CT autopsy in clinical
21	415	20.	pathology: feasibility in clinical autopsies. Virchows Archiv : an international journal of
22	410		pathology. 2012;461(2):211-219.
23	417	27.	Takahashi N, Higuchi T, Shiotani M, et al. The effectiveness of postmortem multidetector
24 25	419	27.	computed tomography in the detection of fatal findings related to cause of non-traumatic
25 26	419		death in the emergency department. European radiology. 2012;22(1):152-160.
20	420	28.	Puranik R, Gray B, Lackey H, et al. Comparison of conventional autopsy and magnetic
28	421	20.	resonance imaging in determining the cause of sudden death in the young. <i>Journal of</i>
29	423		cardiovascular magnetic resonance : official journal of the Society for Cardiovascular
30	424		Magnetic Resonance. 2014;16:44.
31	425	29.	Ampanozi G, Thali YA, Schweitzer W, et al. Accuracy of non-contrast PMCT for determining
32	426	25.	cause of death. Forensic science, medicine, and pathology. 2017.
33	427	30.	Dirnhofer R, Jackowski C, Vock P, Potter K, Thali MJ. VIRTOPSY: minimally invasive, imaging-
34	428	50.	guided virtual autopsy. Radiographics : a review publication of the Radiological Society of
35	429		North America, Inc. 2006;26(5):1305-1333.
36	425		
37	430		
38			
39			
40			
41			
42			

	431 432	Figure legends Figure 1. Flowchart of whether or not an immediate cause of death could be assigned before and after PM	ІСТ
	433	and during conventional autopsy.	
	434	^a No cause of death could be assigned at autopsy in ten cases, and were excluded from the sensitivity analysi	is
)	435	for cause of death. ^b In four cases, where clinicians and radiologists were able to assign a cause of death,	
<u>!</u>	436	autopsy did not reveal the cause of death. In one case this was due to lack of consent to a brain autopsy in a	
; -	437	case with an intracerebral hemorrhage. In another case the pulmonary embolisms were not diagnosed at	
5	438	autopsy however identified with ultrasonography during resuscitation as well as on PMCT (Figure 2). In two	
, }	439	other cases with unknown cause of death at autopsy, aspiration and cardiac failure were diagnosed as the	
)	440	cause of death after imaging, whereas previously sepsis with unknown abdominal focus and myocardial	
2	441	infarction were diagnosed by the clinicians. COD: immediate cause of death.	
- 	442		
	443	Figure 2. Example where pulmonary embolisms were diagnosed at antemortem ultrasound and postmorte	em
, ,	444	CT but were not confirmed during autopsy.	
)	445	A 70 year old man died after a resuscitation attempt, three days post re-laparotomy due to a hernia cicatrica	alis
,	446	correction with invagination complications. An ultrasound scan during resuscitation revealed pulmonary	
	447	embolisms. PMCT (postmortem interval of 2 hours) confirmed embolisms in the left (1) and right (2) pulmon	ary
- - -	448	arteries. Autopsy did not assign a cause of death.	
, }	449	Figure 3. Example of discrepant diagnosis of the cause of traumatic exsanguination.	
)	450	A 47 year old man died after a resuscitation attempt following a scooter accident with impact on the right side	de.
2	451	Initial trauma screening revealed no significant pathologies. PMCT suggested exsanguinations due to a splee	
;	452	laceration. Autopsy diagnosed exsanguinations due to lacerations of the liver and right kidney. Further findir	ıgs:
5	453	(1) abdominal wall hematoma, (2) rib fracture, (3) small rim of blood along the liver, (4) intra-abdominal bloc	od
, }	454	along the spleen.	
)	455	Figure 4. Example that gas related diagnoses can be more confidently diagnosed with PMCT than autopsy.	1
<u>.</u>	456	A 40 year old man died during a mid-transport resuscitation attempt following a car accident. Initial clinical	
+ ; ;	457	examination found a hemothorax, however, it was unclear if the patient died due to blood loss or from some	9
, }			20
			20

BMJ Open

458 other underlying pathology which may have caused the accident. During air ambulance transportation,

459 ventricular fibrillation occurred. PMCT showed an air embolus in the left anterior descending artery (1),

- 460 probably due to extensive lung trauma and the decrease in atmospheric pressure during the flight. This was not
- 461 diagnosed at autopsy, with death being attributed to a hemorrhagic shock due to hemothorax. Also, the
- 462 pneumothorax, pneumopericardium and pneumomediastinum were not mentioned in the autopsy report.
- 463 Figure 5. Normal postmortem changes could mask underlying pathology
 - 464 A 60 year old man with a clinical history of allogeneic stem cell transplantation due to multiple myeloma.
- 465 Clinical examination and antemortem MRI of the brain suggested a post-transplant lymphoproliferative
 - 466 disorder (PTLD). Autopsy diagnosed bronchopneumonia (left upper lobe and right lower lobe) as the cause of
- 467 death and did not show PTLD, nor recurrence of multiple myeloma or other malignancy. PMCT showed pleural

terez onz

- 468 fluid and interstitial pulmonary edema, which were interpreted as normal postmortem findings.
- 469 Bronchopneumonia was not diagnosed at PMCT.

Tables

Table 1 Patient characteristics

Study population (n=86), n (%)
51 (59%)
35 (41%)
62 (47-74)
31 (36%)
30 (35%)
18 (21%)
7 (8%)
46 (53%)
40 (47%)
27 (31%)
59 (69%)
26 (30%)
32 (37%
13 (15%)
5 (6%)
10 (12%)
ardiopulmonary resuscitation.

Table 2. Sensitivity for immediate cause of death, type of pathology and anatomical system involved, before and after virtual autopsy with PMCT.

	Sensitivity before PMCT (95% CI)	Sensitivity after PMCT (95% CI)	Significance (p-value ^b)
Immediate cause of death			
Identified at CA (n=76) ^a	40/76=53% (41-64%)	49/76=64% (53-75%)	0.049
Type of pathology			
Identified at CA (n=78) ^a	51/78=65% (54-76%)	65/78=83% (7 <mark>3-91%</mark>)	0.001
Anatomical system			
Identified at CA (n=77) ^a	50/77=65% (53-75%)	47/65=84% (74-92%)	0.001

^a Group sizes differ as conventional autopsy (CA) was not able to assign a cause of death in ten cases (Figure 1), a type of pathology in eight cases and anatomical system in nine cases. ^b p-values were calculated by use of McNemar tests.

Table 3. Cross tabulations of correct and incorrect assigned immediate causes of death (A), type of pathology (B) and anatomical system (C), before and after PMCT

Α.		COD after PMCT		
		Correct	Incorrect	
COD before PMCT	Correct	36	4	40
	Incorrect	13	23	36
		49	27	76

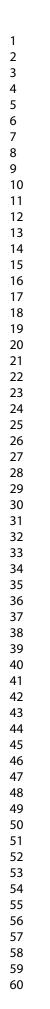
485
486

В.	Type of patho	logy after PMCT
	Correct	Incorrect

	Type of pa	athology C	Correct	50	1	51	
	before PN	ICT II	ncorrect	15	12	27	
				65	13	78	
87							
88	C.			Turne e	forestantial austa		1
	L.			Туре о	of anatomical syste after PMCT	m	
				Correct	Incorrect		
	Type of an	natomical C	Correct	47	3	50	
	system be	fore PMCT	ncorrect	18		27	
				65	12	77	
89 90 91 92 93	Table 4. O	ediate cause of de verview of all caus ectly diagnosed as	ses of death	-		type pathology and wheth	er the
93	were corre	Correct COD, bo		Incorrect COD be			th
		and after PMCT.		PMCT. Correct CC after PMCT.		CT. before and after F OD	
Inf	fections	10x pneumonia		1x pneumonia	1x endocar		
		1x infected liver	cysts	2x peritonitis ^a 1x diverticulitis ar	1x HSV hep nd 1x cerebral		
		1x sepsis e.c.i. ^b 1x pancreatitis 1x cholecystitis / cholangitis	/	pancreatitis	aspergillosi	P	
	erfusion	7x myocardial in	farction	2x pulmonary	1x heart fai	'	rctior
dis	sorders	1x heart failure 1x pulmonary er	nbolism	embolism 2x arrhythmia	•	3x arrhythmia 2x heart failure	
				1x volvulus		1x pulmonary ven	0-
				1x heart failure		occlusive disease	
					4	1x bowel ischemia adhesions	aue
He	emorrhages	4x type A aortic		1x type A aortic		1x hemothorax	
		1x subarachnoid	al	dissection 1x hemothorax +		1x liver and kidney + hemothorax	y rupt
		hemorrhage 1x gastric hemor	rrhage	intrapulmonary		+ nemothorax	
		1x arteria carotis	-	hemorrhage			
		hemorrhage					
		1x arteria iliaca o sinistra hemorrh					
		1x hemorrhage f	-				
		fistula; gastric tu	ıbe vs.				
0	ther	aorta 1x pleural carcin	omatosis	1x epileptic seizu	re		
		1x cachexia		due to brain			
		1x anaphylaxis		metastases			
	a	1x (auto-)intoxic					
194		is was due to a mis peritoneal drain in				ediate cause of death.	
195				·	-		
95 96							
195 196 197							
95 96 97 98	Table 5. Se	ensitivity and spec	ificity for ty	pe of pathology a	nd anatomical syst	tem per subgroup diagnose	d
95 96 97		ensitivity and spec d after virtual auto			nd anatomical sys	tem per subgroup diagnose	d
95 96 97 98 99					nd anatomical sys	tem per subgroup diagnose	d 2

1	
2	
3 ⊿	
4	
с С	
07	
/	
0	
9 10	
10	
17	
12	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 37 38 37 38 39 30 31 31 31 31 31 31 31 31 31 31	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	

60


1

		Sensitivity			Specificity			
		Before PMCT (95% Cl)	After PMCT (95% Cl)	p-value ^a	Before PMCT (95% Cl)	After PMCT (95% CI)	p-value ^a	
A. T (n=)	ype of pathology 78) ^c							
1. 2.	Infection (n=26) Hemorrhage (n=13)	69% (48-86) 69% (39-91)	85% (65-96) 92% (64- 100)	0.130.25	96% (87- 100) 98% (92- 100)	92% (81-98) 100% (94- 100)	0.501.00	
3.	Perfusion disorder (n=34)	56% (38-73)	76% (59-89)	0.04	95% (85-99)	93% (81-99)	1.00	
4.	Other (n=5)	100% (48- 100)	100% (48- 100)	N/A ^c	99% (93- 100%)	99% (93- 100%)	1.00	
B. A (n=)	natomical system 77) ^c							
1.	Pulmonary (n=18)	72% (47-90)	89% (65-99)	0.25	95% (86-99)	95% (86-99)	1.00	
2.	Cardiovascular (n=39)	62% (45-77)	82% (66-92)	0.02	100% (91- 100)	95% (82-99)	0.50	
3.	Gastrointestinal (n=13)	54% (25-81)	85% (55-98)	0.22	98% (92- 100)	100% (94- 100)	1.00	
4.	Other (n=7)	86% (42- 100)	86% (42- 100)	1.00	97% (90- 100)	94% (86-98)	0.50	

^a p-values were calculated by use of McNemar tests. ^bNS: not significant. ^c Autopsy was not able to establish

the type of pathology and anatomical system involved in eight and nine deaths respectively. ^d Not applicable.

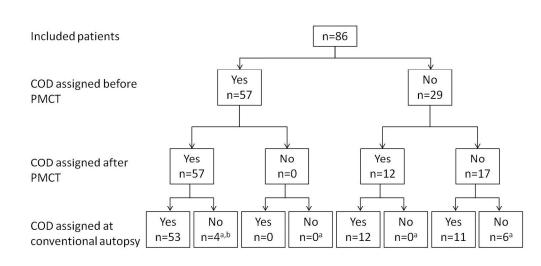


Figure 1. Flowchart of whether or not an immediate cause of death could be assigned before and after PMCT and during conventional autopsy.

a No cause of death could be assigned at autopsy in ten cases, and were excluded from the sensitivity analysis for cause of death. b In four cases, where clinicians and radiologists were able to assign a cause of death, autopsy did not reveal the cause of death. In one case this was due to lack of consent to a brain autopsy in a case with an intracerebral hemorrhage. In another case the pulmonary embolisms were not diagnosed at autopsy however identified with ultrasonography during resuscitation as well as on PMCT (Figure 2). In two other cases with unknown cause of death at autopsy, aspiration and cardiac failure were diagnosed as the cause of death after imaging, whereas previously sepsis with unknown abdominal focus and myocardial infarction were diagnosed by the clinicians. COD: immediate cause of death.

379x172mm (300 x 300 DPI)

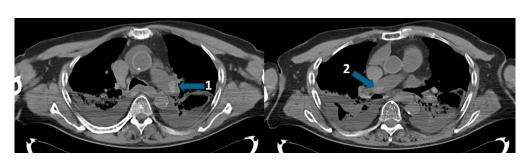


Figure 2. Example where pulmonary embolisms were diagnosed at antemortem ultrasound and postmortem CT but were not confirmed during autopsy.

A 70 year old man died after a resuscitation attempt, three days post re-laparotomy due to a hernia cicatricalis correction with invagination complications. An ultrasound scan during resuscitation revealed pulmonary embolisms. PMCT (postmortem interval of 2 hours) confirmed embolisms in the left (1) and right (2) pulmonary arteries. Autopsy did not assign a cause of death.

757x203mm (300 x 300 DPI)

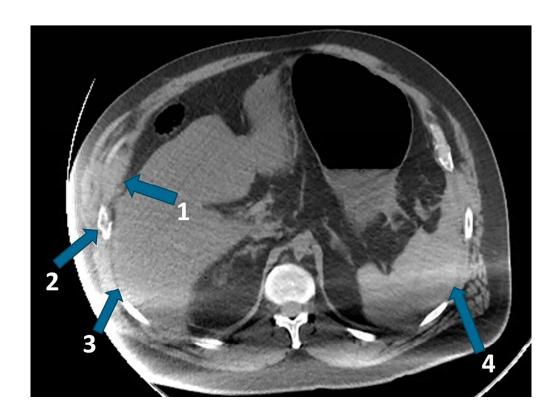
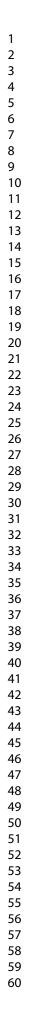



Figure 3. Example of discrepant diagnosis of the cause of traumatic exsanguination. A 47 year old man died after a resuscitation attempt following a scooter accident with impact on the right side. Initial trauma screening revealed no significant pathologies. PMCT suggested exsanguinations due to a spleen laceration. Autopsy diagnosed exsanguinations due to lacerations of the liver and right kidney. Further findings: (1) abdominal wall hematoma, (2) rib fracture, (3) small rim of blood along the liver, (4) intra-abdominal blood along the spleen.

268x199mm (300 x 300 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

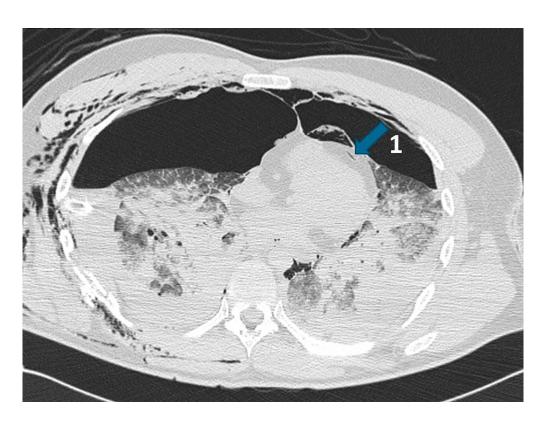
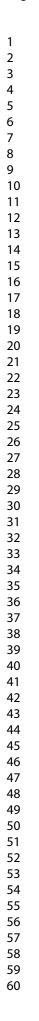



Figure 4. Example that gas related diagnoses can be more confidently diagnosed with PMCT than autopsy. A 40 year old man died during a mid-transport resuscitation attempt following a car accident. Initial clinical examination found a hemothorax, however, it was unclear if the patient died due to blood loss or from some other underlying pathology which may have caused the accident. During air ambulance transportation,

ventricular fibrillation occurred. PMCT showed an air embolus in the left anterior descending artery (1), probably due to extensive lung trauma and the decrease in atmospheric pressure during the flight. This was not diagnosed at autopsy, with death being attributed to a hemorrhagic shock due to hemothorax. Also, the pneumothorax, pneumopericardium and pneumomediastinum were not mentioned in the autopsy report.

380x284mm (300 x 300 DPI)

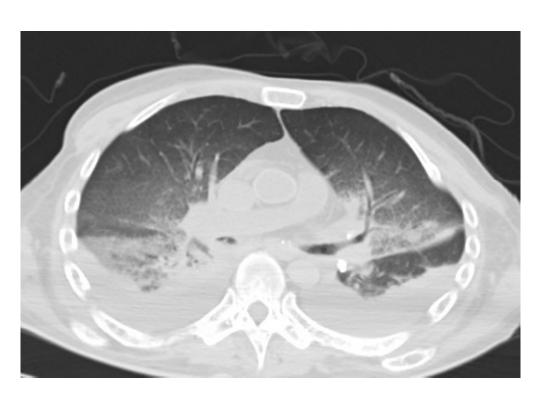


Figure 5. Normal postmortem changes could mask underlying pathology

A 60 year old man with a clinical history of allogeneic stem cell transplantation due to multiple myeloma. Clinical examination and antemortem MRI of the brain suggested a post-transplant lymphoproliferative disorder (PTLD). Autopsy diagnosed bronchopneumonia (left upper lobe and right lower lobe) as the cause of death and did not show PTLD, nor recurrence of multiple myeloma or other malignancy. PMCT showed pleural fluid and interstitial pulmonary edema, which were interpreted as normal postmortem findings. Bronchopneumonia was not diagnosed at PMCT.

333x231mm (300 x 300 DPI)

Section & Topic	No	Item	Reported on page
TITLE OR ABSTRACT			
	1	Identification as a study of diagnostic accuracy using at least one measure of accuracy	3
		(such as sensitivity, specificity, predictive values, or AUC)	
ABSTRACT			
	2	Structured summary of study design, methods, results, and conclusions	3
		(for specific guidance, see STARD for Abstracts)	
INTRODUCTION			
	3	Scientific and clinical background, including the intended use and clinical role of the index test	6
	4	Study objectives and hypotheses	6
METHODS			
Study design	5	Whether data collection was planned before the index test and reference standard	7
, ,		were performed (prospective study) or after (retrospective study)	
Participants	6	Eligibility criteria	7
	7	On what basis potentially eligible participants were identified	7
		(such as symptoms, results from previous tests, inclusion in registry)	
	8	Where and when potentially eligible participants were identified (setting, location and dates)	7
	9	Whether participants formed a consecutive, random or convenience series	7
Test methods	10a	Index test, in sufficient detail to allow replication	7
	10b	Reference standard, in sufficient detail to allow replication	7
		Rationale for choosing the reference standard (if alternatives exist)	
	 12a	Definition of and rationale for test positivity cut-offs or result categories	8
		of the index test, distinguishing pre-specified from exploratory	0
	12b	Definition of and rationale for test positivity cut-offs or result categories	8
		of the reference standard, distinguishing pre-specified from exploratory	°
	13a	Whether clinical information and reference standard results were available	7
		to the performers/readers of the index test	
	13b	Whether clinical information and index test results were available	7
	100	to the assessors of the reference standard	,
Analysis	14	Methods for estimating or comparing measures of diagnostic accuracy	8
	15	How indeterminate index test or reference standard results were handled	8
	16	How missing data on the index test and reference standard were handled	v
	17	Any analyses of variability in diagnostic accuracy, distinguishing pre-specified from exploratory	8
	18	Intended sample size and how it was determined	See supplementar
	10	Interfued sample size and now it was determined	file: 'response to
			editorial request'
RESULTS			
Participants	19	Flow of participants, using a diagram	Fig 1, page 20
	20	Baseline demographic and clinical characteristics of participants	Table 1, page 22
	21 a	Distribution of severity of disease in those with the target condition	NA
	21b	Distribution of alternative diagnoses in those without the target condition	
	22	Time interval and any clinical interventions between index test and reference standard	10
Test results	23	Cross tabulation of the index test results (or their distribution)	Table 3, page 22-2
		by the results of the reference standard	_
	24	Estimates of diagnostic accuracy and their precision (such as 95% confidence intervals)	Table 2 + 5
	25	Any adverse events from performing the index test or the reference standard	
DISCUSSION			
	26	Study limitations, including sources of potential bias, statistical uncertainty, and generalisability	13-15
	27	Implications for practice, including the intended use and clinical role of the index test	13-15
OTHER	· · · · · · · · · · · · · · · · · · ·		
INFORMATION			
	28	Registration number and name of registry	NA
	_0 29	Where the full study protocol can be accessed	5
	30		5
		Sources of funding and other support; role of funders For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	1 -

STARD 2015

AIM

STARD stands for "Standards for Reporting Diagnostic accuracy studies". This list of items was developed to contribute to the completeness and transparency of reporting of diagnostic accuracy studies. Authors can use the list to write informative study reports. Editors and peer-reviewers can use it to evaluate whether the information has been included in manuscripts submitted for publication.

EXPLANATION

A **diagnostic accuracy study** evaluates the ability of one or more medical tests to correctly classify study participants as having a **target condition**. This can be a disease, a disease stage, response or benefit from therapy, or an event or condition in the future. A medical test can be an imaging procedure, a laboratory test, elements from history and physical examination, a combination of these, or any other method for collecting information about the current health status of a patient.

The test whose accuracy is evaluated is called **index test.** A study can evaluate the accuracy of one or more index tests. Evaluating the ability of a medical test to correctly classify patients is typically done by comparing the distribution of the index test results with those of the **reference standard**. The reference standard is the best available method for establishing the presence or absence of the target condition. An accuracy study can rely on one or more reference standards.

If test results are categorized as either positive or negative, the cross tabulation of the index test results against those of the reference standard can be used to estimate the **sensitivity** of the index test (the proportion of participants *with* the target condition who have a positive index test), and its **specificity** (the proportion *without* the target condition who have a negative index test). From this cross tabulation (sometimes referred to as the contingency or "2x2" table), several other accuracy statistics can be estimated, such as the positive and negative **predictive values** of the test. Confidence intervals around estimates of accuracy can then be calculated to quantify the statistical **precision** of the measurements.

If the index test results can take more than two values, categorization of test results as positive or negative requires a **test positivity cut-off**. When multiple such cut-offs can be defined, authors can report a receiver operating characteristic (ROC) curve which graphically represents the combination of sensitivity and specificity for each possible test positivity cut-off. The **area under the ROC curve** informs in a single numerical value about the overall diagnostic accuracy of the index test.

The **intended use** of a medical test can be diagnosis, screening, staging, monitoring, surveillance, prediction or prognosis. The **clinical role** of a test explains its position relative to existing tests in the clinical pathway. A replacement test, for example, replaces an existing test. A triage test is used before an existing test; an add-on test is used after an existing test.

Besides diagnostic accuracy, several other outcomes and statistics may be relevant in the evaluation of medical tests. Medical tests can also be used to classify patients for purposes other than diagnosis, such as staging or prognosis. The STARD list was not explicitly developed for these other outcomes, statistics, and study types, although most STARD items would still apply.

DEVELOPMENT

This STARD list was released in 2015. The 30 items were identified by an international expert group of methodologists, researchers, and editors. The guiding principle in the development of STARD was to select items that, when reported, would help readers to judge the potential for bias in the study, to appraise the applicability of the study findings and the validity of conclusions and recommendations. The list represents an update of the first version, which was published in 2003.

More information can be found on <u>http://www.equator-network.org/reporting-guidelines/stard.</u>

BMJ Open

Can virtual autopsy with postmortem CT improve clinical diagnosis of cause of death? A retrospective observational cohort study in a Dutch tertiary referral centre.

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-018834.R2
Article Type:	Research
Date Submitted by the Author:	19-Dec-2017
Complete List of Authors:	Sonnemans, Lianne; Radboudumc, Radiology and Nuclear Medicine Kubat, Bela; Nederlands Forensisch Instituut, Pathology; Maastricht UMC+, Pathology Prokop, Mathias; Radboudumc, Radiology and Nuclear Medicine Klein, Willemijn; Radboudumc, Radiology and Nuclear Medicine; Maastricht UMC+, Radiology
Primary Subject Heading :	Radiology and imaging
Secondary Subject Heading:	Diagnostics, Pathology
Keywords:	Computed tomography < RADIOLOGY & IMAGING, cause of death, postmortem, autopsy, sensitivity, specificity

SCHOLARONE[™] Manuscripts

1		
2		
3	1	
4		
5	2	
6	2	
7		
8		
9	3	Can virtual autopsy with postmortem CT improve clinical diagnosis of
10	4	cause of death? A retrospective observational cohort study in a Dutch
11		
12	5	tertiary referral centre.
13	6	
14		
15	7	
16	8	LIP Sonnemans ^{1#} PhD candidate in post-mortem radiology
17		
18	9	B Kubat ^{2,3} Pathologist
19	10	M Prokop ¹ Radiologist
20	10	M Prokop ¹ Radiologist
21	11	WM Klein ^{1,4} Radiologist
22		
23	12	
24	4.2	
25	13	¹ Department of Radiology and Nuclear Medicine, Radboudumc, Geert Grooteplein Zuid 10 6500 HB
26	14	Nijmegen, The Netherlands
20		
28	15	² Department of Pathology, Netherlands Forensic Institute, Laan van Ypenburg 6 2497 GB Den Haag,
29	16	The Netherlands
30	10	
31	17	³ Department of Pathology, Maastricht UMC+, P. Debyelaan 25 6229 HX Maastricht, The Netherlands
32	10	⁴ Department of Radiology and Nuclear Medicine, Maastricht UMC+, P. Debyelaan 25 6229 HX
33	18	Department of Radiology and Nuclear Medicine, Maastricht OMC+, P. Debyelaan 25 6229 HX
34	19	Maastricht, The Netherlands
35	•	
36	20	
37	21	Charle destance estimate the entropy of the state de
38	21	Study design: retrospective observational cohort study
39	22	Word count: 3224
40	22	Word count: 3224
40	23	
42	25	
43	24	# Address for correspondence:
45 44		
45	25	Ms. Lianne J.P. Sonnemans, M.D.
45 46	26	Department of Radiology and Nuclear Medicine
40 47	27	Radboudumc
	28	Geert Grooteplein Zuid 10
48 49	29	6500 HB Nijmegen
	30	The Netherlands
50 51	31	E-mail: lianne.sonnemans@radboudumc.nl
51	32	Tel: +31 24 361 1111
52		
53		
54		
55		
56		
57		
58		1
59		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60		ror peer review only - map.//binjopen.binj.com/site/about/guidelines.shum

cause of death, postmortem, computed tomography, autopsy, sensitivity, specificity

immediate cause of death

1	
2 3	33
4	34
5 6	
8 7	35
8	55
9 10	36
11	37
12	38
13 14	50
15	
16 17	
18	
19 20	
20 21	
22	
23 24	
25	
26	
27 28	
29	
30 31	
32	
33	
34 35	
36	
37 38	
39	
40	
41 42	
43	
44 45	
46	
47	
48 49	
50	
51 52	
53	
54	
55 56	
57	
58	

59

60

Key Words

COD

PMCT

List of abbreviations

<text>

BMJ Open

1		
2 3	39	Abstract
4	40	
5 6	41	Objective: To investigate whether virtual autopsy with postmortem CT (PMCT) improves clinical
7	42	diagnosis of the immediate cause of death.
8 9	43	Design: Retrospective observational cohort study. Inclusion-criteria: in- and out-of-hospital deaths
10	44	over the age of one year in whom virtual autopsy with PMCT and conventional autopsy were
11 12	45	performed. Exclusion-criteria: forensic cases, post mortal organ donors and cases with incomplete
13	46	scanning procedures. Cadavers were examined by virtual autopsy with PMCT prior to conventional
14 15	47	autopsy. The clinically determined cause of death was recorded before virtual autopsy and was then
16	48	adjusted with the findings of virtual autopsy. Using conventional autopsy as reference standard, we
17 18	49	investigated the increase in sensitivity for immediate cause of death, type of pathology and
19 20	50	anatomical system involved before and after virtual autopsy.
21	51	Setting: Tertiary referral centre.
22 23	52	Participants: 86 cadavers who underwent conventional and virtual autopsy between July 2012 and
24 25	53	June 2016.
26	54	Intervention: PMCT consisted of brain, cervical spine and chest-abdomen-pelvis imaging.
27 28	55	Conventional autopsy consisted of thoraco-abdominal examination with or without brain autopsy.
29	56	Primary and secondary outcome measures: Increase in sensitivity for the immediate cause of death,
30 31	57	type of pathology (infection, hemorrhage, perfusion disorder, other or not assigned) and anatomical
32	58	system (pulmonary, cardiovascular, gastrointestinal, other or not assigned) involved, before and after
33 34	59	virtual autopsy.
35	60	Results: Using PMCT, the sensitivity for immediate cause of death increased with 12% (95% CI: -4 to
36 37	61	28) from 53% (41 to 64) to 64% (53 to 75), with 18% (4 to 32)from 65% (54 to 76) to 83% (73 to 91)
38 39	62	for type of pathology and with 19% (6 to 33) from 65% (54 to 76) to 85% (75 to 92) for anatomical
40	63	system.
41 42	64	Conclusion: While unenhanced postmortem CT is an insufficient substitute for conventional autopsy,
43 44	65	it canimprove diagnosis of cause of death over clinical diagnosis alone and should therefore be
44	66	considered whenever autopsy is not performed.
46	67	
47 48	-	
48 49		
50		

68 Article summary

69 Strengths and limitations of this study

70		
71	•	This study investigated the diagnostic performance for clinical cause of death determination
72		by use of postmortem CT and takes into account the added value over clinical diagnosis
73		alone.
74	•	The immediate cause of death (i.e. direct cause of death) was the main outcome rather than
75		the primary cause of death (i.e. underlying cause of death or basic illness) as from a clinical
76		point of view, diagnosis and treatment of the immediate cause of death is the most urgent.
77	•	The sensitivity for clinical cause of death determination, with and without postmortem CT, is
78		investigated on multiple levels of precision; the immediate cause of death as well as the
79		involved type of pathology and anatomical location were investigated.
80	•	The retrospective design in a tertiary care centre has probably introduced a selection-bias
81		towards patients with diagnostic difficulties or unresolved issues, resulting in an
82		underestimation of the diagnostic performance compared to more general causes of death.
83	•	An unexpected low consent rate for postmortem CT in cases with consent for conventional
84		autopsy resulted in a reduction of the statistical power of this study.
85		

Page 5 of 33

BMJ Open

1		
2 3	86	Contributors: LIPS had full access to all of the data in the study and takes responsibility for the
4 5	87	integrity of the data and the accuracy of the data analysis. LIPS acquired and analyzed the data. LIPS,
6	88	WMK, BK and WMP interpreted the data. LJPS drafted the manuscript. WMK and WMP supervised
7 8	89	the study. LIPS, WMK and WMP contributed to the overall conception and design of the study. All
9	90	authors revised the manuscript for intellectual content.
10 11	91	Funding: This research received no specific grant from any funding agency in the public, commercial
12	92	or not-for-profit sectors.
13 14	93	Competing interests: All authors have completed the ICMJE uniform disclosure form and declare no
15 16	94	support from any organization for the submitted work, no financial relationships with any
17	95	organizations that might have an interest in the submitted work in the previous three years, and no
18 19	96	other relationships or activities that could appear to have influenced the submitted work.
20	97	Ethical approval: This study was approved by the local ethical committee in the form of a waiver in
21 22	98	accordance with Dutch national law.
23	99	Data sharing: Details on how to obtain additional data from the study (eg, statistical code, datasets)
24 25	100	are available from the corresponding author.
26 27	101	Transparency: The lead author affirms that this manuscript is an honest, accurate, and transparent
28	102	account of the study being reported; that no important aspects of the study have been omitted; and
29 30	103	that any discrepancies from the study as planned (and, if relevant, registered) have been explained.
31	104	Exclusive license: "I [Lianne Sonnemans] The Corresponding Author of this article contained within
32 33	105	the original manuscript which includes any diagrams & photographs within and any related or stand
34	106	alone film submitted (the Contribution") has the right to grant on behalf
35 36	107	of all authors and does grant on behalf of all authors, a licence to the BMJ Publishing Group Ltd and
37 38	108	its licencees, to permit this Contribution (if accepted) to be published in the BMJ and any other BMJ
39	109	Group products and to exploit all subsidiary rights, as set out in our licence set out at:
40 41	110	http://www.bmj.com/about-bmj/resources-authors/forms-policies-and-checklists/copyright-open-
42	111	access-and-permission-reuse."
43 44		
45		
46 47		
48 49		
49 50		
- 4		

112 Introduction

Autopsies are traditionally regarded as the 'gold standard' in quality monitoring of health care. It is therefore remarkable that in a time of heightened interest in improving patient safety, healthcare quality and error prevention, worldwide autopsy rates continue to decline from roughly 40% in the nineteen sixties, to below 10% nowadays.¹⁻⁷ Religious and emotional objections to the invasiveness of conventional autopsies, both by the relatives and the doctors, are considered as some of the reasons given for this decline. At present, determination of the cause of death relies heavily on clinical assessment. Despite an increase in the use and improvement of diagnostic techniques in the last decades, major error rates of approximately 25% have not substantially decreased.⁸⁻¹⁰ According to the Goldman classification system, major errors are defined as clinically missed diagnoses related to the cause of death. In half of these cases this might have led to a change in therapy and prolonged survival, if known before death.⁸ National mortality statistics are generally based on the primary cause of death (i.e. underlying cause or basic illness), which could be a longstanding, chronic disease.¹¹ However from an individual and clinical point of view, diagnosis and treatment of the immediate cause of death (i.e. direct cause of death) is the most urgent. Accuracy rates for immediate causes of death are probably lower than for underlying causes of death^{12,13}, due to time constraints of the often acute situations these diagnoses present with. The high error rates emphasize the need to improve clinical diagnoses using techniques that are widely available and acceptable, for example, postmortem CT (PMCT). Previous studies have shown that as yet, PMCT is an insufficient substitute but can be used in adjunct to conventional autopsy.^{14,15} In order to provide answers and quality control also in cases without consent for conventional autopsy, we investigated whether virtual autopsy with PMCT improves clinical diagnosis of the immediate cause of death.

BMJ Open

2		
3	136	Material and methods
4	137	Study design
5		
6 7	138	All cadavers of in- and out-of-hospital deaths over the age of one year, who underwent both PMCT
8 9	139	and conventional autopsy in our hospital, between July 2012 and June 2016, were included. Forensic
10 11	140	cases, post mortal donors and cases with incomplete scanning procedures or without full thorax-
12 13	141	abdomen autopsy, were excluded. Clinicians had to ask consent from relatives for both PMCT and
14 15	142	conventional autopsy in all cases of death. This retrospective study was approved by the local ethical
16 17 18	143	committee in the form of a waiver in accordance with Dutch national law.
19		
20	144	PMCT and conventional autopsy
21		
22	145	PMCT was performed as soon as possible after death and prior to autopsy. If scanning within a few
23		
24	146	hours was not possible, the cadaver was stored in the mortuary at 4°C. CT-scanners used were
25		
26	147	Siemens Somatom Sensation 16, Siemens Sensation 64 (Siemens Healthcare, Germany) and Aquilion
27		
28	148	ONE (Toshiba Medical Systems, Japan). All with a detector collimation of 1mm, reconstruction
29		
30	149	interval of 0.8mm and 120 kV. The Siemens scanners used a tube current of 400mA and 1s rotation
31		
32	150	time. The Toshiba scanner used Automatic Exposure Control (SD 17.5) with a rotation time of 0.5s.
33		
34 35	151	PMCT protocol consisted of a scan of the head and neck, in bone, soft tissue and cerebral setting,
36		
37	152	interpreted by a neuro-radiologist; a scan of thorax and abdomen in bone, lung and abdominal
38		
39	153	settings, interpreted by a specialist cardiothoracic and abdominal radiologist; summarized in a single
40		
41	154	consensus report. All radiologists had minimal previous experience in interpreting PMCT images, as
42		
43	155	postmortem imaging is a relatively new field of expertise. Conventional autopsy consisted of
44		
45	156	thoracic-abdominal autopsy with or without examination of the brain, and included full macroscopic
46		
47	157	and microscopic inspection. Radiologists and pathologists were blinded to each other's results, but
48		
49	158	had otherwise full access to electronic patient files. Radiologists and pathologists compiled a report
50		
51 52	159	based on their own findings and clinical findings.
52 53		
53 54	100	Data collection
55	160	Data collection

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
20 21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
42
43 44
44 45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
00

1

161	For each cadaver the immediate cause of death (i.e. direct cause of death), type of pathology and
162	anatomical system involved, were collected in retrospect at three moments: before PMCT, after
163	PMCT and based on conventional autopsy findings. The cause of death before virtual autopsy was
164	based on clinical findings only. The cause of death after virtual autopsy was based on both clinical
165	findings and PMCT. If no cause of death could be assigned at PMCT, the cause of death was primarily
166	based on clinical findings. Symptoms (for example, respiratory failure, sepsis etc.) and risk factors
167	(atherosclerosis, hypertension) were not considered as cause of death. Only when the primary
168	source of sepsis (for example pneumonia) was unknown, sepsis was diagnosed as cause of death. In
169	cases of trauma, the physical injury rather than the mechanism of trauma was assigned as cause of
170	death.

171 Type of pathology was scored according to the following categories; infection, hemorrhage, 172 perfusion disorder, other or not assigned. Perfusion disorders comprised all cardiac and vascular 173 perfusion disorders not due to infection, hemorrhage or neoplasm (for example, myocardial 174 infarction, heart failure, pulmonary embolism, volvulus etc.). Type A aortic dissections with 175 hemopericardium were grouped in the hemorrhage category. The type of anatomical system was 176 scored as; pulmonary, cardiovascular, gastrointestinal, other or not assigned. This strategy and 177 subcategories used were derived from the classification of anatomical regions and groups of pathologies as used by Roberts and Wichmann et al.^{4,14} 178

179 Statistical analysis

Sensitivity and specificity were calculated with conventional autopsy as reference standard. 95% confidence intervals (CI) of the differences in sensitivity or specificity before and after PMCT were calculated. Cases where the cause of death, type of pathology or anatomical system could not be established after conventional autopsy were excluded from statistical analysis. A sample size of n=113 was required to demonstrate a difference of 15% in sensitivity with α =0.05 and β =0.10.

185 Logistic regression analysis was performed to evaluate radiologists' improvement in reporting PMCT-

1		
2 3	186	scans during the four year study period. Odds ratios were calculated for each additional year of
4		
5 6	187	experience in reporting PMCT-scans. P values of 0.05 or less were considered significant. IBM SPSS
7	188	Statistics, version 22 was used.
8		
9 10		
11		
12 13		
15 14		
15		
16 17		
18		
19		
20 21		
22		
23 24		
24 25		
26		
27 28		
29		
30		
31 32		
33		
34 35		
36		
37		
38 39		
40		
41 42		
43		
44 45		
45 46		
47		
48 49		
50		
51		
52 53		
54		
55 56		
50 57		
58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

$\begin{array}{c}1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\16\\17\\18\\9\\20\\21\\22\\23\\24\\25\\26\\27\\28\\29\\30\end{array}$	
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	

189 190	Results Of 2155 clinically examined in- and out-of-hospital deaths in our hospital, a full thorax-abdomen
191	autopsy was performed on 304 (14%) cadavers, a complete PMCT on 120 (6%) cadavers and both on
192	78 (4%) cadavers. One case was excluded due to postmortem organ donation prior to PMCT. A
193	further nine cases who deceased at home (n=7) or in another hospital (n=2) were brought to the
194	hospital's mortuary for PMCT and autopsy examination. This led to a total of 86 included cases (51
195	men, 35 women, with a median age of 62 (IQR: 47 to 74) years) (Table 1). 54% of the deaths were
196	after a resuscitation attempt. The median postmortem interval between death and PMCT was 7.6
197	(IQR: 3.1 to 18.8) hours. In 69% there was no consent for brain autopsy and, in those cases,
198	conventional autopsy consisted of a thorax-abdomen examination only. Conventional autopsy, as
199	standard of reference, was not able to assign the immediate cause of death in ten cadavers (12%)
200	(Figure 1). The type of pathology and anatomical system involved were both not assigned in eight
201	cadavers. Therefore, analyses were based on the remaining 76 or 78 cadavers. Table 2 shows 2-by-2-
202	tables of the number of correct diagnoses before and after PMCT.
202 203	tables of the number of correct diagnoses before and after PMCT. Sensitivity for immediate cause of death
	L.
203	Sensitivity for immediate cause of death
203 204	Sensitivity for immediate cause of death The overall sensitivity for immediate cause of death increased with 12% (-4 to 28) from 53% (41 to
203 204 205	Sensitivity for immediate cause of death The overall sensitivity for immediate cause of death increased with 12% (-4 to 28) from 53% (41 to 64) to 64% (53 to 75) after performing a PMCT-scan. Sensitivities specified per type of pathology or
203 204 205 206 207	Sensitivity for immediate cause of death The overall sensitivity for immediate cause of death increased with 12% (-4 to 28) from 53% (41 to 64) to 64% (53 to 75) after performing a PMCT-scan. Sensitivities specified per type of pathology or anatomical system are shown in Table 3. All autopsy causes of death, and whether or not they were correctly appointed before and after PMCT, are shown in Table 4.
203 204 205 206 207 208	Sensitivity for immediate cause of death The overall sensitivity for immediate cause of death increased with 12% (-4 to 28) from 53% (41 to 64) to 64% (53 to 75) after performing a PMCT-scan. Sensitivities specified per type of pathology or anatomical system are shown in Table 3. All autopsy causes of death, and whether or not they were correctly appointed before and after PMCT, are shown in Table 4. Pneumonia was the most common infectious cause of death. It was correctly assigned as cause of
203 204 205 206 207 208 209	Sensitivity for immediate cause of death The overall sensitivity for immediate cause of death increased with 12% (-4 to 28) from 53% (41 to 64) to 64% (53 to 75) after performing a PMCT-scan. Sensitivities specified per type of pathology or anatomical system are shown in Table 3. All autopsy causes of death, and whether or not they were correctly appointed before and after PMCT, are shown in Table 4. Pneumonia was the most common infectious cause of death. It was correctly assigned as cause of death in 11/15=73% after PMCT, compared to 10/15=67% before PMCT. In the other 27% (n=4),
203 204 205 206 207 208 209 210	Sensitivity for immediate cause of death The overall sensitivity for immediate cause of death increased with 12% (-4 to 28) from 53% (41 to 64) to 64% (53 to 75) after performing a PMCT-scan. Sensitivities specified per type of pathology or anatomical system are shown in Table 3. All autopsy causes of death, and whether or not they were correctly appointed before and after PMCT, are shown in Table 4. Pneumonia was the most common infectious cause of death. It was correctly assigned as cause of death in 11/15=73% after PMCT, compared to 10/15=67% before PMCT. In the other 27% (n=4), pneumonia was recognized, but not assigned as cause of death. Vice versa, in two other patients
203 204 205 206 207 208 209 210 211	Sensitivity for immediate cause of death The overall sensitivity for immediate cause of death increased with 12% (-4 to 28) from 53% (41 to 64) to 64% (53 to 75) after performing a PMCT-scan. Sensitivities specified per type of pathology or anatomical system are shown in Table 3. All autopsy causes of death, and whether or not they were correctly appointed before and after PMCT, are shown in Table 4. Pneumonia was the most common infectious cause of death. It was correctly assigned as cause of death in 11/15=73% after PMCT, compared to 10/15=67% before PMCT. In the other 27% (n=4), pneumonia was recognized, but not assigned as cause of death. Vice versa, in two other patients who had died from cerebral aspergillosis and heart failure, the ancillary pneumonia was incorrectly
203 204 205 206 207 208 209 210 211 211	Sensitivity for immediate cause of death The overall sensitivity for immediate cause of death increased with 12% (-4 to 28) from 53% (41 to 64) to 64% (53 to 75) after performing a PMCT-scan. Sensitivities specified per type of pathology or anatomical system are shown in Table 3. All autopsy causes of death, and whether or not they were correctly appointed before and after PMCT, are shown in Table 4. Pneumonia was the most common infectious cause of death. It was correctly assigned as cause of death in 11/15=73% after PMCT, compared to 10/15=67% before PMCT. In the other 27% (n=4), pneumonia was recognized, but not assigned as cause of death. Vice versa, in two other patients who had died from cerebral aspergillosis and heart failure, the ancillary pneumonia was incorrectly assigned as cause of death on PMCT. Furthermore, two cases of peritonitis (due to a misplaced
203 204 205 206 207 208 209 210 211	Sensitivity for immediate cause of death The overall sensitivity for immediate cause of death increased with 12% (-4 to 28) from 53% (41 to 64) to 64% (53 to 75) after performing a PMCT-scan. Sensitivities specified per type of pathology or anatomical system are shown in Table 3. All autopsy causes of death, and whether or not they were correctly appointed before and after PMCT, are shown in Table 4. Pneumonia was the most common infectious cause of death. It was correctly assigned as cause of death in 11/15=73% after PMCT, compared to 10/15=67% before PMCT. In the other 27% (n=4), pneumonia was recognized, but not assigned as cause of death. Vice versa, in two other patients who had died from cerebral aspergillosis and heart failure, the ancillary pneumonia was incorrectly

Page 11 of 33

1

BMJ Open

1 2	
2	
2 2	
4 5	
6	
6 7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17 10	
10	
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33 34 35 36 37 38	
24 25	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48 49	
49 50	
50 51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

215	In the group of perfusion disorders, all three pulmonary embolisms diagnosed at autopsy were also
216	assigned as cause of death at PMCT. In a further three cases, including one with pulmonary embolism
217	diagnosis on antemortem ultrasound (Figure 2), PMCT diagnosed pulmonary embolisms which were
218	not confirmed during autopsy. Moreover, radiologists correctly diagnosed two arrhythmias, one
219	heart failure and one volvulus which were initially missed as cause of death by the clinicians. Cardiac
220	arrhythmia was suspected based on left ventricular hypertrophy and aortic valve stenosis or local
221	hyperdensity of myocardial tissue corresponding to fibrosis in the absence of other significant
222	findings. In the other case, heart failure was also based upon presence of secondary characteristics
223	(dilated atria and pleural effusion) in the absence of other significant findings. Myocardial infarction
224	was correctly diagnosed as cause of death in 7/16=44% after PMCT. However, in 5/7=71% of these
225	cases, the myocardial infarction was not directly visible on PMCT and was based on the combination
226	of clinical findings and absence of significant pathologies at PMCT. In the two other cases, imaging
227	was suspect for myocardial infarction; once due to an intravascular hypodensity proximal of a
228	coronary stent, which might indicate a (fat) embolism, and once due to the combination of significant
229	coronary calcifications, enlarged right atrium, clinical history and absence of other significant
230	findings.
231	Using PMCT, hemorrhagic causes of death were correctly diagnosed in 11/13=85%. All five aortic
232	dissections were correctly diagnosed on PMCT, including a clinically missed dissection. In a traumatic
233	case, radiologists diagnosed hemothorax and a spleen rupture where pathologists diagnosed
234	hemothorax and a liver and kidney rupture (Figure 3). In another traumatic case were death was

attributed to hemorrhagic shock due to hemothorax, radiologists diagnosed an air embolus in the left

coronary artery (Figure 4).

In the category of other pathologies, there were three patients who died from malignant disease.
The cause of death was correctly diagnosed before and after PMCT in two of these cases, one with

pleural carcinomatosis in breast cancer and one with respiratory failure due to cachexia in

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
1/	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
55 54	
54	
55	
56	
57	
58	
59	
60	

1 2

metastasized esophageal cancer. In the other case, the patient died after an epileptic seizure due to
(unidentified) brain metastases. There were three other cases with cancer at time of death died, but
those patients died from complications (septic cholecystitis, carotid artery bleeding and endocarditis
due to immunodeficiency).

Sensitivity and specificity for type of pathology and anatomical system involved in the immediate cause of death

246 The overall sensitivity for type of pathology increased with 18% (4 to 32) from 65% (54 to 76) to 83% 247 (73 to 91) and with 19% (6 to 33) from 65% (54 to 76) to 85% (75 to 92) for the anatomical system 248 (Table 5). These improvements were statistically significant. In the subgroups of cardiovascular 249 causes and perfusion disorders as cause of death, where the sensitivity for immediate cause of death 250 was rather low, we observed (nearly) significant improvements of 21% (1 to 41) and 21% (-2 to 43) 251 for the identification of the involved anatomical system and type of pathology respectively. This 252 illustrates that PMCT can indicate a cardiovascular or perfusive cause of death, even in cases when 253 the exact cause of death within that subgroup cannot be differentiated. There were no significant 254 differences in specificity within the subgroups before and after PMCT.

255 Performance of radiologists

256 Logistic regression analysis showed no significant improvement in the performance of radiologists in

- assigning the correct cause of death over the four-year study period. Odds ratios for each year of
- additional experience in reporting PMCT-scans were 0.85 (95% CI: 0.56 to 1.27, p=0.41) for correct
- assignment of the immediate cause of death, 0.95 (95% CI: 0.61 to 1.48, p=0.81) for type of
- 260 pathology and 0.82 (95% CI: 0.51 to 1.32, p=0.41) for anatomical system involved.

1 2 3 4 5 6 7 8 9 10 11 12 13	
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	
28 29 30 31 32 33 34 35 36 37 38 39 40 41	
42 43 44 45 46 47 48 49 50 51 52 53 54	
55 56 57 58 59 60	

261	Discussion
262	The sensitivity for immediate cause of death increased from 53% to 64% after performing PMCT.
263	Analyses showed that the value of PMCT is variable per subcategory and depends on the cause of
264	death. Unfortunately, subgroups were a lot smaller than expected, resulting in a lower statistical
265	power and large confidence intervals. We had predicted to include 272 cases (4 years of inclusion st
266	average 80 thoraco-abdominal autopsies each year * 0.85 PMCT consent rate). The main reason for
267	the limited number of included patients was the unexpected low consent rate (78/304=26%) for
268	PMCT in cases with consent for conventional autopsy. We did not investigate the reason for this low
269	consent rate as motives for performing or not performing a PMCT-scan were not extensively
270	documented. In case of death, clinicians had to ask consent for both PMCT and autopsy. Though
271	some clinicians mentioned that they only requested for PMCT in case of refusal of conventional
272	autopsy.
273	Pneumonia was the most common missed infectious cause of death, both before and after PMCT.

274 Resuscitation induced changes and normal postmortem changes, such as the occurrence of pulmonary edema, could mask pneumonia (Figure 5).¹⁶ In the subgroup of perfusion disorders, 275 276 diagnosis of pulmonary embolism at unenhanced PMCT is challenging as it is notoriously difficult to distinguish an ante-mortem thrombus from a post-mortem blood clot.¹⁷⁻¹⁹ This, or the possibility that 277 278 the embolus was lost during the autopsy procedure, may explain why in three cases the pulmonary 279 embolism was not confirmed during autopsy. Postmortem angiography, now being developed and validated, can be effective in demonstrating any obstructing thrombi.²⁰ Most causes of death in the 280 281 subgroup of perfusion disorders were cardiac related. Clinicians are often restricted in their ability to 282 differentiate a cause of death due to the acute nature and time constraints of the situations 283 (resuscitation setting) these patients present with. On the contrary, cardiac arrhythmia and heart 284 failure are impossible to diagnose by postmortem examinations only. Furthermore, an autopsy can 285 only detect a myocardial infarction in cases where patients have survived two to three hours postinfarction.²¹ Therefore, radiologists and pathologists had access to clinical information in order to 286

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2	
3	
4 5	
6	
7 8	
o 9	
10	
11 12	
13	
14 15	
16	
17	
18 19	
20	
21 22	
23	
24 25	
25 26	
27	
28 29	
30	
31 32	
33	
34 25	
35 36	
37	
38 39	
40	
41 42	
42 43	
44	
45 46	
47	
48 49	
50	
51 52	
52 53	
54	
55 56	
57	
58 59	
60	

1

assign the most probable cause of death based on postmortem findings and clinical findings as well.
Accordingly, both PMCT and autopsy could indicate a cardiac cause of death, based on clinical
findings and secondary characteristics observed during postmortem examination in the absence of
other significant pathologies.

291 Table 3 and 5 show an increase in overall sensitivity from 64% to 83-85% when PMCT is used for 292 identification of the type of pathology or anatomical system involved rather than for assigning the 293 exact immediate cause of death. This indicates that even when the cause of death is uncertain after 294 PMCT, it is still a valuable tool in targeting the region of interest or excluding some of the differential 295 diagnostic possibilities. Clinical evaluation of the cause of death often indicates the failing system (for 296 example, respiratory failure) rather than the underlying illness or structural changes, whereas 297 radiologists appear to be more adept at ascertaining the involved anatomical system. Based on how 298 confident radiologists are of their findings, they can guide the pathologist to the region(s) of interest. 299 Amongst non-invasive techniques, Blokker et al. conclude that PMCT in combination with 300 postmortem MRI yield the highest diagnostic performance in adults, with PMCT performing somewhat better when only one of the modalities is used.^{14,15} PMCT is less expensive than a 301 conventional autopsy, however, cost-effective analyses have not been formulated.²² Images can be 302 303 stored digitally (useful for legal or educational purposes) and results can be audited and promptly 304 reviewed by one or more radiologists. Amongst minimally invasive methods, the highest 305 performance is reported in studies combining PMCT and CT-angiography. PMCT, enhanced with targeted coronary angiography, showed a sensitivity of 92% for cause of death.¹⁹ Two studies 306 307 combining CT, CT-angiography and CT-guided tissue biopsies achieved a pooled sensitivity of 91% for cause of death.^{23,24} 308

To our knowledge this is the second study which has investigated the additional value of unenhanced
 PMCT compared to clinical diagnoses. The first study by Inai et al. showed a significant increase in
 sensitivity from 46% to 74% for the immediate cause of death in 50 non-forensic deaths.²⁵ This is

Page 15 of 33

1

BMJ Open

1 2	
2	
ر ۲	
4 5 6	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
10	
17 18	
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 9 30 31 23 3 23 32	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32 22	
33 34	
34 35	
35 36 37	
37	
37 38	
39	
40	
41	
42	
43	
44	
45	
46 47	
47	
40 49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

312	somewhat higher than we found in our study, one reason could be the fact that less specific causes
313	of death were used. Other previous studies have investigated the diagnostic accuracy of PMCT
314	compared to autopsy and not to clinical diagnoses. Those studies are difficult to compare, as some
315	use broadly defined categorizations and others use well-defined specific causes of death, or some
316	use the immediate cause of death and others the intermediate or underlying cause of death, or do
317	not state their definition of cause of death at all. Furthermore, most previous studies consisted of
318	small sample sizes (n<50) and used different study populations, different outcome parameters (for
319	example, cause of death, major or minor diagnoses) and different parameters of accuracy. ^{4,26-28} A
320	large prospective study of 182 adult deaths by Roberts et al. showed a major discrepancy rate of 32%
321	in determining the cause of death with PMCT compared to autopsy. ¹⁴ Another study showed a
322	sensitivity of 82% and a specificity of 97% for PMCT regarding the categorization of cause death in
323	101 cases. ²⁹ This is in accordance with our results regarding the categorization of cause of death per
324	type of pathology or anatomical system. Westphal et al. showed a sensitivity of 18/27=67% for cause
325	of death and a sensitivity of 5/17=19% for a more specific description of the involved pathogenetic
326	mechanism. ²⁶ Takahashi et al. found a sensitivity of 12% for definite findings and 53% for both
327	definite and possible findings with PMCT as to cause of death. ²⁷ The study by Puranik et al. supports
328	our results regarding the difficulty in diagnosing cardiac causes of death with unenhanced PMCT. ²⁸ A
329	sensitivity of 25% for cause of death was found in a population of seventeen young patients with
330	sudden cardiac death.
331	Certain diagnoses, for example fractures or those related to the accumulation of gasses or air (Figure
332	4), are more confidently diagnosed with PMCT than autopsy. ^{14,30} Therefore, the presented
333	performance of PMCT will probably be underestimated in cases were pathologies are difficult to
334	confirm due to the limitations of autopsy. Generally, in our experience we find that autopsy can no

longer be considered as the gold standard for all postmortem diagnoses, not only due to the

- 336 limitations of dissection, but also due to the decline in the number of autopsies performed, leading
- 337 to a decrease in pathologists' expertise. We would suggest a gold standard involving a

338	multidisciplinary consensus evaluation amongst clinicians, radiologists and pathologists. Prospective
339	studies with larger sample sizes are required to investigate the additional value of PMCT in specific
340	subgroups of causes of death. Even with the aid of improved non- or minimally invasive techniques,
341	conventional autopsy will still be required in complex cases where clinical and radiological diagnosis
342	as to cause of death is inconclusive.

<text><text><text><text>

Conclusion

While virtual autopsy with postmortem CT is an insufficient substitute for conventional autopsy, it

can improve diagnosis of the cause of death over clinical diagnosis alone. Even in cases where no

interest, so directing pathologists at autopsy. Future studies are needed to investigate whether

PMCT is able to reduce the invasiveness of autopsy or even avoid an autopsy altogether.

<text>

immediate cause of death can be assigned after virtual autopsy, radiologists may indicate a region of

1	
2 3	343
4	344
5 6	
7	345
8 9	346
9 10	347
11 12	547
12	348
14	
15 16	
17	
18 19	
19 20	
21	
22 23	
24	
25	
26 27	
28	
29 30	
30 31	
32	
33 34	
35	
36	
37 38	
39	
40 41	
41 42	
43	
44 45	
46	
47	
48 49	
50	
51 52	
52 53	
54	
55 56	
57	
58	

59

60

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2		_	
3	349	Refe	rences
4	350	1.	Harrington DE, Sayre EA. Managed care and measuring medical outcomes: did the rise of
5	351		HMOs contribute to the fall in the autopsy rate? Social science & medicine (1982).
6	352		2010;70(2):191-198.
7	353	2.	Blokker BM, Weustink AC, Hunink MGM, Oosterhuis JW. Autopsy rates in the Netherlands:
8	354		35 years of decline. <i>PloS one.</i> 2017;12(6):e0178200.
9	355	3.	Kretzschmar H. Brain banking: opportunities, challenges and meaning for the future. Nature
10	356	-	reviews Neuroscience. 2009;10(1):70-78.
11	357	4.	Wichmann D, Obbelode F, Vogel H, et al. Virtual autopsy as an alternative to traditional
12	358		medical autopsy in the intensive care unit: a prospective cohort study. Annals of internal
13	359		medicine. 2012;156(2):123-130.
14 15	360	5.	Burton JL, Underwood J. Clinical, educational, and epidemiological value of autopsy. <i>Lancet</i>
15	361	•	(London, England). 2007;369(9571):1471-1480.
16 17	362	6.	The decline of the hospital autopsy: a safety and quality issue for healthcare in Australia. The
17	363	0.	Medical journal of Australia. 2004;180(6):281-285.
19	364	7.	Chariot P, Witt K, Pautot V, et al. Declining autopsy rate in a French hospital: physician's
20	365		attitudes to the autopsy and use of autopsy material in research publications. Archives of
21	366		pathology & laboratory medicine. 2000;124(5):739-745.
22	367	8.	Goldman L, Sayson R, Robbins S, Cohn LH, Bettmann M, Weisberg M. The value of the
23	368	0.	autopsy in three medical eras. <i>The New England journal of medicine</i> . 1983;308(17):1000-
24	369		1005.
25	370	9.	Shojania KG, Burton EC, McDonald KM, Goldman L. Changes in rates of autopsy-detected
26	371	5.	diagnostic errors over time: a systematic review. Jama. 2003;289(21):2849-2856.
27	372	10.	Kuijpers CC, Fronczek J, van de Goot FR, Niessen HW, van Diest PJ, Jiwa M. The value of
28	373	10.	autopsies in the era of high-tech medicine: discrepant findings persist. <i>Journal of clinical</i>
29	374		pathology. 2014;67(6):512-519.
30	375	11.	Group OfNSDCA. Guidance for doctors completing medical certificates of cause of death in
31	376	11.	England and Wales 2010. Accessed 3 June, 2016.
32	370	12.	Attems J, Arbes S, Bohm G, Bohmer F, Lintner F. The clinical diagnostic accuracy rate
33	378	12.	regarding the immediate cause of death in a hospitalized geriatric population; an autopsy
34	379		study of 1594 patients. <i>Wiener medizinische Wochenschrift (1946)</i> . 2004;154(7-8):159-162.
35	380	13.	Ermenc B. Comparison of the clinical and post mortem diagnoses of the causes of death.
36	381	15.	Forensic science international. 2000;114(2):117-119.
37	382	14.	Roberts IS, Benamore RE, Benbow EW, et al. Post-mortem imaging as an alternative to
38	383	14.	autopsy in the diagnosis of adult deaths: a validation study. <i>Lancet (London, England)</i> .
39 40	384		2012;379(9811):136-142.
40 41	385	15.	Blokker BM, Wagensveld IM, Weustink AC, Oosterhuis JW, Hunink MG. Non-invasive or
41	385	15.	minimally invasive autopsy compared to conventional autopsy of suspected natural deaths in
43	387		adults: a systematic review. <i>European radiology</i> . 2016;26(4):1159-1179.
44	388	16	Klein WM. The common pattern of postmortem changes on whole body CT scans. <i>Journal of</i>
45	389	16.	
46	389 390	17.	Forensic Radiology and Imaging. 2016;4:47-52. Jackowski C, Thali M, Aghayev E, et al. Postmortem imaging of blood and its characteristics
47		17.	using MSCT and MRI. International journal of legal medicine. 2006;120(4):233-240.
48	391 392	18.	Ross SG, Bolliger SA, Ampanozi G, Oesterhelweg L, Thali MJ, Flach PM. Postmortem CT
49	392 393	10.	angiography: capabilities and limitations in traumatic and natural causes of death.
50	393 394		
51			Radiographics : a review publication of the Radiological Society of North America, Inc.
52	395 206	10	2014;34(3):830-846.
53	396 207	19.	Rutty GN, Morgan B, Robinson C, et al. Diagnostic accuracy of post-mortem CT with targeted
54	397		coronary angiography versus autopsy for coroner-requested post-mortem investigations: a
55	398		prospective, masked, comparison study. Lancet (London, England). 2017.
56			
57			
58			18
59			For neer review only - http://bmionen.hmi.com/site/about/quidelines.yhtml

BMJ Open

1			
2	399	20.	Grabherr S, Grimm J, Baumann P, Mangin P. Application of contrast media in post-mortem
3 4	400	20.	imaging (CT and MRI). La Radiologia medica. 2015;120(9):824-834.
5	401	21.	Kubat K, Smedts F. The usefulness of the lactate dehydrogenase macroreaction in autopsy
6	402	~1.	practice. Modern pathology : an official journal of the United States and Canadian Academy
7	403		of Pathology, Inc. 1993;6(6):743-747.
8	404	22.	Weustink AC, Hunink MG, van Dijke CF, Renken NS, Krestin GP, Oosterhuis JW. Minimally
9	405	22.	invasive autopsy: an alternative to conventional autopsy? <i>Radiology</i> . 2009;250(3):897-904.
10	406	23.	Ross SG, Thali MJ, Bolliger S, Germerott T, Ruder TD, Flach PM. Sudden death after chest
11	407	23.	pain: feasibility of virtual autopsy with postmortem CT angiography and biopsy. <i>Radiology</i> .
12	408		2012;264(1):250-259.
13	409	24.	Bolliger SA, Filograna L, Spendlove D, Thali MJ, Dirnhofer S, Ross S. Postmortem imaging-
14	410		guided biopsy as an adjuvant to minimally invasive autopsy with CT and postmortem
15	411		angiography: a feasibility study. AJR American journal of roentgenology. 2010;195(5):1051-
16	412		1056.
17	413	25.	Inai K, Noriki S, Kinoshita K, et al. Postmortem CT is more accurate than clinical diagnosis for
18	414	-	identifying the immediate cause of death in hospitalized patients: a prospective autopsy-
19 20	415		based study. Virchows Archiv : an international journal of pathology. 2016;469(1):101-109.
20 21	416	26.	Westphal SE, Apitzsch J, Penzkofer T, Mahnken AH, Knuchel R. Virtual CT autopsy in clinical
21	417		pathology: feasibility in clinical autopsies. Virchows Archiv : an international journal of
22	418		pathology. 2012;461(2):211-219.
24	419	27.	Takahashi N, Higuchi T, Shiotani M, et al. The effectiveness of postmortem multidetector
25	420		computed tomography in the detection of fatal findings related to cause of non-traumatic
26	421		death in the emergency department. <i>European radiology</i> . 2012;22(1):152-160.
27	422	28.	Puranik R, Gray B, Lackey H, et al. Comparison of conventional autopsy and magnetic
28	423		resonance imaging in determining the cause of sudden death in the young. Journal of
29	424		cardiovascular magnetic resonance : official journal of the Society for Cardiovascular
30	425		Magnetic Resonance. 2014;16:44.
31	426	29.	Ampanozi G, Thali YA, Schweitzer W, et al. Accuracy of non-contrast PMCT for determining
32	427		cause of death. Forensic science, medicine, and pathology. 2017.
33	428	30.	Dirnhofer R, Jackowski C, Vock P, Potter K, Thali MJ. VIRTOPSY: minimally invasive, imaging-
34	429		guided virtual autopsy. Radiographics : a review publication of the Radiological Society of
35	430		North America, Inc. 2006;26(5):1305-1333.
36 37			
37 38	431		
38 39			
40			
10			

432 433	Figure legends Figure 1. Flowchart of whether or not an immediate cause of death could be assigned before and after PMCT
434	and during conventional autopsy.
435	^a No cause of death could be assigned at autopsy in ten cases, and were excluded from the sensitivity analysis
436	for cause of death. ^b In four cases, where clinicians and radiologists were able to assign a cause of death,
437	autopsy did not reveal the cause of death. In one case this was due to lack of consent to a brain autopsy in a
438	case with an intracerebral hemorrhage. In another case the pulmonary embolisms were not diagnosed at
439	autopsy however identified with ultrasonography during resuscitation as well as on PMCT (Figure 2). In two
440	other cases with unknown cause of death at autopsy, aspiration and cardiac failure were diagnosed as the
441	cause of death after imaging, whereas previously sepsis with unknown abdominal focus and myocardial
442	infarction were diagnosed by the clinicians. COD: immediate cause of death.
443	
444	Figure 2. Example where pulmonary embolisms were diagnosed at antemortem ultrasound and postmortem
445	CT but were not confirmed during autopsy.
446	This patient died after a resuscitation attempt, three days post re-laparotomy due to a hernia cicatricalis
447	correction with invagination complications. An ultrasound scan during resuscitation revealed pulmonary
448	embolisms. PMCT (postmortem interval of 2 hours) confirmed embolisms in the left (1) and right (2) pulmonary
449	arteries. Autopsy did not assign a cause of death.
450	Figure 3. Example of discrepant diagnosis of the cause of traumatic exsanguination.
451	This patient died after a resuscitation attempt following a scooter accident with impact on the right side. Initial
452	trauma screening revealed no significant pathologies. PMCT suggested exsanguinations due to a spleen
453	laceration. Autopsy diagnosed exsanguinations due to lacerations of the liver and right kidney. Further findings:
454	(1) abdominal wall hematoma, (2) rib fracture, (3) small rim of blood along the liver, (4) intra-abdominal blood
455	along the spleen.
456	Figure 4. Example that gas related diagnoses can be more confidently diagnosed with PMCT than autopsy.
457	This patient died during a mid-transport resuscitation attempt following a car accident. Initial clinical
458	examination found a hemothorax, however, it was unclear if the patient died due to blood loss or from some
	20

BMJ Open

other underlying pathology which may have caused the accident. During air ambulance transportation,

ventricular fibrillation occurred. PMCT showed an air embolus in the left anterior descending artery (1),

- probably due to extensive lung trauma and the decrease in atmospheric pressure during the flight. This was not
- diagnosed at autopsy, with death being attributed to a hemorrhagic shock due to hemothorax. Also, the
- pneumothorax, pneumopericardium and pneumomediastinum were not mentioned in the autopsy report.
- Figure 5. Normal postmortem changes could mask underlying pathology
 - This patient had a clinical history of allogeneic stem cell transplantation due to multiple myeloma. Clinical
- examination and antemortem MRI of the brain suggested a post-transplant lymphoproliferative disorder
- (PTLD). Autopsy diagnosed bronchopneumonia (left upper lobe and right lower lobe) as the cause of death and
- did not show PTLD, nor recurrence of multiple myeloma or other malignancy. PMCT showed pleural fluid and
- interstitial pulmonary edema, which were interpreted as normal postmortem findings. Bronchopneumonia was
 - not diagnosed at PMCT.

Tables

Table 1. P

73	Table 1. Patient characteristics	
		7

	Study population (n=86), n (%)
Sex	
Male	51 (59%)
Female	35 (41%)
Age, median (IQR)	62 (47-74)
Place of death	
Emergency room	31 (36%)
Intensive care unit	30 (35%)
Clinical ward	18 (21%)
Out-of-hospital	7 (8%)
CPR performed	
Yes	46 (53%)
No	40 (47%)
Brain autopsy performed	
Yes	27 (31%)
No	59 (69%)
Immediate cause of death	
Infectious	26 (30%)
Perfusive disorder	32 (37%
Hemorrhage	13 (15%)
Other	5 (6%)
Uncertain	10 (12%)

476 477 Table 2. Cross tabulations of correct and incorrect assigned immediate causes of death (A), type of pathology

478 (B) and anatomical system (C), before and after PMCT

IQR: interquartile range. CPR: cardiopulmonary resuscitation.

Α.		C		
		Correct	Incorrect	
COD before PMCT	Correct	36	4	40
	Incorrect	13	23	36
		49	27	76
			0,	

В.		Type of p	pathology after PMCT	
		Correct	Incorrect	
Type of pathology	Correct	50	1	51
before PMCT	Incorrect	15	12	27
		65	13	78

С.		Type of anatomical system after PMCT		
		Correct	Incorrect	
Type of anatomical	Correct	48	3	51
system before PMCT	Incorrect	18	9	27
	·	66	12	78

483 COD: immediate cause of death.

	Sensitivity	1	
	Before PMCT (95% CI)	After PMCT (95% Cl)	Difference (95% Cl)
Immediate cause of death (n=76) ^a	53% (41-64)	64% (53-75)	12% (-4-28)
Per subgroup of type of pathology:			
1. Infection (n=26)	65% (44-83)	69% (48-86)	4% (-22-29)
2. Hemorrhage (n=13)	69% (39-91)	85% (55-98)	15% (-17-48)
3. Perfusion disorder (n=32)	31% (16-50)	47% (29-65)	16% (-8-40)
4. Other (n=5)	80% (28-99)	100% (48-100)	20% (-17-57)
Per subgroup of anatomical system:			
1. Pulmonary (n=18)	56% (31-78)	67% (41-87)	11% (-21-43)
2. Cardiovascular (n=37)	43% (27-61)	54% (37-71)	11% (-12-34)
3. Gastrointestinal (n=13)	54% (25-81)	85% (55-98)	31% (-5-66)
4. Other (n=8) ^a Conventional autopsy was not able to	88% (47-100)	75% (35-97)	-13% (-50-25)

491 Table 4. Overview of all causes of death diagnosed at autopsy, classified by type pathology and whether they

disorders 1x heart failure 1x pulmonary embolism embolism 2x arrhythmia 1x volvulus 3x arrhythmia 2x heart failure 1x pulmonary veno- occlusive disease 1x bowel ischemia du adhesions Hemorrhages 4x type A aortic dissection 1x subarachnoidal hemorrhage 1x arteria carotis hemorrhage 1x arteria ilicac communis sinistra hemorrhage 1x hemorrhage 1x hemorrhage 1x hemorrhage 1x hemorrhage 1x arteria ilicac communis sinistra hemorrhage 1x arteria ilicac communis sinistra hemorrhage 1x arteria ilicac acommunis sinistra hemorrhage 1x hemorrhage 1x hemorrhage 1x hemorrhage from fistula; gastric tube vs. aorta 1x epileptic seizure due to brain metastases 1x (auto-)intoxication 1x epileptic seizure due to brain metastases		Correct COD, both before and after PMCT.	Incorrect COD before PMCT. Correct COD after PMCT.	Correct COD before PMCT. Incorrect COD after PMCT.	Incorrect COD, both before and after PMCT.
disorders 1x heart failure 1x pulmonary embolism embolism 2x arrhythmia 1x volvulus 3x arrhythmia 2x heart failure 1x pulmonary veno- occlusive disease 1x bowel ischemia du adhesions Hemorrhages 4x type A aortic dissection 1x subarachnoidal hemorrhage 1x arteria carotis hemorrhage 1x arteria ciaca communis sinistra hemorrhage 1x arteria ilica communis sinistra hemorrhage 1x hemorrhage 1x hemorrhage 1x hemorrhage 1x arteria ilica communis sinistra hemorrhage 1x hemorrhage 1x hemorrhage 1x arteria ilica communis sinistra hemorrhage 1x hemorrhage 1x arteria ilica hemorrhage 1x hemorrhage 1x arteria ilica hemorrhage 1x hemorrhage 1x arteria ilica hemorrhage 1x hemorrhage 1x hemorrhage 1x arteria ilica hemorrhage 1x hemorrhage 1x hemorrhage 1x cachexia 1x (auto-)intoxication 1x epileptic seizure due to brain metastases 1x (auto-)intoxication 1x epileptic seizure due to brain metastases 1x epileptic cache communication hemorrhage 1x cachexia 1x anaphylaxis 1x (auto-)intoxication 1x epileptic seizure due to brain metastases 1x epileptic cache communication hemorrhage 1x cachexia 1x (auto-)intoxication * * * * * * * * *	Infections	1x infected liver cysts 1x sepsis e.c.i. ^b 1x pancreatitis 1x cholecystitis /	2x peritonitis ^a 1x diverticulitis and	1x HSV hepatitis 1x cerebral	1x endocarditis /
1x subarachnoidal hemorrhage dissection 1x liver and kidney ru + hemothorax + intrapulmonary 1x gastric hemorrhage 1x hemothorax + intrapulmonary + hemothorax 1x arteria carotis hemorrhage + hemothorax 1x arteria ciliaca communis sinistra hemorrhage hemorrhage + hemothorax 1x hemorrhage 1x hemorrhage + hemothorax 1x hemorrhage 1x hemorrhage + hemothorax 1x hemorrhage from fistula; gastric tube vs. aorta - - Other 1x pleural carcinomatosis 1x cachexia 1x epileptic seizure due to brain metastases - 1x (auto-)intoxication 1x epileptic seizure due to brain metastases - - * Peritonitis was due to a misplaced gastrostomy button in one case, and due to a misplaced ventriculoperitoneal drain in another case. * sepsis e causa ignota. COD: immediate cause of death.		1x heart failure	embolism 2x arrhythmia 1x volvulus	1x heart failure	2x heart failure 1x pulmonary veno- occlusive disease 1x bowel ischemia due t
Other 1x pleural carcinomatosis 1x cachexia 1x cachexia 1x anaphylaxis 1x (auto-)intoxication 1x epileptic seizure due to brain metastases a ^a Peritonitis was due to a misplaced gastrostomy button in one case, and due to a misplaced ventriculoperitoneal drain in another case. ^b sepsis e causa ignota. COD: immediate cause of death.	Hemorrhages	1x subarachnoidal hemorrhage 1x gastric hemorrhage 1x arteria carotis hemorrhage 1x arteria iliaca communis sinistra hemorrhage 1x hemorrhage from fistula; gastric tube vs.	dissection 1x hemothorax + intrapulmonary		1x liver and kidney rupt
 ^a Peritonitis was due to a misplaced gastrostomy button in one case, and due to a misplaced ventriculoperitoneal drain in another case. ^b sepsis e causa ignota. COD: immediate cause of death. 	Other	1x cachexia 1x anaphylaxis	due to brain	2	
	ventriculo				

BMJ Open

Table 5. Sensitivity and specificity for type of pathology and anatomical system diagnosed before and after virtual autopsy with PMCT.

6	501
7	502
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	503
25	504
26	
27	
28	
29	
30	

	Sensitivity			Specificity		
	Before PMCT (95% Cl)	After PMCT (95% CI)	Difference (95% Cl)	Before PMCT (95% Cl)	After PMCT (95% CI)	Difference (95% Cl)
A. Type of pathology	(n=78) ^a 65% (54-76)	83% (73-91)	18% (4-32)	N/A ^b	N/A ^b	
Per subgroup:						
1. Infection (n=26)	69% (48-86)	85% (65-96)	15% (-8-38)	96% (87-100)	92% (81-98)	-4% (-13-5)
2. Hemorrhage (n=	13) 69% (39-91)	92% (64-100)	23% (-7-53)	98% (92-100)	100% (94-100)	2% (-2-5)
3. Perfusion disord	er (n=34) 56% (38-73)	76% (59-89)	21% (-2-43)	95% (85-99)	93% (81-99)	-2% (-12-7)
4. Other (n=5)	100% (48-100)) 100% (48-100)	0% (0-0)	99% (93-100%)	99% (93-100%)	0% (-4-4)
B. Anatomical system	n (n=78) ^a 65% (54-76)	85% (75-92)	19% (6-33)	N/A ^b	N/A ^b	
Per subgroup:						
1. Pulmonary (n=18	8) 72% (47-90)	89% (65-99)	17% (-9-43)	95% (86-99)	95% (86-99)	0% (-8-8)
2. Cardiovascular (I	n=39) 62% (45-77)	82% (66-92)	21% (1-41)	100% (91-100)	95% (82-99)	-5% (-12-2)
3. Gastrointestinal	(n=13) 54% (25-81)	85% (55-98)	31% (5-66)	98% (92-100)	100% (94-100)	2% (-2-5)
4. Other (n=8)	88% (48-100)	88% (48-100)	0% (-32-32)	97% (90-100)	94% (86-98)	-3% (-10-4)

^a Autopsy was not able to establish the involved type of pathology and anatomical system in eight cases. ^b Not applicable.

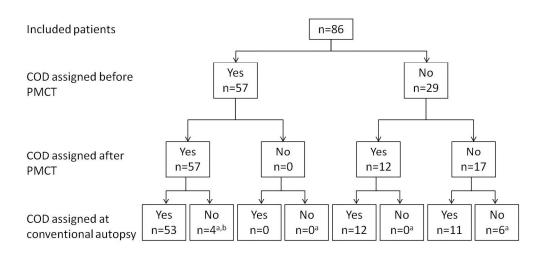


Figure 1. Flowchart of whether or not an immediate cause of death could be assigned before and after PMCT and during conventional autopsy.

a No cause of death could be assigned at autopsy in ten cases, and were excluded from the sensitivity analysis for cause of death. b In four cases, where clinicians and radiologists were able to assign a cause of death, autopsy did not reveal the cause of death. In one case this was due to lack of consent to a brain autopsy in a case with an intracerebral hemorrhage. In another case the pulmonary embolisms were not diagnosed at autopsy however identified with ultrasonography during resuscitation as well as on PMCT (Figure 2). In two other cases with unknown cause of death at autopsy, aspiration and cardiac failure were diagnosed as the cause of death after imaging, whereas previously sepsis with unknown abdominal focus and myocardial infarction were diagnosed by the clinicians. COD: immediate cause of death.

379x172mm (300 x 300 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

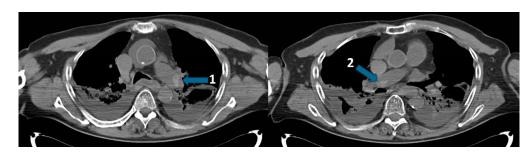


Figure 2. Example where pulmonary embolisms were diagnosed at antemortem ultrasound and postmortem CT but were not confirmed during autopsy. # + This patient died after a resuscitation attempt, three days post re-laparotomy due to a hernia cicatricalis correction with invagination complications. An ultrasound scan during resuscitation revealed pulmonary embolisms. PMCT (postmortem interval of 2 hours) confirmed embolisms in the left (1) and right (2) pulmonary arteries. Autopsy did not assign a cause of death.

757x203mm (300 x 300 DPI)

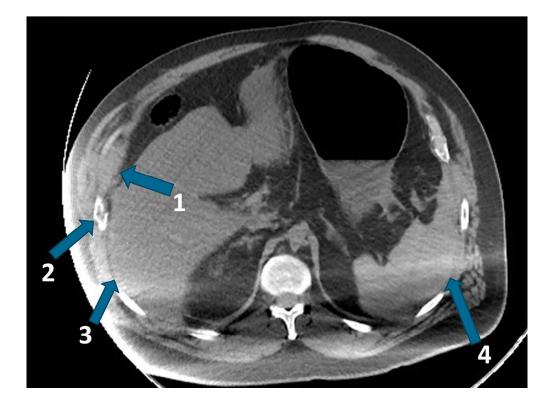


Figure 3. Example of discrepant diagnosis of the cause of traumatic exsanguination.!! + This patient died after a resuscitation attempt following a scooter accident with impact on the right side. Initial trauma screening revealed no significant pathologies. PMCT suggested exsanguinations due to a spleen laceration. Autopsy diagnosed exsanguinations due to lacerations of the liver and right kidney. Further findings: (1) abdominal wall hematoma, (2) rib fracture, (3) small rim of blood along the liver, (4) intra-abdominal blood along the spleen.

268x199mm (300 x 300 DPI)

Figure 4. Example that gas related diagnoses can be more confidently diagnosed with PMCT than autopsy. This patient died during a mid-transport resuscitation attempt following a car accident. Initial clinical examination found a hemothorax, however, it was unclear if the patient died due to blood loss or from some other underlying pathology which may have caused the accident. During air ambulance transportation, ventricular fibrillation occurred. PMCT showed an air embolus in the left anterior descending artery (1), probably due to extensive lung trauma and the decrease in atmospheric pressure during the flight. This was not diagnosed at autopsy, with death being attributed to a hemorrhagic shock due to hemothorax. Also, the pneumothorax, pneumopericardium and pneumomediastinum were not mentioned in the autopsy report.

380x284mm (300 x 300 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

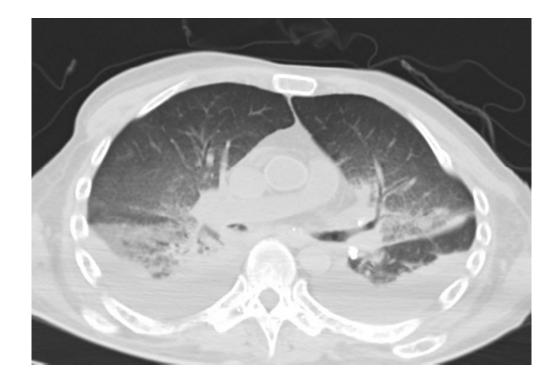


Figure 5. Normal postmortem changes could mask underlying pathology. This patient had a clinical history of allogeneic stem cell transplantation due to multiple myeloma. Clinical examination and antemortem MRI of the brain suggested a post-transplant lymphoproliferative disorder (PTLD). Autopsy diagnosed

bronchopneumonia (left upper lobe and right lower lobe) as the cause of death and did not show PTLD, nor recurrence of multiple myeloma or other malignancy. PMCT showed pleural fluid and interstitial pulmonary edema, which were interpreted as normal postmortem findings. Bronchopneumonia was not diagnosed at PMCT.

333x231mm (300 x 300 DPI)

Page 31 of 33

Section & Topic	No	Item	Reported on page
TITLE OR ABSTRACT			
	1	Identification as a study of diagnostic accuracy using at least one measure of accuracy	3
		(such as sensitivity, specificity, predictive values, or AUC)	
ABSTRACT			
	2	Structured summary of study design, methods, results, and conclusions	3
		(for specific guidance, see STARD for Abstracts)	
INTRODUCTION			
	3	Scientific and clinical background, including the intended use and clinical role of the index test	6
	4	Study objectives and hypotheses	6
METHODS			
Study design	5	Whether data collection was planned before the index test and reference standard	7
		were performed (prospective study) or after (retrospective study)	
Participants	6	Eligibility criteria	7
	7	On what basis potentially eligible participants were identified	7
		(such as symptoms, results from previous tests, inclusion in registry)	
	8	Where and when potentially eligible participants were identified (setting, location and dates)	7
	9	Whether participants formed a consecutive, random or convenience series	7
Test methods	10a	Index test, in sufficient detail to allow replication	7
	10b	Reference standard, in sufficient detail to allow replication	7
	11	Rationale for choosing the reference standard (if alternatives exist)	<u>(6)</u>
	12a	Definition of and rationale for test positivity cut-offs or result categories	8
		of the index test, distinguishing pre-specified from exploratory	
	12b	Definition of and rationale for test positivity cut-offs or result categories	8
		of the reference standard, distinguishing pre-specified from exploratory	
	13a	Whether clinical information and reference standard results were available	7
		to the performers/readers of the index test	
	13b	Whether clinical information and index test results were available	7
		to the assessors of the reference standard	
Analysis	14	Methods for estimating or comparing measures of diagnostic accuracy	8
	15	How indeterminate index test or reference standard results were handled	8
	16	How missing data on the index test and reference standard were handled	<u>8</u>
	17	Any analyses of variability in diagnostic accuracy, distinguishing pre-specified from exploratory	8
	18	Intended sample size and how it was determined	8 See supplementary fi 'response to editorial request'
RESULTS			
Participants	19	Flow of participants, using a diagram	Fig 1, page 20
	20	Baseline demographic and clinical characteristics of participants	Table 1, page 22
	21 a	Distribution of severity of disease in those with the target condition	NA
	21b	Distribution of alternative diagnoses in those without the target condition	
	22	Time interval and any clinical interventions between index test and reference standard	10
Test results	23	Cross tabulation of the index test results (or their distribution)	Table <u>2</u> 3, page 22
		by the results of the reference standard	23
	24	Estimates of diagnostic accuracy and their precision (such as 95% confidence intervals)	Table 2<u>3</u> + 5
	25	Any adverse events from performing the index test or the reference standard	
DISCUSSION			
	26	Study limitations, including sources of potential bias, statistical uncertainty, and generalisability	<u>4,</u> 13-1 <u>6</u> 5
	27	Implications for practice, including the intended use and clinical role of the index test	13-1 <u>65</u>
OTHER			
INFORMATION			
	28	Registration number and name of registry	NA
	29	Where the full study protocol can be accessed	5

1	 30	Sources of funding and other support; role of funders	5
2 3			
4 5			
6 7			
, 8 9			
) 10 11			
12 13			
14			
15 16			
17 18			
19 20			
21 22			
23 24			
25 26			
27 28			
29 30			
31 32			
33 34			
35 36			
37 38			
39 40			
41 42			
43 44			
45 46			
47 48			
49 50			
51 52			
53 54			
55 56			
57 58			
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

STARD 2015

AIM

STARD stands for "Standards for Reporting Diagnostic accuracy studies". This list of items was developed to contribute to the completeness and transparency of reporting of diagnostic accuracy studies. Authors can use the list to write informative study reports. Editors and peer-reviewers can use it to evaluate whether the information has been included in manuscripts submitted for publication.

EXPLANATION

A **diagnostic accuracy study** evaluates the ability of one or more medical tests to correctly classify study participants as having a **target condition**. This can be a disease, a disease stage, response or benefit from therapy, or an event or condition in the future. A medical test can be an imaging procedure, a laboratory test, elements from history and physical examination, a combination of these, or any other method for collecting information about the current health status of a patient.

The test whose accuracy is evaluated is called **index test.** A study can evaluate the accuracy of one or more index tests. Evaluating the ability of a medical test to correctly classify patients is typically done by comparing the distribution of the index test results with those of the **reference standard**. The reference standard is the best available method for establishing the presence or absence of the target condition. An accuracy study can rely on one or more reference standards.

If test results are categorized as either positive or negative, the cross tabulation of the index test results against those of the reference standard can be used to estimate the **sensitivity** of the index test (the proportion of participants *with* the target condition who have a positive index test), and its **specificity** (the proportion *without* the target condition who have a negative index test). From this cross tabulation (sometimes referred to as the contingency or "2x2" table), several other accuracy statistics can be estimated, such as the positive and negative **predictive values** of the test. Confidence intervals around estimates of accuracy can then be calculated to quantify the statistical **precision** of the measurements.

If the index test results can take more than two values, categorization of test results as positive or negative requires a **test positivity cut-off**. When multiple such cut-offs can be defined, authors can report a receiver operating characteristic (ROC) curve which graphically represents the combination of sensitivity and specificity for each possible test positivity cut-off. The **area under the ROC curve** informs in a single numerical value about the overall diagnostic accuracy of the index test.

The **intended use** of a medical test can be diagnosis, screening, staging, monitoring, surveillance, prediction or prognosis. The **clinical role** of a test explains its position relative to existing tests in the clinical pathway. A replacement test, for example, replaces an existing test. A triage test is used before an existing test; an add-on test is used after an existing test.

Besides diagnostic accuracy, several other outcomes and statistics may be relevant in the evaluation of medical tests. Medical tests can also be used to classify patients for purposes other than diagnosis, such as staging or prognosis. The STARD list was not explicitly developed for these other outcomes, statistics, and study types, although most STARD items would still apply.

DEVELOPMENT

This STARD list was released in 2015. The 30 items were identified by an international expert group of methodologists, researchers, and editors. The guiding principle in the development of STARD was to select items that, when reported, would help readers to judge the potential for bias in the study, to appraise the applicability of the study findings and the validity of conclusions and recommendations. The list represents an update of the first version, which was published in 2003.

More information can be found on <u>http://www.equator-network.org/reporting-guidelines/stard.</u>

BMJ Open

Can virtual autopsy with postmortem CT improve clinical diagnosis of cause of death? A retrospective observational cohort study in a Dutch tertiary referral centre.

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-018834.R3
Article Type:	Research
Date Submitted by the Author:	20-Jan-2018
Complete List of Authors:	Sonnemans, Lianne; Radboudumc, Radiology and Nuclear Medicine Kubat, Bela; Nederlands Forensisch Instituut, Pathology; Maastricht UMC+, Pathology Prokop, Mathias; Radboudumc, Radiology and Nuclear Medicine Klein, Willemijn; Radboudumc, Radiology and Nuclear Medicine; Maastricht UMC+, Radiology
Primary Subject Heading :	Radiology and imaging
Secondary Subject Heading:	Diagnostics, Pathology
Keywords:	Computed tomography < RADIOLOGY & IMAGING, cause of death, postmortem, autopsy, sensitivity, specificity

SCHOLARONE[™] Manuscripts

1				
2				
3				
4				
5				
6				
7	1			
8				
	2			
9				
10				
11	3	Can virtual au	topsy with postmortem CT improve clinical diagnosis of	
12	4		? A retrospective observational cohort study in a Dutch	
13				
14	5	tertiary referr	al centre.	
15	6			
16	-			
17	7	1#		
18	8	LJP Sonnemans ^{1#}	PhD candidate in post-mortem radiology	
19	9	B Kubat ^{2,3}	Pathologist	
20	10	M Prokop ¹	Radiologist	
21		-		
22	11	WM Klein ^{1,4}	Radiologist	
23	12			
24				
25	13	¹ Department of Rac	liology and Nuclear Medicine, Radboudumc, Geert Grooteplein Zuid 10 6500 HB	
26	14	Nijmegen, The Neth	erlands	
27				
28	15	² Department of Pat	hology, Netherlands Forensic Institute, Laan van Ypenburg 6 2497 GB Den Haag,	
29	16	The Netherlands		
30	17	³ Department of Pat	hology, Maastricht UMC+, P. Debyelaan 25 6229 HX Maastricht, The Netherlands	
31				
32	18	⁴ Department of Rad	liology and Nuclear Medicine, Maastricht UMC+, P. Debyelaan 25 6229 HX	
33	19	Maastricht, The Net	herlands	
34	20			
35	20			
36	21	Study design: retrospe	ective observational cohort study	
37				
38	22	Word count: 3225		
39	23		lence:	
40	25			
41	24	# Address for correspond	lence:	
42	25			
43	25 26	Ms. Lianne J.P. Sonnema		
44	26 27	Department of Radiology Radboudumc	and Nuclear Medicine	
45	28	Geert Grooteplein Zuid 1	0	
46	29	6500 HB Nijmegen		
47	30	The Netherlands		
48	31	E-mail: lianne.sonneman	s@radboudumc.nl Field Code Changed	
49	32	Tel: +31 24 361 1111		
50				
51				
52				
53				
54				
55			1	
56				
57				
58				
59				
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

1		
2		
3		
4		
5		
6		
7	33	Key Words
	34	cause of death, postmortem, computed tomography, autopsy, sensitivity, specificity
8		
9		
10	35	
11		
12	36	List of abbreviations
13	37	COD immediate cause of death
14		
15	38	PMCT postmortem CT
16		
17		
18		
19		
20		
21		PMCT postmortem CT
22		
23		
24		
25		
26		
27		
28		
29		
30		
31		
32		
33		
34		
35		
36		
37		
38		
39		
40		
40 41		
42		
42 43		
45 44		
44 45		
45 46		
46 47		
47 48		
48 49		
49 50		
51 52		
52		
53		
54		2
55		
56		
57		
58		
59		For poor review only http://hmignen.hmi.com/site/about/avidalines.yhtml
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2		
3 4		
5		
6 7	39 40	Abstract
8 9	40 41	Objective: To investigate whether virtual autopsy with postmortem CT (PMCT) improves clinical
10	42	diagnosis of the immediate cause of death.
11 12	43	Design: Retrospective observational cohort study. Inclusion-criteria: in- and out-of-hospital deaths
13	44	over the age of one year in whom virtual autopsy with PMCT and conventional autopsy were
4	45	performed. Exclusion-criteria: forensic cases, post mortal organ donors and cases with incomplete
5 6	46	scanning procedures. Cadavers were examined by virtual autopsy with PMCT prior to conventional
7	47	autopsy. The clinically determined cause of death was recorded before virtual autopsy and was then
8	48	adjusted with the findings of virtual autopsy. Using conventional autopsy as reference standard, we
9 20	49	investigated the increase in sensitivity for immediate cause of death, type of pathology and
1	50	anatomical system involved before and after virtual autopsy.
2	51	Setting: Tertiary referral centre.
24	52	Participants: 86 cadavers who underwent conventional and virtual autopsy between July 2012 and
25	53	June 2016.
6 7	54	Intervention: PMCT consisted of brain, cervical spine and chest-abdomen-pelvis imaging.
8	55	Conventional autopsy consisted of thoraco-abdominal examination with/without brain autopsy.
9	56	Primary and secondary outcome measures: Increase in sensitivity for the immediate cause of death,
0	57	type of pathology (infection, hemorrhage, perfusion disorder, other or not assigned) and anatomical
2	58	system (pulmonary, cardiovascular, gastrointestinal, other or not assigned) involved, before and after
3	59	virtual autopsy.
4 5	60	Results: Using PMCT, the sensitivity for immediate cause of death increased with 12% (95% CI: 2 to
6	61	22) from 53% (41 to 64) to 64% (53 to 75), with 18% (9 to 27)from 65% (54 to 76) to 83% (73 to 91)
7 8	62	for type of pathology and with 19% (9 to 30) from 65% (54 to 76) to 85% (75 to 92) for anatomical
o 9	63	system.
0	64	Conclusion: While unenhanced postmortem CT is an insufficient substitute for conventional autopsy,
1 2	65	it can improve diagnosis of cause of death over clinical diagnosis alone and should therefore be
3	66	considered whenever autopsy is not performed.
14	67	
15 16		
17		
8 9		
i0		
1		
52 53		
54 54		
55		3
56 57		
58		
59		For peer review only - http://bmjopen.bmj.com/site/about/guideline
50		To peer review only - http://binjopen.binj.com/site/about/guideline

Article summary Strengths and limitations of this study This study investigated the diagnostic performance for clinical cause of death determination by use of postmortem CT and takes into account the added value over clinical diagnosis alone. The immediate cause of death (i.e. direct cause of death) was the main outcome rather than the primary cause of death (i.e. underlying cause of death or basic illness) as from a clinical point of view, diagnosis and treatment of the immediate cause of death is the most urgent. The sensitivity for clinical cause of death determination, with and without postmortem CT, is • investigated on multiple levels of precision; the immediate cause of death as well as the involved type of pathology and anatomical location were investigated. The retrospective design in a tertiary care centre has probably introduced a selection-bias • towards patients with diagnostic difficulties or unresolved issues, resulting in an underestimation of the diagnostic performance compared to more general causes of death. An unexpected low consent rate for postmortem CT in cases with consent for conventional autopsy resulted in a reduction of the statistical power of this study.

1			
2			
3			
4 5			
6 7	86	Contributors: LJPS had full access to all of the data in the study and takes responsibility for the	
8	87	integrity of the data and the accuracy of the data analysis. LIPS acquired and analyzed the data. LIPS,	
9	88	WMK, BK and WMP interpreted the data. LIPS drafted the manuscript. WMK and WMP supervised	
10 11	89	the study. LJPS, WMK and WMP contributed to the overall conception and design of the study. All	
12	90	authors revised the manuscript for intellectual content.	
13	91	Funding: This research received no specific grant from any funding agency in the public, commercial	
14 15	92	or not-for-profit sectors.	
16	93	Competing interests: All authors have completed the ICMJE uniform disclosure form and declare no	
17	94	support from any organization for the submitted work, no financial relationships with any	
18 19	95	organizations that might have an interest in the submitted work in the previous three years, and no	
20	96	other relationships or activities that could appear to have influenced the submitted work.	
21	97	Ethical approval: This study was approved by the local ethical committee in the form of a waiver in	
22 23	98	accordance with Dutch national law.	
24	99	Data sharing: Details on how to obtain additional data from the study (eg, statistical code, datasets)	
25 26	100	are available from the corresponding author.	
20 27	101	Transparency: The lead author affirms that this manuscript is an honest, accurate, and transparent	
28	102	account of the study being reported; that no important aspects of the study have been omitted; and	
29 30	103	that any discrepancies from the study as planned (and, if relevant, registered) have been explained.	
31	104	Exclusive license: "I [Lianne Sonnemans] The Corresponding Author of this article contained within	
32	105	the original manuscript which includes any diagrams & photographs within and any related or stand	
33 34	106	alone film submitted (the Contribution") has the right to grant on behalf	
35	107	of all authors and does grant on behalf of all authors, a licence to the BMJ Publishing Group Ltd and	
36 37	108	its licencees, to permit this Contribution (if accepted) to be published in the BMJ and any other BMJ	
38	109	Group products and to exploit all subsidiary rights, as set out in our licence set out at:	
39	110	http://www.bmj.com/about-bmj/resources-authors/forms-policies-and-checklists/copyright-open-	
40 41	111	access-and-permission-reuse."	
42			
43 44			
44			
46			
47 48			
49			
50			
51 52			
53			
54 55		5	
55 56			
57			
58 59			
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xh	tml

112 II	itroc	luction
--------	-------	---------

7	112	Ind oddetion	
8	113		
9	114	Autopsies are traditionally regarded as the 'gold standard' in quality monitoring of health care. It is	
10			
	115	therefore remarkable that in a time of heightened interest in improving patient safety, healthcare	
11			
12	116	quality and error prevention, worldwide autopsy rates continue to decline from roughly 40% in the	
13			
14	117	nineteen sixties, to below 10% nowadays. ¹⁻⁷ Religious and emotional objections to the invasiveness	
15			
16	118	of conventional autopsies, both by the relatives and the doctors, are considered as some of the	
17			
18	119	reasons given for this decline. At present, determination of the cause of death relies heavily on	
19			
20	120	clinical assessment. Despite an increase in the use and improvement of diagnostic techniques in the	
21	101	last decades, major error rates of approximately 25% have not substantially decreased. ⁸⁻¹⁰ According	
22	121	last decades, major error rates of approximately 25% have not substantially decreased. According	
23	122	to the Goldman classification system, major errors are defined as clinically missed diagnoses related	
24	122	to the doluman classification system, major errors are defined as clinically missed diagnoses related	
25	123	to the cause of death. In half of these cases this might have led to a change in therapy and prolonged	
26			
27	124	survival, if known before death. ⁸	
28			
29	125	National mortality statistics are generally based on the primary cause of death (i.e. underlying cause	
30			
31	126	or basic illness), which could be a longstanding, chronic disease. ¹¹ However from an individual and	
32			
33	127	clinical point of view, diagnosis and treatment of the immediate cause of death (i.e. direct cause of	
33 34			
35	128	death) is the most urgent. Accuracy rates for immediate causes of death are probably lower than for	
36	120	underlying causes of death ^{12,13} , due to time constraints of the often acute situations these diagnoses	
	129	underlying causes of dealth , due to time constraints of the orten acute situations these diagnoses	
37	130	present with. The high error rates emphasize the need to improve clinical diagnoses using techniques	
38	150	present with. The high error rates emphasize the need to improve elinical diagnoses using techniques	
39	131	that are widely available and acceptable, for example, postmortem CT (PMCT). Previous studies have	
40			
41	132	shown that as yet, PMCT is an insufficient substitute but can be used in adjunct to conventional	
42			
43	133	autopsy. ^{14,15} In order to provide answers and quality control also in cases without consent for	
44			
45	134	conventional autopsy, we investigated whether virtual autopsy with PMCT improves clinical diagnosis	
46			
47	135	of the immediate cause of death.	
48			
49			
50			
51			
52			
53			
54			
		6	

2 3		
5 4		
5		
6 7	136	Material and methods
7 8	137	Study design
9 10	138	All cadavers of in- and out-of-hospital deaths over the age of one year, who underwent both PMCT
11 12	139	and conventional autopsy in our hospital, between July 2012 and June 2016, were included. Forensic
13 14	140	cases, post mortal donors and cases with incomplete scanning procedures or without full thorax-
15 16	141	abdomen autopsy, were excluded. Clinicians had to ask consent from relatives for both PMCT and
17	142	conventional autopsy in all cases of death. This retrospective study was approved by the local ethical
18 19 20	143	committee in the form of a waiver in accordance with Dutch national law.
20 21 22	144	PMCT and conventional autopsy
23	145	PMCT was performed as soon as possible after death and prior to autopsy. If scanning within a few
24 25	146	hours was not possible, the cadaver was stored in the mortuary at 4°C. CT-scanners used were
26 27	147	Siemens Somatom Sensation 16, Siemens Sensation 64 (Siemens Healthcare, Germany) and Aquilion
28 29	148	ONE (Toshiba Medical Systems, Japan). All with a detector collimation of 1mm, reconstruction
30 31	149	interval of 0.8mm and 120 kV. The Siemens scanners used a tube current of 400mA and 1s rotation
32 33	150	time. The Toshiba scanner used Automatic Exposure Control (SD 17.5) with a rotation time of 0.5s.
34 35	151	PMCT protocol consisted of a scan of the head and neck, in bone, soft tissue and cerebral setting,
36	152	interpreted by a neuro-radiologist; a scan of thorax and abdomen in bone, lung and abdominal
37 38	153	settings, interpreted by a specialist cardiothoracic and abdominal radiologist; summarized in a single
39 40	154	consensus report. All radiologists had minimal previous experience in interpreting PMCT images, as
41 42	155	postmortem imaging is a relatively new field of expertise. Conventional autopsy consisted of
43 44	156	thoracic-abdominal autopsy with or without examination of the brain, and included full macroscopic
45	157	and microscopic inspection. Radiologists and pathologists were blinded to each other's results, but
46 47	158	had otherwise full access to electronic patient files. Radiologists and pathologists compiled a report
48 49	159	based on their own findings and clinical findings.
50 51 52 53	160	Data collection
54 55		7
56		
57 50		
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guideline

4		
5 6		
7	161	For each cadaver the immediate cause of death (i.e. direct cause of death), type of pathology and
8 9	162	anatomical system involved, were collected in retrospect at three moments: before PMCT, after
10 11	163	PMCT and based on conventional autopsy findings. The cause of death before virtual autopsy was
12	164	based on clinical findings only. The cause of death after virtual autopsy was based on both clinical
13 14	165	findings and PMCT. If no cause of death could be assigned at PMCT, the cause of death was primarily
15 16	166	based on clinical findings. Symptoms (for example, respiratory failure, sepsis etc.) and risk factors
17 18	167	(atherosclerosis, hypertension) were not considered as cause of death. Only when the primary
19 20	168	source of sepsis (for example pneumonia) was unknown, sepsis was diagnosed as cause of death. In
21	169	cases of trauma, the physical injury rather than the mechanism of trauma was assigned as cause of
22 23	170	death.
24		
25 26	171	Type of pathology was scored according to the following categories; infection, hemorrhage,
27 28	172	perfusion disorder, other or not assigned. Perfusion disorders comprised all cardiac and vascular
29 30	173	perfusion disorders not due to infection, hemorrhage or neoplasm (for example, myocardial
31 32	174	infarction, heart failure, pulmonary embolism, volvulus etc.). Type A aortic dissections with
33	175	hemopericardium were grouped in the hemorrhage category. The type of anatomical system was
34 35	176	scored as; pulmonary, cardiovascular, gastrointestinal, other or not assigned. This strategy and
36 37	177	subcategories used were derived from the classification of anatomical regions and groups of
38 39	178	pathologies as used by Roberts and Wichmann et al. ^{4,14}
40 41	179	Statistical analysis
42	180	Sensitivity and specificity were calculated with conventional autopsy as reference standard. 95%
43 44	181	confidence intervals (CI) of the differences in sensitivity or specificity before and after PMCT were
45 46	182	calculated. Cases where the cause of death, type of pathology or anatomical system could not be
47 48	183	established after conventional autopsy were excluded from statistical analysis. A sample size of
49 50	184	n=113 was required to demonstrate a difference of 15% in sensitivity with α =0.05 and β =0.10.
51	185	Logistic regression analysis was performed to evaluate radiologists' improvement in reporting PMCT-
52 53		
54 55		8
56 57		
58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtm

1		
2		
3		
4		
5		
6	186	scans during the four year study period. Odds ratios were calculated for each additional year of
7		
8	187	experience in reporting PMCT-scans. P values of 0.05 or less were considered significant. IBM SPSS
9		
10	188	Statistics, version 22 was used.
11		·····, ····,
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
26		
27		
28		
29		
30		
31		
32		
33		
34		
35		
36		
37		
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49		
50		
51		
52		
53		
54		9
55		
56		
57		
58		
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

5		
5 6		
7 8	189 190	Results Of 2155 clinically examined in- and out-of-hospital deaths in our hospital, a full thorax-abdomen
9 10	191	autopsy was performed on 304 (14%) cadavers, a complete PMCT on 120 (6%) cadavers and both on
11 12	192	78 (4%) cadavers. One case was excluded due to postmortem organ donation prior to PMCT. A
13 14	193	further nine cases who deceased at home (n=7) or in another hospital (n=2) were brought to the
15 16	194	hospital's mortuary for PMCT and autopsy examination. This led to a total of 86 included cases (51
17	195	men, 35 women, with a median age of 62 (IQR: 47 to 74) years) (Table 1). 54% of the deaths were
18 19	196	after a resuscitation attempt. The median postmortem interval between death and PMCT was 7.6
20 21	197	(IQR: 3.1 to 18.8) hours. In 69% there was no consent for brain autopsy and, in those cases,
22 23	198	conventional autopsy consisted of a thorax-abdomen examination only. Conventional autopsy, as
24 25	199	standard of reference, was not able to assign the immediate cause of death in ten cadavers (12%)
26 27	200	(Figure 1). The type of pathology and anatomical system involved were both not assigned in eight
28	201	cadavers. Therefore, analyses were based on the remaining 76 or 78 cadavers. Table 2 shows 2-by-2-
29 30	202	tables of the number of correct diagnoses before and after PMCT.
31 32	203	Sensitivity for immediate cause of death
33 34	204	The overall sensitivity for immediate cause of death increased with 12% (2 to 22) from 53% (41 to 64)
35 36	205	to 64% (53 to 75) after performing a PMCT-scan. Sensitivities specified per type of pathology or
37		
38	206	anatomical system are shown in Table 3. All autopsy causes of death, and whether or not they were
39 40	206	anatomical system are shown in Table 3. All autopsy causes of death, and whether or not they were correctly appointed before and after PMCT, are shown in Table 4.
39 40 41 42		
39 40 41 42 43 44	207	correctly appointed before and after PMCT, are shown in Table 4.
 39 40 41 42 43 44 45 46 	207 208	correctly appointed before and after PMCT, are shown in Table 4. Pneumonia was the most common infectious cause of death. It was correctly assigned as cause of
39 40 41 42 43 44 45	207 208 209	correctly appointed before and after PMCT, are shown in Table 4. Pneumonia was the most common infectious cause of death. It was correctly assigned as cause of death in 11/15=73% after PMCT, compared to 10/15=67% before PMCT. In the other 27% (n=4),
 39 40 41 42 43 44 45 46 47 48 49 	207 208 209 210	correctly appointed before and after PMCT, are shown in Table 4. Pneumonia was the most common infectious cause of death. It was correctly assigned as cause of death in 11/15=73% after PMCT, compared to 10/15=67% before PMCT. In the other 27% (n=4), pneumonia was recognized, but not assigned as cause of death. Vice versa, in two other patients
 39 40 41 42 43 44 45 46 47 48 49 50 51 	207 208 209 210 211	correctly appointed before and after PMCT, are shown in Table 4. Pneumonia was the most common infectious cause of death. It was correctly assigned as cause of death in 11/15=73% after PMCT, compared to 10/15=67% before PMCT. In the other 27% (n=4), pneumonia was recognized, but not assigned as cause of death. Vice versa, in two other patients who had died from cerebral aspergillosis and heart failure, the ancillary pneumonia was incorrectly
 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 	207 208 209 210 211 212	correctly appointed before and after PMCT, are shown in Table 4. Pneumonia was the most common infectious cause of death. It was correctly assigned as cause of death in 11/15=73% after PMCT, compared to 10/15=67% before PMCT. In the other 27% (n=4), pneumonia was recognized, but not assigned as cause of death. Vice versa, in two other patients who had died from cerebral aspergillosis and heart failure, the ancillary pneumonia was incorrectly assigned as cause of death on PMCT. Furthermore, two cases of peritonitis (due to a misplaced
 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 	207 208 209 210 211 212 213	correctly appointed before and after PMCT, are shown in Table 4. Pneumonia was the most common infectious cause of death. It was correctly assigned as cause of death in 11/15=73% after PMCT, compared to 10/15=67% before PMCT. In the other 27% (n=4), pneumonia was recognized, but not assigned as cause of death. Vice versa, in two other patients who had died from cerebral aspergillosis and heart failure, the ancillary pneumonia was incorrectly assigned as cause of death on PMCT. Furthermore, two cases of peritonitis (due to a misplaced gastrostomy button and ventriculoperitoneal drain) and one pancreatitis, which were clinically
 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 	207 208 209 210 211 212 213	correctly appointed before and after PMCT, are shown in Table 4. Pneumonia was the most common infectious cause of death. It was correctly assigned as cause of death in 11/15=73% after PMCT, compared to 10/15=67% before PMCT. In the other 27% (n=4), pneumonia was recognized, but not assigned as cause of death. Vice versa, in two other patients who had died from cerebral aspergillosis and heart failure, the ancillary pneumonia was incorrectly assigned as cause of death on PMCT. Furthermore, two cases of peritonitis (due to a misplaced gastrostomy button and ventriculoperitoneal drain) and one pancreatitis, which were clinically missed (i.e. major errors) were correctly diagnosed at PMCT as cause of death.
 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 	207 208 209 210 211 212 213	correctly appointed before and after PMCT, are shown in Table 4. Pneumonia was the most common infectious cause of death. It was correctly assigned as cause of death in 11/15=73% after PMCT, compared to 10/15=67% before PMCT. In the other 27% (n=4), pneumonia was recognized, but not assigned as cause of death. Vice versa, in two other patients who had died from cerebral aspergillosis and heart failure, the ancillary pneumonia was incorrectly assigned as cause of death on PMCT. Furthermore, two cases of peritonitis (due to a misplaced gastrostomy button and ventriculoperitoneal drain) and one pancreatitis, which were clinically missed (i.e. major errors) were correctly diagnosed at PMCT as cause of death.

1			
2			
3 4			
5			
6 7	215	In the group of perfusion disorders, all three pulmonary embolisms diagnosed at autopsy were also	
8 9	216	assigned as cause of death at PMCT. In a further three cases, including one with pulmonary embolism	
10	217	diagnosis on antemortem ultrasound (Figure 2), PMCT diagnosed pulmonary embolisms which were	
11 12	218	not confirmed during autopsy. Moreover, radiologists correctly diagnosed two arrhythmias, one	
13 14	219	heart failure and one volvulus which were initially missed as cause of death by the clinicians. Cardiac	
15 16	220	arrhythmia was suspected based on left ventricular hypertrophy and aortic valve stenosis or local	
17 18	221	hyperdensity of myocardial tissue corresponding to fibrosis in the absence of other significant	
19 20	222	findings. In the other case, heart failure was also based upon presence of secondary characteristics	
21 22	223	(dilated atria and pleural effusion) in the absence of other significant findings. Myocardial infarction	
23	224	was correctly diagnosed as cause of death in 7/16=44% after PMCT. However, in 5/7=71% of these	
24 25	225	cases, the myocardial infarction was not directly visible on PMCT and was based on the combination	
26 27	226	of clinical findings and absence of significant pathologies at PMCT. In the two other cases, imaging	
28 29	227	was suspect for myocardial infarction; once due to an intravascular hypodensity proximal of a	
30 31	228	coronary stent, which might indicate a (fat) embolism, and once due to the combination of significant	
32 33	229	coronary calcifications, enlarged right atrium, clinical history and absence of other significant	
34	230	findings.	
35 36	221	Using DMCT, how owners is source of death wars connectly diagnoord in 11/12, 050/ All five contin	
37 38	231	Using PMCT, hemorrhagic causes of death were correctly diagnosed in 11/13=85%. All five aortic	
39	232	dissections were correctly diagnosed on PMCT, including a clinically missed dissection. In a traumatic	
40 41	233	case, radiologists diagnosed hemothorax and a spleen rupture where pathologists diagnosed	
42 43	234	hemothorax and a liver and kidney rupture (Figure 3). In another traumatic case were death was	
44	235	attributed to hemorrhagic shock due to hemothorax, radiologists diagnosed an air embolus in the left	
45 46	236	coronary artery (Figure 4).	
47 48	237	In the category of other pathologies, there were three patients who died from malignant disease.	
49 50	238	The cause of death was correctly diagnosed before and after PMCT in two of these cases, one with	
51 52	239	pleural carcinomatosis in breast cancer and one with respiratory failure due to cachexia in	
53			
54 55		11	
56 57			
58			
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtm	nl

BMJ Open

2		
3 4		
5 6	240	metastasized esophageal cancer. In the other case, the patient died after an epileptic seizure due to
7 8	240	
9		(unidentified) brain metastases. There were three other cases with cancer at time of death died, but
10 11	242	those patients died from complications (septic cholecystitis, carotid artery bleeding and endocarditis
12 13	243	due to immunodeficiency).
14 15	244	Sensitivity and specificity for type of pathology and anatomical system involved in the immediate
16 17	245	cause of death
18	246	The overall sensitivity for type of pathology increased with 18% (9 to 27) from 65% (54 to 76) to 83%
19 20	240	(73 to 91) and with 19% (9 to 30) from 65% (54 to 76) to 85% (75 to 92) for the anatomical system
21 22	247	
23 24		(Table 5). These improvements were statistically significant. In the subgroups of cardiovascular
25	249	causes and perfusion disorders as cause of death, where the sensitivity for immediate cause of death
26 27	250	was rather low, we observed significant improvements of 21% (6 to 35) and 21% (5 to 36) for the
28 29	251	identification of the involved anatomical system and type of pathology respectively. This illustrates
30 31	252	that PMCT can indicate a cardiovascular or perfusive cause of death, even in cases when the exact
32	253	cause of death within that subgroup cannot be differentiated. There were no significant differences
33 34	254	in specificity within the subgroups before and after PMCT.
35 36	255	Performance of radiologists
37 38	256	Logistic regression analysis showed no significant improvement in the performance of radiologists in
39 40	257	assigning the correct cause of death over the four-year study period. Odds ratios for each year of
41	258	additional experience in reporting PMCT-scans were 0.85 (95% CI: 0.56 to 1.27, p=0.41) for correct
42 43	259	assignment of the immediate cause of death, 0.95 (95% CI: 0.61 to 1.48, p=0.81) for type of
44 45	260	pathology and 0.82 (95% CI: 0.51 to 1.32, p=0.41) for anatomical system involved.
46 47		
48 49		
50		
51 52		
53 54		
55 56		12
57		
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xht

1			
2			
3			
4 5			
6	264	Discussion	
7	261 262	The sensitivity for immediate cause of death increased from 53% to 64% after performing PMCT.	
8 9	202		
10	263	Analyses showed that the value of PMCT is variable per subcategory and depends on the cause of	
11 12	264	death. Unfortunately, subgroups were a lot smaller than expected, resulting in a lower statistical	
13 14	265	power and large confidence intervals. We had predicted to include 272 cases (4 years of inclusion st	
15	266	average 80 thoraco-abdominal autopsies each year * 0.85 PMCT consent rate). The main reason for	
16 17	267	the limited number of included patients was the unexpected low consent rate (78/304=26%) for	
18 19	268	PMCT in cases with consent for conventional autopsy. We did not investigate the reason for this low	
20 21	269	consent rate as motives for performing or not performing a PMCT-scan were not extensively	
22 23	270	documented. In case of death, clinicians had to ask consent for both PMCT and autopsy. Though	
24 25	271	some clinicians mentioned that they only requested for PMCT in case of refusal of conventional	
26	272	autopsy.	
27 28	272	Desurpoints use the meet environment released infectious environment of death, both before and often DMCT	
29	273	Pneumonia was the most common missed infectious cause of death, both before and after PMCT.	
30 31	274	Resuscitation induced changes and normal postmortem changes, such as the occurrence of	
32 33	275	pulmonary edema, could mask pneumonia (Figure 5). ¹⁶ In the subgroup of perfusion disorders,	
34	276	diagnosis of pulmonary embolism at unenhanced PMCT is challenging as it is notoriously difficult to	
35 36	277	distinguish an ante-mortem thrombus from a post-mortem blood clot. ¹⁷⁻¹⁹ This, or the possibility that	
37 38	278	the embolus was lost during the autopsy procedure, may explain why in three cases the pulmonary	
39 40	279	embolism was not confirmed during autopsy. Postmortem angiography, now being developed and	
41 42	280	validated, can be effective in demonstrating any obstructing thrombi. ²⁰ Most causes of death in the	
43 44	281	subgroup of perfusion disorders were cardiac related. Clinicians are often restricted in their ability to	
45	282	differentiate a cause of death due to the acute nature and time constraints of the situations	
46 47	283	(resuscitation setting) these patients present with. On the contrary, cardiac arrhythmia and heart	
48 49	284	failure are impossible to diagnose by postmortem examinations only. Furthermore, an autopsy can	
50 51	285	only detect a myocardial infarction in cases where patients have survived two to three hours post-	
52 53	286	infarction. ²¹ Therefore, radiologists and pathologists had access to clinical information in order to	
54		13	
55 56			
50 57			
58			
59		For peer review only - http://bmjopen.bmj.com/site/about/guideline	s yhtml
60		To peer review only integration periodicity about/guideline	

1			
2			
3			
4 5			
6 7	287	assign the most probable cause of death based on postmortem findings and clinical findings as well.	
8 9	288	Accordingly, both PMCT and autopsy could indicate a cardiac cause of death, based on clinical	
10 11	289	findings and secondary characteristics observed during postmortem examination in the absence of	
12 13	290	other significant pathologies.	
14 15	291	Table 3 and 5 show an increase in overall sensitivity from 64% to 83 or 85% when PMCT is used for	
16 17	292	identification of the type of pathology or anatomical system involved rather than for assigning the	
18 19	293	exact immediate cause of death. This indicates that even when the cause of death is uncertain after	
20 21	294	PMCT, it is still a valuable tool in targeting the region of interest or excluding some of the differential	
22 23	295	diagnostic possibilities. Clinical evaluation of the cause of death often indicates the failing system (for	
24	296	example, respiratory failure) rather than the underlying illness or structural changes, whereas	
25 26	297	radiologists appear to be more adept at ascertaining the involved anatomical system. Based on how	
27 28	298	confident radiologists are of their findings, they can guide the pathologist to the region(s) of interest.	
29 30	299	Amongst non-invasive techniques, Blokker et al. conclude that PMCT in combination with	
31 32	300	postmortem MRI yield the highest diagnostic performance in adults, with PMCT performing	
33 34	301	somewhat better when only one of the modalities is used. ^{14,15} PMCT is less expensive than a	
35 36	302	conventional autopsy, however, cost-effective analyses have not been formulated. ²² Images can be	
37 38	303	stored digitally (useful for legal or educational purposes) and results can be audited and promptly	
39 40	304	reviewed by one or more radiologists. Amongst minimally invasive methods, the highest	
41 42	305	performance is reported in studies combining PMCT and CT-angiography. PMCT, enhanced with	
43 44	306 307	targeted coronary angiography, showed a sensitivity of 92% for cause of death. ¹⁹ Two studies combining CT, CT-angiography and CT-guided tissue biopsies achieved a pooled sensitivity of 91% for	
45 46	308	cause of death. ^{23,24}	
47 48	500		
49 50	309	To our knowledge this is the second study which has investigated the additional value of unenhanced	
51	310	PMCT compared to clinical diagnoses. The first study by Inai et al. showed a significant increase in	
52 53	311	sensitivity from 46% to 74% for the immediate cause of death in 50 non-forensic deaths. ²⁵ This is	
54 55		14	
56 57			
58 59			
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xh	tml

2 3		
4 5		
6 7	312	somewhat higher than we found in our study, one reason could be the fact that less specific causes
, 8 9	313	of death were used. Other previous studies have investigated the diagnostic accuracy of PMCT
10	314	compared to autopsy and not to clinical diagnoses. Those studies are difficult to compare, as some
11 12	315	use broadly defined categorizations and others use well-defined specific causes of death, or some
13 14	316	use the immediate cause of death and others the intermediate or underlying cause of death, or do
15 16	317	not state their definition of cause of death at all. Furthermore, most previous studies consisted of
17 18	318	small sample sizes (n<50) and used different study populations, different outcome parameters (for
19 20	319	example, cause of death, major or minor diagnoses) and different parameters of accuracy. ^{4,26-28} A
21	320	large prospective study of 182 adult deaths by Roberts et al. showed a major discrepancy rate of 32%
22 23	321	in determining the cause of death with PMCT compared to autopsy. ¹⁴ Another study showed a
24 25	322	sensitivity of 82% and a specificity of 97% for PMCT regarding the categorization of cause death in
26 27	323	101 cases. ²⁹ This is in accordance with our results regarding the categorization of cause of death per
28 29	324	type of pathology or anatomical system. Westphal et al. showed a sensitivity of 18/27=67% for cause
30 31	325	of death and a sensitivity of 5/17=19% for a more specific description of the involved pathogenetic
32	326	mechanism. ²⁶ Takahashi et al. found a sensitivity of 12% for definite findings and 53% for both
33 34	327	definite and possible findings with PMCT as to cause of death. ²⁷ The study by Puranik et al. supports
35 36	328	our results regarding the difficulty in diagnosing cardiac causes of death with unenhanced PMCT. ²⁸ A
37 38	329	sensitivity of 25% for cause of death was found in a population of seventeen young patients with
39 40	330	sudden cardiac death.
41 42	331	Certain diagnoses, for example fractures or those related to the accumulation of gasses or air (Figure
43	332	4), are more confidently diagnosed with PMCT than autopsy. ^{14,30} Therefore, the presented
44 45	333	performance of PMCT will probably be underestimated in cases were pathologies are difficult to
46 47	334	confirm due to the limitations of autopsy. Generally, in our experience we find that autopsy can no
48 49	335	longer be considered as the gold standard for all postmortem diagnoses, not only due to the
50 51	336	limitations of dissection, but also due to the decline in the number of autopsies performed, leading
52	337	to a decrease in pathologists' expertise. We would suggest a gold standard involving a
53 54		15
55 56		
57 58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guideline
00		

1		
2		
3		
4		
5		
6 7	338	multidisciplinary consensus evaluation amongst clinicians, radiologists and pathologists. Prospective
8 9	339	studies with larger sample sizes are required to investigate the additional value of PMCT in specific
10	340	subgroups of causes of death. Even with the aid of improved non- or minimally invasive techniques,
11 12	341	conventional autopsy will still be required in complex cases where clinical and radiological diagnosis
13 14	342	conventional autopsy will still be required in complex cases where clinical and radiological diagnosis as to cause of death is inconclusive.
15		
16		
17		
18		
19 20		
20		
21 22		
22		
23 24		
25		
26		
27		
28		
29		
30		
31		
32		
33 34		
35		
36		
37		
38		
39		
40		
41		
42		
43		
44 45		
45 46		
40 47		
48		
49		
50		
51		
52		
53		
54		16
55		
56		
57		
58 50		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xh
00		

1			
2			
3			
4			
5			
6	343	Conclusion	
7	343 344	While virtual autopsy with postmortem CT is an insufficient substitute for conventional autopsy, it	
8	J++	while virtual autopsy with postmortern er is an insumelent substitute for conventional autopsy, it	
9	345	can improve diagnosis of the cause of death over clinical diagnosis alone. Even in cases where no	
10			
11 12	346	immediate cause of death can be assigned after virtual autopsy, radiologists may indicate a region of	
13	347	interest, so directing pathologists at autopsy. Future studies are needed to investigate whether	
14	547	interest, so unecting pathologists at autopsy. Future studies are needed to investigate whether	
15	348	PMCT is able to reduce the invasiveness of autopsy or even avoid an autopsy altogether.	
16			
17			
18			
19			
20 21			
21			
23			
24			
25			
26			
27			
28 29			
29 30		PMCT is able to reduce the invasiveness of autopsy or even avoid an autopsy altogether.	
31			
32			
33			
34			
35 36			
30 37			
38			
39			
40			
41			
42 43			
43 44			
45			
46			
47			
48			
49 50			
50 51			
51 52			
53			
54			
55		17	
56			
57			
58 59			
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xht	tml

2			
3			
4			
5			
6	349	Refe	rences
7	350	1.	Harrington DE, Sayre EA. Managed care and measuring medical outcomes: did the rise of
8	351		HMOs contribute to the fall in the autopsy rate? Social science & medicine (1982).
9	352		2010;70(2):191-198.
10	353	2.	Blokker BM, Weustink AC, Hunink MGM, Oosterhuis JW. Autopsy rates in the Netherlands:
11 12	354		35 years of decline. <i>PloS one</i> . 2017;12(6):e0178200.
12	355	3.	Kretzschmar H. Brain banking: opportunities, challenges and meaning for the future. <i>Nature</i>
14	356 357	4.	reviews Neuroscience. 2009;10(1):70-78. Wichmann D, Obbelode F, Vogel H, et al. Virtual autopsy as an alternative to traditional
15	358	ч.	medical autopsy in the intensive care unit: a prospective cohort study. Annals of internal
16	359		medicine. 2012;156(2):123-130.
17	360	5.	Burton JL, Underwood J. Clinical, educational, and epidemiological value of autopsy. Lancet
18	361		(London, England). 2007;369(9571):1471-1480.
19	362	6.	The decline of the hospital autopsy: a safety and quality issue for healthcare in Australia. The
20	363	7	Medical journal of Australia. 2004;180(6):281-285.
21	364 265	7.	Chariot P, Witt K, Pautot V, et al. Declining autopsy rate in a French hospital: physician's
22	365 366		attitudes to the autopsy and use of autopsy material in research publications. <i>Archives of pathology & laboratory medicine</i> . 2000;124(5):739-745.
23	367	8.	Goldman L, Sayson R, Robbins S, Cohn LH, Bettmann M, Weisberg M. The value of the
24	368	0.	autopsy in three medical eras. The New England journal of medicine. 1983;308(17):1000-
25	369		1005.
26	370	9.	Shojania KG, Burton EC, McDonald KM, Goldman L. Changes in rates of autopsy-detected
27	371		diagnostic errors over time: a systematic review. <i>Jama</i> . 2003;289(21):2849-2856.
28	372	10.	Kuijpers CC, Fronczek J, van de Goot FR, Niessen HW, van Diest PJ, Jiwa M. The value of
29	373		autopsies in the era of high-tech medicine: discrepant findings persist. <i>Journal of clinical</i>
30	374 375	11.	pathology. 2014;67(6):512-519. Group OfNSDCA. Guidance for doctors completing medical certificates of cause of death in
31	375	11.	England and Wales 2010. Accessed 3 June, 2016.
32	377	12.	Attems J, Arbes S, Bohm G, Bohmer F, Lintner F. The clinical diagnostic accuracy rate
33	378		regarding the immediate cause of death in a hospitalized geriatric population; an autopsy
34	379		study of 1594 patients. Wiener medizinische Wochenschrift (1946). 2004;154(7-8):159-162.
35	380	13.	Ermenc B. Comparison of the clinical and post mortem diagnoses of the causes of death.
36	381		Forensic science international. 2000;114(2):117-119.
37	382	14.	Roberts IS, Benamore RE, Benbow EW, et al. Post-mortem imaging as an alternative to
38	383 384		autopsy in the diagnosis of adult deaths: a validation study. <i>Lancet (London, England)</i> . 2012;379(9811):136-142.
39	385	15.	Blokker BM, Wagensveld IM, Weustink AC, Oosterhuis JW, Hunink MG. Non-invasive or
40	386		minimally invasive autopsy compared to conventional autopsy of suspected natural deaths in
41	387		adults: a systematic review. European radiology. 2016;26(4):1159-1179.
42	388	16.	Klein WM. The common pattern of postmortem changes on whole body CT scans. Journal of
43	389		Forensic Radiology and Imaging. 2016;4:47-52.
44 45	390	17.	Jackowski C, Thali M, Aghayev E, et al. Postmortem imaging of blood and its characteristics
45 46	391 302	18.	using MSCT and MRI. <i>International journal of legal medicine</i> . 2006;120(4):233-240. Ross SG, Bolliger SA, Ampanozi G, Oesterhelweg L, Thali MJ, Flach PM. Postmortem CT
46 47	392 393	10.	angiography: capabilities and limitations in traumatic and natural causes of death.
	394		Radiographics : a review publication of the Radiological Society of North America, Inc.
48 49	395		2014;34(3):830-846.
49 50	396	19.	Rutty GN, Morgan B, Robinson C, et al. Diagnostic accuracy of post-mortem CT with targeted
50 51	397		coronary angiography versus autopsy for coroner-requested post-mortem investigations: a
51 52	398		prospective, masked, comparison study. Lancet (London, England). 2017.
52 53			
55 54			
54 55			18
56			
57			
58			
59			

3			
4			
5			
6	399	20.	Grabherr S, Grimm J, Baumann P, Mangin P. Application of contrast media in post-mortem
7	400		imaging (CT and MRI). <i>La Radiologia medica</i> . 2015;120(9):824-834.
8	401	21.	Kubat K, Smedts F. The usefulness of the lactate dehydrogenase macroreaction in autopsy
9	402		practice. Modern pathology : an official journal of the United States and Canadian Academy
10	403		of Pathology, Inc. 1993;6(6):743-747.
11	404	22.	Weustink AC, Hunink MG, van Dijke CF, Renken NS, Krestin GP, Oosterhuis JW. Minimally
12	405		invasive autopsy: an alternative to conventional autopsy? <i>Radiology</i> . 2009;250(3):897-904.
13	406	23.	Ross SG, Thali MJ, Bolliger S, Germerott T, Ruder TD, Flach PM. Sudden death after chest
14	407		pain: feasibility of virtual autopsy with postmortem CT angiography and biopsy. Radiology.
15	408		2012;264(1):250-259.
16	409	24.	Bolliger SA, Filograna L, Spendlove D, Thali MJ, Dirnhofer S, Ross S. Postmortem imaging-
17	410 411		guided biopsy as an adjuvant to minimally invasive autopsy with CT and postmortem
18	411		angiography: a feasibility study. <i>AJR American journal of roentgenology</i> . 2010;195(5):1051- 1056.
19	412	25.	Inai K, Noriki S, Kinoshita K, et al. Postmortem CT is more accurate than clinical diagnosis for
20	414	25.	identifying the immediate cause of death in hospitalized patients: a prospective autopsy-
21	415		based study. Virchows Archiv : an international journal of pathology. 2016;469(1):101-109.
22	416	26.	Westphal SE, Apitzsch J, Penzkofer T, Mahnken AH, Knuchel R. Virtual CT autopsy in clinical
23	417		pathology: feasibility in clinical autopsies. Virchows Archiv : an international journal of
24	418		pathology. 2012;461(2):211-219.
25	419	27.	Takahashi N, Higuchi T, Shiotani M, et al. The effectiveness of postmortem multidetector
26	420		computed tomography in the detection of fatal findings related to cause of non-traumatic
20	421		death in the emergency department. <i>European radiology</i> . 2012;22(1):152-160.
27	422	28.	Puranik R, Gray B, Lackey H, et al. Comparison of conventional autopsy and magnetic
	423		resonance imaging in determining the cause of sudden death in the young. Journal of
29	424		cardiovascular magnetic resonance : official journal of the Society for Cardiovascular
30	425	20	Magnetic Resonance. 2014;16:44.
31	426	29.	Ampanozi G, Thali YA, Schweitzer W, et al. Accuracy of non-contrast PMCT for determining
32	427	20	cause of death. Forensic science, medicine, and pathology. 2017.
33	428 429	30.	Dirnhofer R, Jackowski C, Vock P, Potter K, Thali MJ. VIRTOPSY: minimally invasive, imaging- guided virtual autopsy. <i>Radiographics : a review publication of the Radiological Society of</i>
34	429		North America, Inc. 2006;26(5):1305-1333.
35	450		North / Micheld, Mc. 2000;20(5):1505 1555.
36	431		
37			
38			
39			
40			
41			
42			
43			
44			
45			
46			
47			
48			
49			
50			
51			
52			
53			
54			
55			19
56			
57			
58			
59			
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2		
3		
4 5		
6		
7	432 432	Figure legends
8	433	Figure 1. Flowchart of whether or not an immediate cause of death could be assigned before and after PMCT
9 10	434	and during conventional autopsy.
11	435	^a No cause of death could be assigned at autopsy in ten cases, and were excluded from the sensitivity analysis
12 13	436	for cause of death. ^b In four cases, where clinicians and radiologists were able to assign a cause of death,
14 15	437	autopsy did not reveal the cause of death. In one case this was due to lack of consent to a brain autopsy in a
16	438	case with an intracerebral hemorrhage. In another case the pulmonary embolisms were not diagnosed at
17 18	439	autopsy however identified with ultrasonography during resuscitation as well as on PMCT (Figure 2). In two
19 20	440	other cases with unknown cause of death at autopsy, aspiration and cardiac failure were diagnosed as the
21	441	cause of death after imaging, whereas previously sepsis with unknown abdominal focus and myocardial
22 23	442	infarction were diagnosed by the clinicians. COD: immediate cause of death.
24	443	
25 26	444	Figure 2. Example where pulmonary embolisms were diagnosed at antemortem ultrasound and postmortem
27 28	445	CT but were not confirmed during autopsy.
29 30	446	This patient died after a resuscitation attempt, three days post re-laparotomy due to a hernia cicatricalis
31	447	correction with invagination complications. An ultrasound scan during resuscitation revealed pulmonary
32 33	448	embolisms. PMCT (postmortem interval of 2 hours) confirmed embolisms in the left (1) and right (2) pulmonary
34 35	449	arteries. Autopsy did not assign a cause of death.
36 37 29	450	Figure 3. Example of discrepant diagnosis of the cause of traumatic exsanguination.
38 39	451	This patient died after a resuscitation attempt following a scooter accident with impact on the right side. Initial
40 41	452	trauma screening revealed no significant pathologies. PMCT suggested exsanguinations due to a spleen
42 43	453	laceration. Autopsy diagnosed exsanguinations due to lacerations of the liver and right kidney. Further findings:
44	454	(1) abdominal wall hematoma, (2) rib fracture, (3) small rim of blood along the liver, (4) intra-abdominal blood
45 46 47	455	along the spleen.
47 48 49	456	Figure 4. Example that gas related diagnoses can be more confidently diagnosed with PMCT than autopsy.
50	457	This patient died during a mid-transport resuscitation attempt following a car accident. Initial clinical
51 52	458	examination found a hemothorax, however, it was unclear if the patient died due to blood loss or from some
53 54		
55		20
56		
57		
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guideline

2 3 4		
5		
6 7	459	other underlying pathology which may have caused the accident. During air ambulance transportation,
8	460	ventricular fibrillation occurred. PMCT showed an air embolus in the left anterior descending artery (1),
9 10	461	probably due to extensive lung trauma and the decrease in atmospheric pressure during the flight. This was not
11 12	462	diagnosed at autopsy, with death being attributed to a hemorrhagic shock due to hemothorax. Also, the
13 14	463	pneumothorax, pneumopericardium and pneumomediastinum were not mentioned in the autopsy report.
15 16	464	Figure 5. Normal postmortem changes could mask underlying pathology
17 18	465	This patient had a clinical history of allogeneic stem cell transplantation due to multiple myeloma. Clinical
19 20	466	examination and antemortem MRI of the brain suggested a post-transplant lymphoproliferative disorder
21	467	(PTLD). Autopsy diagnosed bronchopneumonia (left upper lobe and right lower lobe) as the cause of death and
22 23	468	did not show PTLD, nor recurrence of multiple myeloma or other malignancy. PMCT showed pleural fluid and
24 25	469	interstitial pulmonary edema, which were interpreted as normal postmortem findings. Bronchopneumonia was
26 27	470	not diagnosed at PMCT.
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 950 51 52 53		did not show PTLD, nor recurrence of multiple myeloma or other malignancy. PMCT showed pleural fluid and interstitial pulmonary edema, which were interpreted as normal postmortem findings. Bronchopneumonia was not diagnosed at PMCT.
54 55 56 57 58		21
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guideline

471	Fables
-----	---------------

	Study	/ population (n=86),	n (%)	
Sex				
Male	51 (5			
Female	35 (4	1%)		
Age, median (IQR)	62 (4	7-74)		
Place of death				
Emergency room	31 (3	-		
Intensive care unit	30 (3			
Clinical ward	18 (2			
Out-of-hospital	7 (8%			
CPR performed	16 (F	20/1		
Yes No	46 (5 40 (4			
Brain autopsy performe		7 76)		
Yes	27 (3	1%)		
No	59 (6			
Immediate cause of dea		,		
Infectious	26 (3	0%)		
Perfusive disorder	32 (3			
Hemorrhage	13 (1			
Other	5 (6%			
Uncertain	10 (1	,		
Uncertain IQR: interquartile range Table 2. Cross tabulatio (B) and anatomical syst	. CPR: cardiopo	2%) ulmonary resuscitation and incorrect assigned and after PMCT	ed immediate causes o	of death (A), type o
Uncertain IQR: interquartile range Table 2. Cross tabulatio (B) and anatomical syst	. CPR: cardiopo	2%) ulmonary resuscitation and incorrect assigne and after PMCT	ed immediate causes o OD after PMCT	of death (A), type o
Uncertain IQR: interquartile range Table 2. Cross tabulatio (B) and anatomical syst A.	10 (1 . CPR: cardiopo ons of correct a em (C), before	2%) ulmonary resuscitation and incorrect assigne and after PMCT Correct	ed immediate causes o OD after PMCT Incorrect	
Uncertain IQR: interquartile range Table 2. Cross tabulatio (B) and anatomical syst A.	10 (1 . CPR: cardiopo ons of correct a em (C), before	2%) and incorrect assigned and after PMCT Correct 36	ed immediate causes of OD after PMCT	40
Uncertain IQR: interquartile range Table 2. Cross tabulatio (B) and anatomical syst A.	10 (1 . CPR: cardiopo ons of correct a em (C), before	2%) ulmonary resuscitation and incorrect assigned and after PMCT Correct 36 13	ed immediate causes c COD after PMCT Incorrect 4 23	40 36
Uncertain IQR: interquartile range Table 2. Cross tabulatio (B) and anatomical syst A.	10 (1 . CPR: cardiopo ons of correct a em (C), before	2%) and incorrect assigned and after PMCT Correct 36	ed immediate causes of OD after PMCT	40
Uncertain IQR: interquartile range Table 2. Cross tabulatio (B) and anatomical syst A. COD before PMCT	10 (1 . CPR: cardiopo ons of correct a em (C), before	2%) ulmonary resuscitation and incorrect assigned and after PMCT Correct 36 13 49	ed immediate causes of COD after PMCT Incorrect 4 23 27	40 36 76
Uncertain IQR: interquartile range Table 2. Cross tabulatio (B) and anatomical syst A. COD before PMCT	10 (1 . CPR: cardiopo ons of correct a em (C), before	2%) ulmonary resuscitation and incorrect assigned and after PMCT Correct 36 13 49 Type of	ed immediate causes of COD after PMCT 4 23 27 pathology after PMCT	40 36 76
Uncertain IQR: interquartile range Table 2. Cross tabulatio (B) and anatomical syst A. COD before PMCT B.	10 (1 . CPR: cardiopo ons of correct a em (C), before Correct Incorrect	2%) ulmonary resuscitation and incorrect assigned and after PMCT Correct 36 13 49 Type of Correct	ed immediate causes of COD after PMCT 4 23 27 pathology after PMCT Incorrect	40 36 76
Uncertain IQR: interquartile range Table 2. Cross tabulatio (B) and anatomical syst A. COD before PMCT B. Type of pathology	10 (1 . CPR: cardiopo ons of correct a em (C), before Correct Incorrect	2%) ulmonary resuscitation and incorrect assigned and after PMCT Correct 36 13 49 Type of Correct 50	ed immediate causes of COD after PMCT 4 23 27 pathology after PMCT Incorrect 1	40 36 76 51
Uncertain IQR: interquartile range Table 2. Cross tabulatio (B) and anatomical syst A. COD before PMCT B. Type of pathology	10 (1 . CPR: cardiopo ons of correct a em (C), before Correct Incorrect	2%) ulmonary resuscitation and incorrect assigned and after PMCT Correct 36 13 49 Type of Correct 50 15	ed immediate causes of COD after PMCT 4 23 27 pathology after PMCT Incorrect 1 12	40 36 76 51 27
Uncertain IQR: interquartile range Table 2. Cross tabulatio (B) and anatomical syst A. COD before PMCT B. Type of pathology	10 (1 . CPR: cardiopo ons of correct a em (C), before Correct Incorrect	2%) ulmonary resuscitation and incorrect assigned and after PMCT Correct 36 13 49 Type of Correct 50	ed immediate causes of COD after PMCT 4 23 27 pathology after PMCT Incorrect 1	40 36 76 51
	10 (1 . CPR: cardiopo ons of correct a em (C), before Correct Incorrect	2%) ulmonary resuscitation and incorrect assigned and after PMCT Correct 36 13 49 Type of Correct 50 15	ed immediate causes of COD after PMCT 4 23 27 pathology after PMCT Incorrect 1 12	40 36 76 51 27
Uncertain IQR: interquartile range Table 2. Cross tabulatio (B) and anatomical syst A. COD before PMCT B. Type of pathology before PMCT	10 (1 . CPR: cardiopo ons of correct a em (C), before Correct Incorrect	2%) ulmonary resuscitation and incorrect assigned and after PMCT Correct 36 13 49 Type of Correct 50 15 65	ed immediate causes of COD after PMCT Incorrect 4 23 27 pathology after PMCT Incorrect 1 12 13 of anatomical system	40 36 76 51 27
Uncertain IQR: interquartile range Table 2. Cross tabulatio (B) and anatomical syst A. COD before PMCT B. Type of pathology before PMCT	10 (1 . CPR: cardiopo ons of correct a em (C), before Correct Incorrect	2%) Jilmonary resuscitation and incorrect assigned and after PMCT Correct 36 13 49 Type of Correct 50 15 65 Type o	ed immediate causes of COD after PMCT 4 23 27 pathology after PMCT Incorrect 1 12 13 If anatomical system after PMCT	40 36 76 51 27
Uncertain IQR: interquartile range Table 2. Cross tabulatio (B) and anatomical syst A. COD before PMCT B. Type of pathology before PMCT C.	10 (1 . CPR: cardioperation ons of correct a em (C), before Correct Incorrect	2%) ulmonary resuscitation and incorrect assigned and after PMCT Correct 36 13 49 Type of Correct 50 15 65 Type o Correct	ed immediate causes of COD after PMCT 4 23 27 pathology after PMCT 1 12 13 of anatomical system after PMCT Incorrect	40 36 76 51 27 78
Uncertain IQR: interquartile range Table 2. Cross tabulatio (B) and anatomical syst A. COD before PMCT B. Type of pathology before PMCT C.	10 (1 . CPR: cardioperation ons of correct a em (C), before Correct Incorrect Incorrect	2%) ulmonary resuscitation and incorrect assigned and after PMCT Correct 36 13 49 Correct 50 15 65 Type of Correct 48	ed immediate causes of COD after PMCT 4 23 27 pathology after PMCT 1 12 13 of anatomical system after PMCT Incorrect 3	40 36 76 51 27 78 51
Uncertain IQR: interquartile range Table 2. Cross tabulatio (B) and anatomical syst A. COD before PMCT B. Type of pathology	10 (1 . CPR: cardioperation ons of correct a em (C), before Correct Incorrect	2%) ulmonary resuscitation and incorrect assigned and after PMCT Correct 36 13 49 Type of Correct 50 15 65 Type o Correct	ed immediate causes of COD after PMCT 4 23 27 pathology after PMCT 1 12 13 of anatomical system after PMCT Incorrect	40 36 76 51 27 78

489 Table 3. Sensitivity for immediate cause of death before and after virtual autopsy with PMCT.

		Sensitivity					
		Before PMCT (95% Cl)	After PMCT (95% Cl)	Difference (95% CI)			
Imn	nediate cause of death (n=76) ^a	53% (41-64)	64% (53-75)	12% (2-22)			
Per	subgroup of type of pathology:						
1.	Infection (n=26)	65% (44-83)	69% (48-86)	4% (-16-24)			
2.	Hemorrhage (n=13)	69% (39-91)	85% (55-98)	15% (-4-35)			
3.	Perfusion disorder (n=32)	31% (16-50)	47% (29-65)	16% (0-31)			
4.	Other (n=5)	80% (28-99)	100% (48-100)	20% (-15-55)			
Per	subgroup of anatomical system:						
1.	Pulmonary (n=18)	56% (31-78)	67% (41-87)	11% (-3-26)			
2.	Cardiovascular (n=37)	43% (27-61)	54% (37-71)	11% (-4-25)			
3.	Gastrointestinal (n=13)	54% (25-81)	85% (55-98)	31% (-2-64)			
4.	Other (n=8)	88% (47-100)	75% (35-97)	-13% (-35-10)			

3 490

^a Conventional autopsy was not able to establish a cause of death in ten cases.

2 3 4 5 6 7	491 49 <u>2</u>
8 9 10 11 2 3 4 5 6 7 8 9 0 12 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	493 494 495 496 497 498 499

91	Table 4. Overview of all causes of death diagnosed at autopsy, classified by type pathology and whether they
92	were correctly diagnosed as the immediate cause of death before and after virtual autopsy.

10x pneumonia 1x infected liver cysts 1x sepsis e.c.i. ^b 1x pancreatitis 1x cholecystitis /	1x pneumonia 2x peritonitis ^a 1x diverticulitis and pancreatitis	1x endocarditis 1x HSV hepatitis 1x cerebral	4x pneumonia 1x endocarditis /
cholangitis		aspergillosis	pericarditis
7x myocardial infarction 1x heart failure 1x pulmonary embolism	2x pulmonary embolism 2x arrhythmia 1x volvulus 1x heart failure	1x heart failure	9x myocardial infarction 3x arrhythmia 2x heart failure 1x pulmonary veno- occlusive disease 1x bowel ischemia due to adhesions
4x type A aortic dissection 1x subarachnoidal hemorrhage 1x gastric hemorrhage 1x arteria carotis hemorrhage 1x arteria iliaca communis sinistra hemorrhage 1x hemorrhage from fistula; gastric tube vs. aorta	1x type A aortic dissection 1x hemothorax + intrapulmonary hemorrhage	K K C	1x hemothorax 1x liver and kidney ruptur + hemothorax
	1x pulmonary embolism 4x type A aortic dissection 1x subarachnoidal hemorrhage 1x gastric hemorrhage 1x arteria carotis hemorrhage 1x arteria iliaca communis sinistra hemorrhage 1x hemorrhage from fistula; gastric tube vs. aorta 1x pleural carcinomatosis 1x cachexia 1x anaphylaxis 1x (auto-)intoxication was due to a misplaced gast	1x pulmonary embolism2x arrhythmia 1x volvulus 1x volvulus 1x heart failure4x type A aortic dissection 1x subarachnoidal hemorrhage 1x arteria carotis hemorrhage 1x arteria iliaca communis sinistra hemorrhage 1x hemorrhage from fistula; gastric tube vs. aorta1x type A aortic dissection 1x hemothorax + intrapulmonary hemorrhage 1x arteria iliaca communis sinistra hemorrhage 1x hemorrhage from fistula; gastric tube vs. aorta1x epileptic seizure due to brain metastases1x anaphylaxis 1x (auto-)intoxication1x epileptic seizure due to brain metastases	1x pulmonary embolism2x arrhythmia 1x volvulus 1x heart failure4x type A aortic dissection1x type A aortic dissection1x subarachnoidal hemorrhage1x type A aortic dissection1x arteria carotis hemorrhage1x hemothorax + intrapulmonary hemorrhage1x arteria iliaca communis sinistra hemorrhage fistula; gastric tube vs. aorta1x epileptic seizure due to brain metastases

	Sensitivity			Specificity		
	Before PMCT (95% CI)	After PMCT (95% CI)	Difference (95% Cl)	Before PMCT (95% CI)	After PMCT (95% Cl)	Difference (95% CI)
A. Type of pathology (n=78) ^a	65% (54-76)	83% (73-91)	18% (9-27)	N/A ^b	N/A ^b	
Per subgroup:						
1. Infection (n=26)	69% (48-86)	85% (65-96) 🧹	15% (2-29)	96% (87-100)	92% (81-98)	-4% (-9-1)
2. Hemorrhage (n=13)	69% (39-91)	92% (64-100)	23% (0-46)	98% (92-100)	100% (94-100)	2% (-1-5)
3. Perfusion disorder (n=34)	56% (38-73)	76% (59-89)	21% (5-36)	95% (85-99)	93% (81-99)	-2% (-12-87
4. Other (n=5)	100% (48-100)	100% (48-100)	0% (0-0)	99% (93-100%)	99% (93-100%)	0% (0-0)
B. Anatomical system (n=78) ^a	65% (54-76)	85% (75-92)	19% (9-30)	N/A ^b	N/A ^b	
Per subgroup:						
1. Pulmonary (n=18)	72% (47-90)	89% (65-99)	17% (-1-34)	95% (86-99) 🦾	95% (86-99)	0% (-8-8)
2. Cardiovascular (n=39)	62% (45-77)	82% (66-92)	21% (6-35)	100% (91-100)	95% (82-99)	-5% (-12-2)
3. Gastrointestinal (n=13)	54% (25-81)	85% (55-98)	31% (-2-64)	98% (92-100)	100% (94-100)	2% (-1-5)
4. Other (n=8)	88% (48-100)	88% (48-100)	0% (-35-35)	97% (90-100)	94% (86-98)	-3% (-7-1)

Table 5. Sensitivity and specificity for type of pathology and anatomical system diagnosed before and after virtual autopsy with PMCT.

^a Autopsy was not able to establish the involved type of pathology and anatomical system in eight cases. ^b Not applicable.

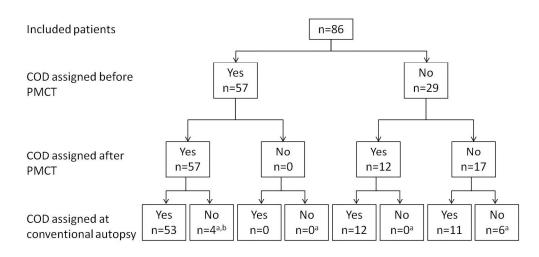


Figure 1. Flowchart of whether or not an immediate cause of death could be assigned before and after PMCT and during conventional autopsy.

a No cause of death could be assigned at autopsy in ten cases, and were excluded from the sensitivity analysis for cause of death. b In four cases, where clinicians and radiologists were able to assign a cause of death, autopsy did not reveal the cause of death. In one case this was due to lack of consent to a brain autopsy in a case with an intracerebral hemorrhage. In another case the pulmonary embolisms were not diagnosed at autopsy however identified with ultrasonography during resuscitation as well as on PMCT (Figure 2). In two other cases with unknown cause of death at autopsy, aspiration and cardiac failure were diagnosed as the cause of death after imaging, whereas previously sepsis with unknown abdominal focus and myocardial infarction were diagnosed by the clinicians. COD: immediate cause of death.

379x172mm (300 x 300 DPI)

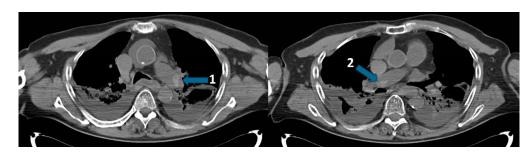


Figure 2. Example where pulmonary embolisms were diagnosed at antemortem ultrasound and postmortem CT but were not confirmed during autopsy. # + This patient died after a resuscitation attempt, three days post re-laparotomy due to a hernia cicatricalis correction with invagination complications. An ultrasound scan during resuscitation revealed pulmonary embolisms. PMCT (postmortem interval of 2 hours) confirmed embolisms in the left (1) and right (2) pulmonary arteries. Autopsy did not assign a cause of death.

757x203mm (300 x 300 DPI)

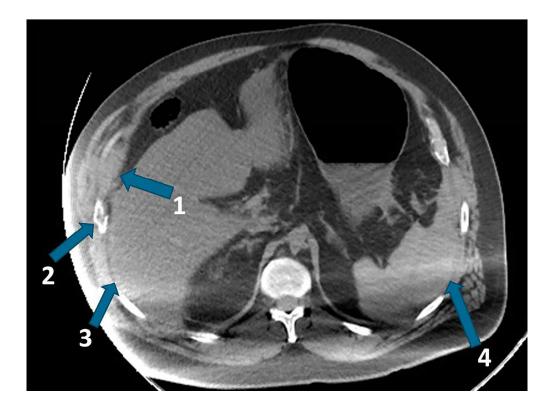


Figure 3. Example of discrepant diagnosis of the cause of traumatic exsanguination.!! + This patient died after a resuscitation attempt following a scooter accident with impact on the right side. Initial trauma screening revealed no significant pathologies. PMCT suggested exsanguinations due to a spleen laceration. Autopsy diagnosed exsanguinations due to lacerations of the liver and right kidney. Further findings: (1) abdominal wall hematoma, (2) rib fracture, (3) small rim of blood along the liver, (4) intra-abdominal blood along the spleen.

268x199mm (300 x 300 DPI)

Figure 4. Example that gas related diagnoses can be more confidently diagnosed with PMCT than autopsy. This patient died during a mid-transport resuscitation attempt following a car accident. Initial clinical examination found a hemothorax, however, it was unclear if the patient died due to blood loss or from some other underlying pathology which may have caused the accident. During air ambulance transportation, ventricular fibrillation occurred. PMCT showed an air embolus in the left anterior descending artery (1), probably due to extensive lung trauma and the decrease in atmospheric pressure during the flight. This was not diagnosed at autopsy, with death being attributed to a hemorrhagic shock due to hemothorax. Also, the pneumothorax, pneumopericardium and pneumomediastinum were not mentioned in the autopsy report.

380x284mm (300 x 300 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

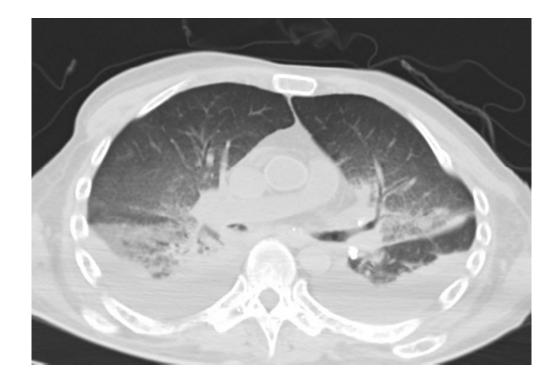


Figure 5. Normal postmortem changes could mask underlying pathology. This patient had a clinical history of allogeneic stem cell transplantation due to multiple myeloma. Clinical examination and antemortem MRI of the brain suggested a post-transplant lymphoproliferative disorder (PTLD). Autopsy diagnosed

bronchopneumonia (left upper lobe and right lower lobe) as the cause of death and did not show PTLD, nor recurrence of multiple myeloma or other malignancy. PMCT showed pleural fluid and interstitial pulmonary edema, which were interpreted as normal postmortem findings. Bronchopneumonia was not diagnosed at PMCT.

333x231mm (300 x 300 DPI)

Page 31 of 33

Section & Topic	No	Item	Reported on page
TITLE OR ABSTRACT			
	1	Identification as a study of diagnostic accuracy using at least one measure of accuracy	3
		(such as sensitivity, specificity, predictive values, or AUC)	
ABSTRACT			
	2	Structured summary of study design, methods, results, and conclusions	3
		(for specific guidance, see STARD for Abstracts)	
INTRODUCTION			
	3	Scientific and clinical background, including the intended use and clinical role of the index test	6
	4	Study objectives and hypotheses	6
METHODS			
Study design	5	Whether data collection was planned before the index test and reference standard	7
		were performed (prospective study) or after (retrospective study)	
Participants	6	Eligibility criteria	7
	7	On what basis potentially eligible participants were identified	7
		(such as symptoms, results from previous tests, inclusion in registry)	
	8	Where and when potentially eligible participants were identified (setting, location and dates)	7
	9	Whether participants formed a consecutive, random or convenience series	7
Test methods	10a	Index test, in sufficient detail to allow replication	7
	10b	Reference standard, in sufficient detail to allow replication	7
	11	Rationale for choosing the reference standard (if alternatives exist)	<u>(6)</u>
	12a	Definition of and rationale for test positivity cut-offs or result categories	8
		of the index test, distinguishing pre-specified from exploratory	
	12b	Definition of and rationale for test positivity cut-offs or result categories	8
		of the reference standard, distinguishing pre-specified from exploratory	_
	13a	Whether clinical information and reference standard results were available	7
	126	to the performers/readers of the index test Whether clinical information and index test results were available	7
	13b	to the assessors of the reference standard	/
Analysis	14	Methods for estimating or comparing measures of diagnostic accuracy	8
Anarysis	1 4 15	How indeterminate index test or reference standard results were handled	8
	16	How missing data on the index test and reference standard results were handled	<u>8</u>
	17	Any analyses of variability in diagnostic accuracy, distinguishing pre-specified from exploratory	8
	18	Intended sample size and how it was determined	8 See
	20		supplementary fi <u>'response to</u> editorial request'
RESULTS			
Participants	19	Flow of participants, using a diagram	Fig 1, page 20
	20	Baseline demographic and clinical characteristics of participants	Table 1, page 22
	21 a	Distribution of severity of disease in those with the target condition	NA
	21b	Distribution of alternative diagnoses in those without the target condition	
	22	Time interval and any clinical interventions between index test and reference standard	10
Test results	23	Cross tabulation of the index test results (or their distribution)	Table <u>2</u> 3, page 22
		by the results of the reference standard	23
	24	Estimates of diagnostic accuracy and their precision (such as 95% confidence intervals)	Table 2<u>3</u> + 5
	25	Any adverse events from performing the index test or the reference standard	
DISCUSSION			
	26	Study limitations, including sources of potential bias, statistical uncertainty, and generalisability	<u>4,</u> 13-1 <u>65</u>
	27	Implications for practice, including the intended use and clinical role of the index test	13-1 <u>65</u>
OTHER			
INFORMATION			
	28	Registration number and name of registry	NA
	29	Where the full study protocol can be accessed For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	5

1	 30	Sources of funding and other support; role of funders	5
2 3			
4 5			
6 7			
, 8 9			
10 11			
12 13			
14			
15 16			
17 18			
19 20			
21 22			
23 24			
25 26			
27 28			
29 30			
31 32			
33 34			
35 36			
37 38			
39 40			
41 42			
43 44			
45 46			
47 48			
49 50			
51 52			
53 54			
55 56			
57 58			
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

STARD 2015

AIM

STARD stands for "Standards for Reporting Diagnostic accuracy studies". This list of items was developed to contribute to the completeness and transparency of reporting of diagnostic accuracy studies. Authors can use the list to write informative study reports. Editors and peer-reviewers can use it to evaluate whether the information has been included in manuscripts submitted for publication.

EXPLANATION

A **diagnostic accuracy study** evaluates the ability of one or more medical tests to correctly classify study participants as having a **target condition**. This can be a disease, a disease stage, response or benefit from therapy, or an event or condition in the future. A medical test can be an imaging procedure, a laboratory test, elements from history and physical examination, a combination of these, or any other method for collecting information about the current health status of a patient.

The test whose accuracy is evaluated is called **index test.** A study can evaluate the accuracy of one or more index tests. Evaluating the ability of a medical test to correctly classify patients is typically done by comparing the distribution of the index test results with those of the **reference standard**. The reference standard is the best available method for establishing the presence or absence of the target condition. An accuracy study can rely on one or more reference standards.

If test results are categorized as either positive or negative, the cross tabulation of the index test results against those of the reference standard can be used to estimate the **sensitivity** of the index test (the proportion of participants *with* the target condition who have a positive index test), and its **specificity** (the proportion *without* the target condition who have a negative index test). From this cross tabulation (sometimes referred to as the contingency or "2x2" table), several other accuracy statistics can be estimated, such as the positive and negative **predictive values** of the test. Confidence intervals around estimates of accuracy can then be calculated to quantify the statistical **precision** of the measurements.

If the index test results can take more than two values, categorization of test results as positive or negative requires a **test positivity cut-off**. When multiple such cut-offs can be defined, authors can report a receiver operating characteristic (ROC) curve which graphically represents the combination of sensitivity and specificity for each possible test positivity cut-off. The **area under the ROC curve** informs in a single numerical value about the overall diagnostic accuracy of the index test.

The **intended use** of a medical test can be diagnosis, screening, staging, monitoring, surveillance, prediction or prognosis. The **clinical role** of a test explains its position relative to existing tests in the clinical pathway. A replacement test, for example, replaces an existing test. A triage test is used before an existing test; an add-on test is used after an existing test.

Besides diagnostic accuracy, several other outcomes and statistics may be relevant in the evaluation of medical tests. Medical tests can also be used to classify patients for purposes other than diagnosis, such as staging or prognosis. The STARD list was not explicitly developed for these other outcomes, statistics, and study types, although most STARD items would still apply.

DEVELOPMENT

This STARD list was released in 2015. The 30 items were identified by an international expert group of methodologists, researchers, and editors. The guiding principle in the development of STARD was to select items that, when reported, would help readers to judge the potential for bias in the study, to appraise the applicability of the study findings and the validity of conclusions and recommendations. The list represents an update of the first version, which was published in 2003.

More information can be found on <u>http://www.equator-network.org/reporting-guidelines/stard.</u>

