Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2017

Content

Copper-Catalyzed Aminoalkynylation of Alkenes with Hypervalent Iodine Reagents

Kun Shen and Qiu Wang*

Department of Chemistry, Duke University, Durham, North Carolina 27708

Email: qiu.wang@duke.edu

Supporting Information

I. General Procedures	S1
II. Materials and Instrumentation	S1–S2
III. Reaction Condition Optimization for Alkene Aminoalkynylation	S2–S4
IV. Synthesis of Hypervalent Iodine Reagent 21	S4–S5
V. General Procedure for Alkene Aminoalkynylation Reaction	S5–S17
VI. Mechanism Investigation	S17–S19
VII. Synthesis of Bicyclic Heterocycles	S19–S23
VIII. Synthesis of Alkyne-Labeled Mesembrane	S24–S30
IX. References	S30
X. NMR Spectra	S31–S173
XI. X-Ray Data	S174–S201

I. General Procedures. Glassware and stir bars were dried in an oven at 140 °C for at least 12 h and then cooled in a desiccator cabinet over Drierite prior to use. Optimization and substrate screens were performed in 8-mL microwave vials. Vials were fitted with crimp top septa under a positive pressure of N_2 that had been passed through a column (5 x 20 cm) of Drierite, unless otherwise noted. All other reactions were performed in round-bottom flasks sealed with rubber septa. Plastic syringes or glass pipets were used to transfer liquid reagents. Reactions were stirred magnetically using Teflon-coated, magnetic stir bars. Analytical thin-layer chromatography (TLC) was performed using aluminum plates pre-coated with 0.25 mm of 230–400 mesh silica gel impregnated with a fluorescent indicator (254 nm). TLC plates were visualized by exposure to ultraviolet light and/or exposure to KMnO₄ stain. Organic solutions were concentrated under reduced pressure using a rotary evaporator. Flash-column chromatography was performed on silica gel (60 Å, standard grade) or with pre-packed FLASH silica gel columns.

II. Materials and Instrumentation. Nuclear magnetic resonance spectra were recorded at ambient temperature (unless otherwise stated) on 400 MHz or 500 MHz spectrometers. All values for proton chemical shifts are reported in parts per million (δ) and are referenced to the residual protium in CDCl₃ (δ 7.26). All values for carbon chemical shifts are reported in parts per million (δ) and are referenced to the carbon resonances in CDCl₃ (δ 77.0). NMR data are represented as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quin = quintet, m = multiplet, br = broad), coupling constant

(Hz), and integration. Infrared spectroscopic data are reported in wavenumbers (cm⁻¹). High-resolution mass spectra were obtained using a liquid chromatography-electrospray ionization and Time-of-flight mass spectrometer. Hypervalent iodine reagents were synthesized according to literature procedures.¹

III.	Reaction	Condition	Optimization	for Alkene	Aminoalkynylation.
------	----------	-----------	--------------	------------	--------------------

a. Screening of Catalyst and Catalyst loading^a

	Me N OMe O Ph	Catalyst (x mol %) CH ₃ CN (0.2 M), 80 °C	le ═──Ph
	1a 2a	3aa	
entry	catalyst	catalyst loading	yield ^{b} (%)
1	Cu(OTf) ₂	10 mol%	69
2	Cu(OAc) ₂	10 mol%	33
3	Cu(acac) ₂	10 mol%	34
4	CuCl ₂	10 mol%	26
5	CuOTf•1/2PhCH ₃	10 mol%	63
6	Cu(CH ₃ CN) ₄ PF ₆	10 mol%	69
7	Cu(CH ₃ CN) ₄ BF ₄	10 mol%	67
8	-	-	15
9	Cu(OTf) ₂	5 mol%	73
10	Cu(OTf) ₂	2 mol%	76
11	Cu(OTf) ₂	1 mol%	78

^{*a*}Reaction Conditions: The reactions were performed in a sealed tube with **1a** (0.20 mmol, 1.0 equiv), **2a** (1.2 equiv), catalyst (1–10 mol%) and CH₃CN (1 mL) at 80 °C for 4 h, unless otherwise noted. ^{*b*}The yield was determined by ¹H NMR with diboromethane as an internal standard.

b. Screening of Temperature^{*a*}

Me Me H N H	0-1Ph + 0	Cu(OTf) ₂ (1 mol %) CH ₃ CN (0.2 M), Temperature	Me Me Me Ph 3aa
entry	T (°C)	Time	yield ^{b} (%)
1	rt	12 h	0
2	40	12 h	15
3	60	12 h	37
4	80	4 h	78
5	100	4 h	84

^{*a*}Reaction Conditions: The reactions were performed in a sealed tube with **1a** (0.20 mmol, 1.0 equiv), **2a** (1.2 equiv), $Cu(OTf)_2$ (1 mol%) and CH_3CN (1 mL), unless otherwise noted. ^{*b*}The yield was determined by ¹H NMR with diboromethane as an internal standard.

c. Screening of Additives^a

^{*a*}Reaction Conditions: The reactions were performed in a sealed tube with **1a** (0.20 mmol, 1.0 equiv), **2a** (1.2 equiv), Cu(OTf)₂ (1 mol%), additive (2.0 equiv) and CH₃CN (1 mL) at 100 °C for 12 h, unless otherwise noted. ^{*b*}The yield was determined by ¹H NMR with diboromethane as an internal standard. ^{*c*} The reaction was run without **2a**. ^{*d*} 55% recovery of **1a** and 32% of hydroamination product.

d. Screening of Ligands^a

Me Me ↓ N∽OM€	O Ph Cu(OTf) ₂ (1 mol %) ligand (1.2 mol%)	MeN_OMe
Н	+ 0 ² CH ₃ CN (0.2 M), 100 °C	Me Ph
1a	2a	3aa
entry	ligand	yield ^b (%)
1	-	84
2	bpy	44
3	1,10-phenanthroline	36
4	bathophenanthroline	45
5	bathocuproine	44
6	biquinoline	57
7	di(2-pyridyl) ketone	64
8	binap	71
9	dppbz	70
10	dpephos	75
11	xantphos	70

^{*a*}Reaction Conditions: The reactions were performed in a sealed tube with **1a** (0.20 mmol, 1.0 equiv), **2a** (1.2 equiv), Cu(OTf)₂ (1 mol%), ligand (1.2 mol%) and CH₃CN (1 mL) at 100 °C for 12 h, unless otherwise noted. ^{*b*}The yield was determined by ¹H NMR with diboromethane as an internal standard.

e. Screening of Hypervalent Iodine Reagents^a

$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$				
O-IPh	$P_3C \rightarrow Ph$ $F_3C \rightarrow F_3C$	TfO [⊖] I [⊕] — Ph	O-I-Ph O-NO ₂	
2a	2a'	2a''	2a-NO ₂	
entry	2		yield ^{b} (%)	
1	2a		84	
2	2a'		57	
3	2a"		<5	
4	2a-NO ₂		19	

^{*a*}Reaction Conditions: The reactions were performed in a sealed tube with **1a** (0.20 mmol, 1.0 equiv), **2** (1.2 equiv), $Cu(OTf)_2$ (1 mol%) and CH_3CN (1 mL) at 100 °C for 5 h, unless otherwise noted. ^{*b*}The yield was determined by ¹H NMR with diboromethane as an internal standard.

f. Reactions of Amides Bearing Different Protecting Groups^a

	Ph PG PG PG Ph PG Ph Ph PG Ph Ph PG Ph Ph Ph Ph Ph Ph Ph Ph	Cu(OTf) ₂ (1 mol%) CH ₃ CN (0.2 M), 100 °C	Ph PG Ph 3
entry	1	3	yield $(\%)^b$
1	$\mathbf{1b}, \mathbf{PG} = \mathbf{OMe}$	3ba	71
2	1b-S1 , PG = Ts	3ba-S1	$0^c (100)^d$
3	1b-S2 , PG = H	3ba-S2	$0^{c} (86)^{d}$
4	1b-S3 , PG = Ph	3ba-S3	$0^{c} (100)^{d}$
5	1b-S4 , PG = Bn	3ba-S4	$0^c (100)^d$

^{*a*}Reaction Conditions: The reactions were performed in a sealed tube with **1a** (0.20 mmol, 1.0 equiv), **2a** (1.2 equiv), $Cu(OTf)_2$ (1 mol%) and CH_3CN (1 mL), unless otherwise noted. ^{*b*}The yield was determined by ¹H NMR with diboromethane as an internal standard. ^{*c*}Desired aminoalkynylation product not detected by either GC-MS or ¹H NMR. ^{*d*}The recovery of starting material **1** was indicated in the parenthesis.

IV. Synthesis of Hypervalent Iodine Reagent 21

Following a reported procedure with appropriate modifications,¹ 2-iodobenzoic acid (4.96 g, 20.0 mmol, 1.0 equiv), *para*-toluenesulfonic acid monohydrate (3.8 g, 20.0 mmol, 1.0 equiv) and *meta*-chloroperoxybenzoic

acid (\leq 77%, 5.4 g, 22.0 mmol, 1.1 equiv) were dissolved in CH₂Cl₂ (30 mL) and 2,2,2-trifluoroethanol (30 mL). The mixture was stirred at room temperature under N₂ for 1 h, after which trimethyl(phenylbuta-1,3-diyn-1-yl)silane (5.54 g, 28.0 mmol, 1.4 equiv) was added in one portion. The reaction mixture was stirred at room temperature overnight, filtered and concentrated *in vacuo*. The resulting oil was dissolved in CH₂Cl₂ (100 mL) and under vigorous stirring, saturated solution of NaHCO₃ (100 mL) was added. The mixture was stirred for 1 h, the two layers were separated and the aqueous layer was extracted with CH₂Cl₂ (3 x 50 mL). The combined organic layers were dried over NaSO₄, filtered, and concentrated *in vacuo*. Recrystallization in CH₃CN afford **21** (2.38 g, 6.4 mmol, 32%) as a yellow solid. R_f = 0.47 (100% EtOAc); ¹H NMR (500 MHz, DMSO): δ 8.25 (d, *J* = 8.0 Hz, 1H), 8.12 (d, *J* = 7.0 Hz, 1H), 7.93 (t, *J* = 7.0 Hz, 1H), 7.82 (t, *J* = 7.0 Hz, 1H), 7.69 (d, *J* = 7.0 Hz, 2H), 7.55 (t, *J* = 7.5 Hz, 1H), 7.48 (t, *J* = 7.5 Hz, 2H); ¹³C NMR (125 MHz, DMSO): δ 166.3, 135.4, 133.2, 131.7, 131.5, 131.4, 131.0, 129.1, 127.6, 119.0, 116.7, 87.2, 80.1, 73.0, 50.8; IR (neat): 3057, 2918, 2098, 1644, 1437, 1285, 1237, 1118, 826, 746, 682 cm⁻¹; HRMS (m/z) Calcd for (C₁₇H₁₀IO₂) ([M+H]⁺): 372.9720; found: 372.9725.

V. General Procedure for Alkene Aminoalkynylation Reaction.

To a reaction tube charged with *N*-methoxyamide **1** (0.3 mmol, 1.0 equiv) and hypervalent iodine reagent **2** (0.36 mmol, 1.2 equiv), was added Cu(OTf)₂ (1.09 mg, 0.003 mmol, 1 mol %) and CH₃CN (1.5 mL). The reaction tube was capped and the resulting mixure was allowed to stir at 100 °C for 12 h. After cooling down to room temperature, the reaction mixture was filtered through a pad of basic Al₂O₃ and washed with EtOAc (15 mL). The filtrate was concentrated *in vacuo*. The resulting crude mixture was subject to flash column chromatography to provide the aminoalkynylation product **3**.

1-Methoxy-3,3-dimethyl-5-(3-phenylprop-2-yn-1-yl)pyrrolidin-2-one (3aa). Purification by column chromatography (20% EtOAc in hexanes) gave **3aa** as a yellow oil (58.4 mg, 76% yield); $R_f = 0.30$ (33% EtOAc in hexanes); ¹H NMR (400 MHz, CDCl₃): δ 7.39–7.27 (m, 2H), 7.27–7.16 (m, 3H), 3.82 (s, 3H), 3.82–3.74 (m, 1H), 2.81–2.68 (m, 2H), 1.99 (dd, J = 12.8, 7.2 Hz, 1H), 1.81 (dd, J = 12.8, 8.4 Hz, 1H), 1.18 (s, 3H), 1.09 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 175.8, 131.1, 127.9, 127.7, 122.7, 84.1, 83.3, 62.5, 53.4, 37.0, 36.7, 25.3, 24.6, 23.2; IR (neat): 2964, 2932, 2869, 1707, 1441, 1365, 1240, 1037, 1014, 926, 755, 729, 691 cm⁻¹; HRMS (m/z) Calcd for (C₁₆H₂₀NO₂) ([M+H]⁺): 258.1489; found: 258.1490.

1-Methoxy-3,3-diphenyl-5-(3-phenylprop-2-yn-1-yl)pyrrolidin-2-one (3ba). Purification by column chromatography (10% EtOAc in hexanes) gave **3ba** as a yellow oil (81.6 mg, 71% yield); R_f = 0.65 (33% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃): δ 7.50–7.10 (m, 15H), 3.98 (s, 3H), 3.01 (dd, *J* = 13.0, 6.5 Hz, 1H), 2.95–2.85 (m, 2H), 2.78 (dd, *J* = 13.0, 9.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 172.1, 143.7, 141.1, 131.5, 128.4, 128.26, 128.20, 128.0, 127.7, 127.6, 122.8, 84.14, 84.12, 63.2, 54.5, 54.0, 37.8, 23.1; IR (neat): 2935, 1705, 1489, 1443, 1367, 1238, 1043, 754, 690 cm⁻¹; HRMS (m/z) Calcd for (C₂₆H₂₄NO₂) ([M+H]⁺): 382.1802; found: 382.1802.

1-Methoxy-4,4-dimethyl-5-(3-phenylprop-2-yn-1-yl)pyrrolidin-2-one (**3ca**). Purification by column chromatography (33% EtOAc in hexanes) gave **3ca** as a yellow oil (58.4 mg, 76% yield); $R_f = 0.18$ (33% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃): δ 7.45–7.35 (m, 2H), 7.34–7.24 (m, 3H), 3.86 (s, 3H), 3.58 (dd, J = 6.5, 4.0 Hz, 1H), 2.82 (dd, J = 17.0, 6.5 Hz, 1H), 2.75 (dd, J = 17.0, 4.0 Hz, 1H), 2.42 (d, J = 17.0 Hz, 1H), 2.13 (d, J = 17.0 Hz, 1H), 1.28 (s, 6H); ¹³C NMR (125 MHz, CDCl₃): δ 170.2, 131.3, 128.2, 128.0, 123.0, 85.1, 83.5, 65.2, 62.5, 43.0, 33.5, 29.8, 23.2, 19.4; IR (neat): 2960, 2931, 1706, 1490, 1441, 1368, 1241, 1064, 756, 691 cm⁻¹; HRMS (m/z) Calcd for (C₁₆H₂₀NO₂) ([M+H]⁺): 258.1489; found: 258.1488.

1-Methoxy-5-(3-phenylprop-2-yn-1-yl)pyrrolidin-2-one (3da). Purification by column chromatography (33% EtOAc in hexanes) gave **3da** as a colorless oil (23.7 mg, 35% yield); $R_f = 0.10$ (33% EtOAc in hexanes); ¹H NMR (400 MHz, CDCl₃): δ 7.40–7.30 (m, 2H), 7.30–7.20 (m, 3H), 3.95–3.85 (m, 1H), 3.84 (s, 3H), 2.85–2.65 (m, 2H), 2.52–2.38 (m, 1H), 2.35–2.10 (m, 2H), 2.09–1.93 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 171.3, 131.4, 128.2, 128.0, 122.9, 84.2, 83.3, 63.0, 55.8, 26.9, 23.3, 20.7; IR (neat): 2936, 1701, 1489, 1440, 1360, 1277, 1052, 964, 756, 692 cm⁻¹; HRMS (m/z) Calcd for (C₁₄H₂₆NO₂) ([M+H]⁺): 230.1176; found: 230.1177.

1-Methoxy-3-phenyl-5-(3-phenylprop-2-yn-1-yl)pyrrolidin-2-one (3ea). The crude reaction mixture contains two diastereoisomers with d.r. = 2.5:1 detected by ¹H NMR. Purification by column chromatography (25% EtOAc in hexanes) gave **3ea** as a mixture of two separable diastereoisomers (35.2 mg major and 14.1 mg minor, 54% yield; relative stereochemistry was assigned on the basis of ¹H NMR.²).

Major diastereomer: Yellow oil; $R_f = 0.35$ (33% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃): δ 7.50–7.20 (m, 10H), 4.20–4.10 (m, 1H), 3.94 (s, 3H), 3.86 (dd, J = 10.0, 8.0 Hz, 1H), 2.94–2.80 (m, 2H), 2.62 (ddd, J = 13.0, 10.0, 3.5 Hz, 1H), 2.33 (dd,

J = 13.0, 8.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 170.7, 139.3, 131.5, 128.8, 128.3, 128.1, 127.6, 127.2, 122.9, 84.4, 83.5, 62.9, 54.3, 43.8, 30.9, 23.2; IR (neat): 2935, 1705, 1489, 1441, 1362, 1264, 1044, 959, 756, 691 cm⁻¹; HRMS (m/z) Calcd for (C₂₀H₂₀NO₂) ([M+H]⁺): 306.1489; found: 306.1485.

OmeMnior diastereomer: Yellow oil; $R_f = 0.23$ (33% EtOAc in hexanes); ¹H NMR (500MHz, CDCl₃): δ 7.45–7.38 (m, 2H), 7.37–7.24 (m, 8H), 4.01 (s, 3H), 3.98–3.89 (m, 1H), 3.62 (t, J = 10.0 Hz, 1H), 2.99 (dd, J = 17.0, 6.0 Hz, 1H), 2.87 (dd, J = 17.0, 3.5

Hz, 1H), 2.74–2.64 (m, 1H), 2.26–2.16 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 172.3, 138.9, 131.5, 128.7, 128.3, 128.1, 128.0, 127.2, 122.9, 84.2 (2C), 63.8, 55.2, 45.0, 31.0, 23.5; IR (neat): 2938, 1711, 1490, 1448, 1365, 1267, 1045, 757, 694 cm⁻¹; HRMS (m/z) Calcd for (C₂₀H₂₀NO₂) ([M+H]⁺): 306.1489; found: 306.1487.

Ph,

1-Methoxy-4-methyl-5-(3-phenylprop-2-yn-1-yl)pyrrolidin-2-one (3fa). The crude reaction mixture contains two diastereoisomers with d.r. = 1:1 detected by ¹H NMR. Purification by column chromatography (25% EtOAc in hexanes) gave **3ea** as a mixture of two separable diastereoisomers (18.9 mg and 18.3 mg, 51% yield; relative stereochemistry was assigned on the basis of ¹H NMR, ³ the signals of methyne protons at C-5 in the *trans* isomers were reported to appear at a higher field than those of the *cis* isomers.).

Diastereomer I: Yellow solid; $R_f = 0.18$ (33% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃): δ 7.43–7.33 (m, 2H), 7.33–7.23 (m, 3H), 3.89 (s, 3H), 3.52–3.42 (m, 1H), 2.88– Me 2.74 (m, 2H), 2.65 (dd, J = 17.0, 9.0 Hz, 1H), 2.45–2.35 (m, 1H), 1.95 (dd, J = 17.0, 7.0 Hz, 1H), 1.21 (d, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 170.6, 131.4, 128.2, 128.0, 122.9, 84.4, 83.5, 63.3, 63.0, 35.7, 28.9, 22.2, 19.5; IR (neat): 2961, 2931, 1717, 1489, 1441, 1377, 1290, 1250, 1056, 972, 756, 691 cm⁻¹; HRMS (m/z) Calcd for (C₁₆H₁₈NO₂) ([M+H]⁺): 244.1332; found: 244.1333.

Diastereomer II: Yellow solid; $R_f = 0.12$ (33% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃): δ 7.43–7.33 (m, 2H), 7.33–7.23 (m, 3H), 4.00–3.90 (m, 1H), 3.85 (s, 3H), 2.83 (dd, J = 17.0, 7.0 Hz, 1H), 2.69 (dd, J = 17.0, 3.0 Hz, 1H), 2.66–2.54 (m, 1H), 2.44 (dd, J = 17.0, 9.0 Hz, 1H), 2.25 (dd, J = 17.0, 8.5 Hz, 1H), 1.27 (d, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 171.2, 131.3, 128.2, 128.0, 123.0, 85.0, 83.5, 62.7, 59.0, 35.6, 27.5, 18.7, 14.8; IR (neat): 2967, 2932, 1707, 1489, 1441, 1381, 1261, 1059, 964, 756, 691, 632, 586 cm⁻¹; HRMS (m/z) Calcd for (C₁₆H₁₈NO₂) ([M+H]⁺): 244.1332; found: 244.1334.

1-Benzyl-3-methoxy-4-(3-phenylprop-2-yn-1-yl)imidazolidin-2-one (**3ga**). Purification by column chromatography (20% EtOAc in hexanes) gave **3ga** as a yellow oil (72.1 mg, 75% yield); $R_f = 0.40$ (33% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃): δ 7.45–7.15 (m, 10H), 4.47 (d, J = 15.0 Hz, 1H), 4.37 (d, J = 15.0 Hz, 1H), 3.92 (s, 3H), 3.79–3.69 (m, 1H), 3.31 (t, J = 8.5 Hz, 1H), 3.09 (t, J = 8.5 Hz, 1H), 2.90 (dd,

J = 17.0, 4.0 Hz, 1H), 2.73 (dd, J = 17.0, 7.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 161.9, 135.8, 131.5, 128.7, 128.2, 128.1, 128.0, 127.7, 122.9, 84.2, 83.3, 64.6, 57.4, 47.7, 45.1, 22.1; IR (neat): 2933, 1724, 1489, 1435, 1259, 1030, 754, 691, 631 cm⁻¹; HRMS (m/z) Calcd for (C₂₁H₂₁N₂O₂) ([M+H]⁺): 321.1598; found: 321.1600.

BnN N~OMe

(4*S*,5*S*)-1-Benzyl-5-isopropyl-3-methoxy-4-(3-phenylprop-2-yn-1-yl)imidazolidin-2-one (3ha). Only one diastereomer was observed from the crude ¹H NMR. Purification by column chromatography (20% EtOAc in hexanes) gave **3ha** as a yellow oil (84.1 mg, 78% yield); R_f = 0.51 (33% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃): δ 7.40–7.15 (m, 10H), 4.92 (d, *J* = 15.5 Hz, 1H), 3.96 (d, *J* = 15.5 Hz, 1H), 3.92 (s, 3H), 3.60 (q, *J* = 5.0 Hz, 1H), 3.36 (dd, *J* = 5.0, 3.0 Hz, 1H), 2.72 (d, *J* = 5.0 Hz, 2H), 2.14–1.98 (m, 1H), 0.93 (d, *J* = 7.0 Hz, 3H), 0.87 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 161.1, 135.9, 131.5, 128.5, 128.1, 128.0, 127.9, 127.4, 123.1, 84.8, 83.5, 64.4, 59.6, 56.2, 45.1, 27.2, 22.7, 18.1, 15.8; IR (neat): 2961, 2933, 2896, 1719, 1490, 1419, 1245, 1029, 755, 691, 631 cm⁻¹; HRMS (m/z) Calcd for (C₂₃H₂₇N₂O₂) ([M+H]⁺): 363.2067; found: 363.2071.

Stereochemistry was assigned on the basis of NOESY.

3-Methoxy-4-(3-phenylprop-2-yn-1-yl)oxazolidin-2-one (3ia). Purification by column chromatography (20% EtOAc in hexanes) gave **3ia** as a yellow solid (29.0 mg, 42% yield); $R_f = 0.46$ (33% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃): δ 7.46–7.36 (m, 2H), 7.36–7.26 (m, 3H), 4.43 (t, J = 8.0 Hz, 1H), 4.25 (t, J = 8.0 Hz, 1H), 4.13–4.05 (m, 1H), 3.89 (s, 3H), 2.89 (dd, J = 17.0, 4.0 Hz, 1H), 2.83 (dd, J = 17.0, 7.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 158.3, 131.5 (2C), 128.33, 128.30 (2C), 122.5, 84.1, 82.5, 65.4, 64.2, 56.8, 21.2; IR (neat): 2974, 2938, 1770, 1661, 1490, 1394, 1209, 1070, 1021, 983, 754, 691 cm⁻¹; HRMS (m/z) Calcd for (C₁₃H₁₄NO₃) ([M+H]⁺): 232.0968; found: 232.0970.

3-Methoxy-5,5-dimethyl-4-(3-phenylprop-2-yn-1-yl)oxazolidin-2-one (3ja). Purification by column chromatography (20% EtOAc in hexanes) gave **3ja** as a yellow solid (53.6 mg, 69% yield); R_f = 0.63 (33% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃): δ 7.43–7.35 (m, 2H), 7.34–7.28 (m, 3H), 3.85 (s, 3H), 3.76–3.68 (m, 1H), 2.95 (dd, *J* = 17.0, 4.0 Hz, 1H), 2.71 (dd, *J* = 17.0, 9.5 Hz, 1H), 1.59 (s, 3H), 1.52 (s,

3H); ¹³C NMR (125 MHz, CDCl₃): δ 157.8, 131.4 (2C), 128.3 (3C), 122.6, 83.6, 83.5, 80.6, 65.8, 64.2, 28.0, 21.6, 19.0; IR (neat): 2979, 2937, 1772, 1490, 1441, 1374, 1277, 1072, 755, 691 cm⁻¹; HRMS (m/z) Calcd for (C₁₅H₁₈NO₃) ([M+H]⁺): 260.1281; found: 260.1283.

1-Methoxy-3,3,5-trimethyl-5-(3-phenylprop-2-yn-1-yl)pyrrolidin-2-one (**3ka**). Purification by column chromatography (20% EtOAc in hexanes) gave **3ka** as a yellow oil (56.2 mg, 69% yield); $R_f = 0.44$ (33% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃): δ 7.45–7.35 (m, 2H), 7.34–7.24 (m, 3H), 3.96 (s, 3H), 2.78 (d, J = 17.0 Hz, 1H), 2.65 (d, J = 17.0 Hz, 1H), 2.27 (d, J = 13.5 Hz, 1H), 1.89 (dd, J = 13.5 Hz, 1H), 1.43 (s, 3H), 1.26 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 175.1, 131.4, 128.2, 128.0, 123.0, 85.6, 83.6, 64.0, 60.7, 43.6, 36.4, 30.7, 27.7, 27.0, 25.7; IR (neat): 2968, 2938, 2869, 1703, 1489, 1442, 1385, 1016, 756, 691 cm⁻¹; HRMS (m/z) Calcd for (C₁₇H₂₂NO₂) ([M+H]⁺): 272.1645; found: 272.1642.

2-Methoxy-3-(3-phenylprop-2-yn-1-yl)-3,4-dihydroisoquinolin-1(*2H*)-one (**3la**). Purification by column chromatography (20% EtOAc in hexanes) gave **3la** as a yellow oil (66.3 mg, 76% yield); R_f = 0.48 (33% EtOAc in hexanes); ¹H NMR (400 MHz, CDCl₃): δ 8.12 (d, *J* = 8.0 Hz, 1H), 7.50–7.20 (m, 8H), 4.24–4.10 (m, 1H), 3.96 (s, 3H), 3.52–3.32 (m, 2H), 2.97 (dd, *J* = 16.8, 3.6 Hz, 1H), 2.68 (dd, *J* = 16.8, 9.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 163.4, 135.3, 132.5, 131.5 (2C), 128.2 (2C), 128.1 (2C), 128.0, 127.9, 127.1, 123.0, 85.3, 83.4, 63.1, 57.9, 32.7, 21.8; IR (neat): 3054, 2935, 1669, 1264, 1242, 1021, 998, 730, 689 cm⁻¹; HRMS (m/z) Calcd for (C₁₉H₁₈NO₂) ([M+H]⁺): 292.1332; found: 292.1335.

2-Methoxy-3-(3-phenylprop-2-yn-1-yl)-5-tosyl-2,3,4,5-tetrahydro-1*H***-pyrido**[**4,3-***b*]**indol-1-one** (**3ma**). Purification by column chromatography (20% EtOAc in hexanes) gave **3ma** as a yellow oil (66.8 mg, 46% yield); $R_f = 0.45$ (33% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃): δ 8.28–8.19 (m, 1H), 8.19–8.11 (m, 1H), 7.83 (d, J = 8.5 Hz, 2H), 7.45–7.25 (m, 7H), 7.14 (d, J = 8.5 Hz, 2H), 4.32–4.22 (m, 1H), 4.12 (dd, J = 18.0, 4.0 Hz, 1H), 3.95 (s, 3H), 3.74 (dd, J = 18.0, 6.0 Hz, 1H), 3.03 (dd, J = 17.0, 3.5 Hz, 1H), 2.76 (dd, J = 17.0, 9.5 Hz, 1H), 2.29 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 163.5, 145.7, 140.2, 136.2, 134.9, 131.4, 130.1, 128.2, 128.1, 126.5, 126.1, 125.1, 124.7, 122.8, 121.3, 113.8, 111.8, 85.1, 84.1, 63.4, 58.3, 28.5, 21.5, 21.3; IR (neat): 3054, 2934, 1675, 1449, 1419, 1375, 1264, 1172, 1037, 731, 684, 659, 569, 539 cm⁻¹; HRMS (m/z) Calcd for (C₂₈H₂₅N₂O₄S) ([M+H]⁺): 485.1530; found: 485.1534.

2-Methoxy-3-(3-phenylprop-2-yn-1-yl)-3,4-dihydro-2,6-naphthyridin-1(2*H***)-one (3na**). Purification by column chromatography (75% EtOAc in hexanes) gave **3na** as a yellow oil (35.0 mg, 40% yield); $R_f = 0.16$ (67% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃): δ 8.77–7.50 (m, 2H), 8.04–7.84 (m, 1H), 7.45–7.15 (m, 5H), 4.35–4.20 (m, 1H), 3.97 (s, 3H), 3.55–3.35 (m, 2H), 2.95 (dd, *J* = 17.0, 3.5 Hz, 1H), 2.72 (dd, *J* = 17.0, 9.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 161.2, 149.3, 148.9, 135.2, 131.4 (2C), 129.3, 128.2 (3C), 122.6, 120.5, 84.5, 84.3, 63.1, 57.7, 29.8, 22.3; IR (neat): 2934, 1673, 1568, 1421, 1308, 1244, 1019, 999, 756, 691 cm⁻¹; HRMS (m/z) Calcd for (C₁₈H₁₇N₂O₂) ([M+H]⁺): 293.1285; found: 293.1287.

1-Methoxy-3,3-dimethyl-5-(2-methyl-4-phenylbut-3-yn-2-yl)pyrrolidin-2-one (**3oa**). Purification by column chromatography (25% EtOAc in hexanes) gave **3oa** as a yellow oil (70.5 mg, 82% yield); $R_f = 0.45$ (33% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃): δ 7.40–7.30 (m, 2H), 7.30–7.20 (m, 3H), 3.84 (s, 3H), 3.61 (t, J = 8.5 Hz, 1H), 1.92 (dd, J = 13.0, 8.0 Hz, 1H), 1.79 (dd, J = 13.0, 9.0 Hz, 1H), 1.43 (s, 3H), 1.28 (s, 3H), 1.19 (s, 3H), 1.11 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 177.0, 131.3, 128.1, 127.7, 123.1, 93.2, 82.6, 62.1, 60.9, 36.5, 35.7, 35.3, 26.3, 26.1, 25.3, 24.9; IR (neat): 2967, 2930, 2868, 1707, 1458, 1442, 1386, 1363, 1271, 1248, 1021, 929, 755, 691 cm⁻¹; HRMS (m/z) Calcd for (C₁₈H₂₄NO₂) ([M+H]⁺): 286.1802; found: 286.1801.

5-(1,3-Diphenylprop-2-yn-1-yl)-1-methoxy-3,3-dimethylpyrrolidin-2-one (**3pa**). The crude reaction mixture contains two diastereoisomers with d.r. = 2:1 detected by ¹H NMR. Purification by column chromatography (33% EtOAc in hexanes) gave **3pa** as a mixture of two separable diastereoisomers (50.0 mg major and 20.5 mg minor from (*E*)-**1p**, 71% yield; 48.0 mg major and 22.2 mg minor from (*Z*)-**1p**, 70% yield). The relative stereochemistry was assigned by X-Ray (See section XI).

Major diastereomer: Yellow solid; R_f = 0.42 (33% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃): δ 7.51−7.41 (m, 4H), 7.38 (t, J = 7.5 Hz, 2H), 7.36−7.27 (m, 4H),
^ah 4.64 (d, J = 4.0 Hz, 1H), 4.04 (s, 3H), 3.96−3.86 (m, 1H), 2.05 (dd, J = 13.0, 8.5 Hz, 1H), 1.55 (dd, J = 13.0, 7.0 Hz, 1H), 1.25 (s, 3H), 1.07 (s, 3H); ¹³C NMR (125 MHz, 1H),

CDCl₃): δ 176.5, 136.5, 131.6, 128.7, 128.3, 128.0, 127.5, 122.7, 87.2, 86.0, 63.5, 60.5, 40.2, 37.3, 33.6, 25.7, 25.2; IR (neat): 3059, 2963, 1710, 1286, 1030, 1017, 755, 691 cm⁻¹; HRMS (m/z) Calcd for (C₂₂H₂₄NO₂) ([M+H]⁺): 334.1802; found: 334.1800.

Minor diastereomer: Yellow solid; $R_f = 0.26$ (33% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃): δ 7.55–7.42 (m, 4H), 7.42–7.28 (m, 6H), 4.23 (d, J = 3.5 Hz, 1H), 4.40–4.30 (m, 1H), 3.85 (s, 3H), 1.95 (dd, J = 13.5, 8.5 Hz, 1H), 1.71 (dd, J = 13.5, 6.0 Hz, 1H), 1.10 (s, 3H), 0.55 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 174.7, 135.1,

131.6, 129.1, 128.4, 128.3, 128.2, 127.6, 122.9, 87.3, 85.1, 61.2, 57.3, 39.4, 36.5, 33.5, 26.7, 24.6; IR (neat): 3059, 2965, 1694, 1449, 1228, 1028, 1014, 757, 698 cm⁻¹; HRMS (m/z) Calcd for $(C_{22}H_{24}NO_2)$ ([M+H]⁺): 334.1802; found: 334.1808.

1-Methoxy-6-(phenylethynyl)hexahydrocyclopenta[*b*]**pyrrol-2**(1*H*)-**one** (**3qa**). Only one diastereomer was observed from the crude ¹H NMR. Purification by column chromatography (20% EtOAc in hexanes) gave **3qa** as a yellow oil (45.3 mg, 60% yield); $R_f = 0.13$ (33% EtOAc in hexanes); ¹H NMR (400 MHz, CDCl₃): δ 7.40–7.30 (m, 2H), 7.30–7.20 (m, 3H), 4.23 (d, *J* = 7.6 Hz, 1H), 3.78 (s, 3H), 3.24–3.14 (m, 1H), 2.89–2.74 (m, 1H), 2.57 (dd, *J* = 17.6, 10.4 Hz, 1H), 2.30–2.10 (m, 1H), 1.98 (dd, *J* = 17.6, 7.2 Hz, 1H), 1.95–1.77 (m, 2H), 1.57–1.41 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 168.8, 131.3, 128.0, 127.8, 122.9, 89.8, 82.2, 66.9, 61.8, 35.1, 34.4, 32.9, 31.7, 30.4; IR (neat): 2925, 2868, 1700, 1489, 1442, 1395, 1267, 1057, 961, 756, 691 cm⁻¹; HRMS (m/z) Calcd for (C₁₆H₁₈NO₂) ([M+H]⁺): 256.1332; found: 256.1333. The relative stereochemistry was assigned on the basis of NOESY.

1-Methoxy-3,3-dimethyl-7-(phenylethynyl)octahydro-2*H***-indol-2-one (3ra**). Only one diastereomer was observed from the crude ¹H NMR. Purification by column chromatography (25% EtOAc in hexanes) gave **3ra** as a yellow oil (82.1 mg, 92% yield); R_f = 0.56 (33% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃): δ 7.50–7.35 (m, 2H), 7.35–7.20 (m, 3H), 3.93–3.86 (m, 1H), 3.82 (s, 3H), 3.42–3.32 (m, 1H), 2.14–2.02 (m, 1H), 1.90–1.50 (m, 5H), 1.35–1.20 (m, 1H), 1.12 (s, 3H), 1.10 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 177.8, 131.5, 128.1, 127.8, 123.2, 90.0, 82.4, 62.3, 58.0, 42.5, 38.3, 27.8, 25.6, 24.5, 23.4, 19.7, 18.6; IR (neat): 2934, 2861, 1714, 1489, 1442, 1386, 1233, 1023, 756, 691 cm⁻¹; HRMS (m/z) Calcd for (C₁₉H₂₄NO₂) ([M+H]⁺): 298.1802; found: 298.1803.

The relative stereochemistry was assigned on the basis of NOESY.

1-Methoxy-6-(phenylethynyl)hexahydro-3,5-methanocyclopenta[*b*]**pyrrol-2(1***H***)-one** (**3sa**). Only one diastereomer was observed from the crude ¹H NMR. Purification by column chromatography (33% EtOAc in hexanes) gave **3sa** as a yellow oil (51.9 mg, 65% yield); $R_f = 0.22$ (33% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃): δ 7.42–7.32 (m, 2H), 7.32–7.20 (m, 3H), 3.93 (d, *J* = 4.5 Hz, 1H), 3.78 (s, 3H), 2.96–2.86 (m, 1H), 2.67 (s, 1H), 2.57 (s, 1H), 2.41 (dd, *J* = 11.0, 4.0 Hz, 1H), 2.09 (d, *J* = 11.0 Hz, 1H), 2.00–1.90 (m, 1H), 1.65 (d, *J* = 13.0 Hz, 1H), 1.55 (d, *J* = 10.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 176.3, 131.3, 128.1, 127.8, 123.0, 90.1, 82.7, 65.0, 62.7, 43.9, 40.4, 38.9, 37.3, 35.0, 34.7; IR (neat): 2965, 2874, 1720, 1489, 1441, 1227, 1058, 1002, 756, 691 cm⁻¹; HRMS (m/z) Calcd for (C₁₇H₁₈NO₂) ([M+H]⁺): 268.1332; found: 268.1329.

The relative stereochemistry was assigned on the basis of NOESY.

2-Methoxy-4-methyl-6-(phenylethynyl)-2-azabicyclo[2.2.1]heptan-3-one (3ta). The crude reaction mixture contains two diastereoisomers with d.r. = 5:1 detected by ¹H NMR. Purification by column chromatography (33% EtOAc in hexanes) gave **3ta** as a mixture of two separable diastereoisomers (29.8 mg major and 6.8 mg minor, 48% yield).

Major diastereomer: Yellow solid; $R_f = 0.56$ (33% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃): δ 7.45–7.35 (m, 2H), 7.35–7.25 (m, 3H), 4.05 (s, 1H), 3.81 (s, 3H), 3.26–3.16 (m, 1H), 2.08–1.97 (m, 1H), 1.93 (d, J = 10.0 Hz, 1H), 1.82 (dd, J = 12.5,

5.0 Hz, 1H), 1.70 (d, J = 10.0 Hz, 1H), 1.33 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 179.3, 131.5, 128.2, 128.0, 123.0, 90.2, 81.9, 64.2, 63.4, 50.0, 41.8, 38.2, 30.5, 14.1; IR (neat): 2963, 2929, 1727, 1490, 1440, 1241, 1212, 1026, 763, 752, 694 cm⁻¹; HRMS (m/z) Calcd for (C₁₆H₁₈NO₂) ([M+H]⁺): 256.1332; found: 256.1328.

Minor diastereomer: Yellow solid; $R_f = 0.28$ (33% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃): δ 7.43–7.33 (m, 2H), 7.33–7.22 (m, 3H), 4.20 (s, 1H), 3.84 (s, 3H), 3.35–3.25 (m, 1H), 2.18–2.07 (m, 1H), 1.81–1.71 (m, 1H), 1.71 (d, J = 9.5 Hz, 1H), 1.52 (d, J = 9.5 Hz, 1H), 1.33 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 175.6, 131.5, 128.0, 127.7, 123.4, 89.2,

82.4, 63.6, 62.9, 50.0, 42.8, 40.4, 33.7, 14.7; IR (neat): 2958, 2945, 2868, 1719, 1490, 1441, 1363, 1254, 1021, 755, 748, 690 cm⁻¹; HRMS (m/z) Calcd for ($C_{16}H_{18}NO_2$) ([M+H]⁺): 256.1332; found: 256.1336. Stereochemistry was assigned on the basis of NOESY.

6-Methoxy-1,4-dimethyl-4-(phenylethynyl)-6-azabicyclo[3.2.1]octan-7-one (3ua). The crude reaction mixture contains two diastereoisomers with d.r. = 2:1 detected by ¹H NMR. Purification by column chromatography (33% EtOAc in hexanes) gave **3ua** as a mixture of two separable diastereoisomers (43.4 mg major and 21.2 mg minor, 76% yield).

Me Me Me Ph

Major diastereomer: Yellow oil; R_f = 0.49 (33% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃): δ 7.44−7.34 (m, 2H), 7.34−7.23 (m, 3H), 3.79 (d, J = 5.5 Hz, 1H), 3.77 (s, 3H), 2.39 (d, J = 11.0 Hz, 1H), 1.97−1.87 (m, 1H), 1.87−1.76 (m, 1H), 1.71−1.53 (m, 3H), 1.46 (s, 3H), 1.11 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 174.3, 131.3, 128.1, 127.8, 123.0, 93.9, 82.7, 62.6, 61.2, 40.8, 38.8, 34.7, 33.7, 31.8, 27.1, 20.1; IR (neat): 2933, 2868, 1716, 1489, 1453,

1377, 1021, 754, 691 cm⁻¹; HRMS (m/z) Calcd for $(C_{18}H_{22}NO_2)$ ([M+H]⁺): 284.1645; found: 284.1648.

Minor diastereomer: Yellow oil; $R_f = 0.32$ (33% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃): δ 7.42–7.32 (m, 2H), 7.31–7.20 (m, 3H), 3.90 (d, J = 5.0 Hz, 1H), 3.83 (s, 3H), 1.97 (td, J = 14.0, 6.0 Hz, 1H), 1.91 (d, J = 11.5 Hz, 1H), 1.79 (dd, J = 15.0, 5.5 Hz, 1H), 1.77–1.69 (m, 1H), 1.62 (dd, J = 13.0, 5.5 Hz, 1H), 1.46 (dd, J = 13.0, 5.5 Hz, 1H),

1H), 1.42 (s, 3H), 1.12 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 174.5, 131.3, 128.0, 127.6, 123.6, 95.3, 81.1, 62.0, 61.8, 40.8, 35.2, 32.0, 31.3, 30.5, 24.4, 20.3; IR (neat): 2930, 2870, 1714, 1489, 1442, 1378, 1258, 1229, 1026, 756, 691 cm⁻¹; HRMS (m/z) Calcd for (C₁₈H₂₂NO₂) ([M+H]⁺): 284.1645; found: 284.1646. Stereochemistry was assigned on the basis of NOESY.

O N-OMe CN

2-(3-(2-Methoxy-1-oxo-1,2,3,4-tetrahydroisoquinolin-3-yl)prop-1-yn-1-yl)benzonitrile (3lb). Purification by column chromatography (20% EtOAc in hexanes) gave 3lb as a yellow oil (67.3 mg, 71% yield); R_f = 0.32 (33% EtOAc in hexanes); ¹H NMR (400 MHz, CDCl₃): δ 8.09 (d, *J* = 7.5 Hz, 1H), 7.65–

7.57 (m, 1H), 7.54–7.40 (m, 3H), 7.40–7.25 (m, 3H), 4.27–4.25 (m, 1H), 3.93 (s, 3H), 3.57–3.40 (m, 2H), 3.05 (dd, J = 16.8, 3.2 Hz, 1H), 2.68 (dd, J = 16.8, 9.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 163.3, 135.2, 132.6, 132.4, 132.3, 132.1, 128.2, 128.1, 127.99, 127.95, 127.1, 127.0, 117.7, 115.3, 92.7, 79.7, 63.0, 57.7, 32.4, 21.7; IR (neat): 2933, 2226, 1668, 1481, 1459, 1424, 1278, 1241, 1020, 996, 762, 740, 723, 685 cm⁻¹; HRMS (m/z) Calcd for (C₂₀H₁₇N₂O₂) ([M+H]⁺): 317.1285; found: 317.1291.

2-Methoxy-3-(3-(3-methoxyphenyl)prop-2-yn-1-yl)-3,4-dihydroisoquinolin-1(2*H***)-one (3lc). Purification by column chromatography (20% EtOAc in hexanes) gave 3lc** as a yellow oil (72.2 mg, 75% yield); $R_f = 0.40$ (33% EtOAc in hexanes); ¹H NMR (400 MHz, CDCl₃): δ 7.95 (d, *J* = 8.0 Hz, 1H), 7.29 (t, *J* = 7.5 Hz, 1H), 7.17 (t, *J* = 7.5 Hz, 1H), 7.06 (d, *J* = 7.5 Hz, 1H), 7.01 (t, *J* = 7.5 Hz, 1H), 6.78 (d, *J* = 7.5 Hz, 1H), 6.73–6.63 (m, 2H), 4.07–3.97 (m, 1H), 3.78 (s, 3H), 3.60 (s, 3H), 3.35–3.15 (m, 2H), 2.80 (d, *J* = 16.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 163.3, 159.1, 135.2, 132.5, 129.2, 128.0, 127.9, 127.1, 124.0, 116.4, 114.4, 85.1, 83.3, 63.0, 57.9, 55.1, 32.6, 21.8; IR (neat): 2934, 2833, 1670, 1603, 1573, 1480, 1459, 1423, 1286, 1250, 1201, 1163, 1040, 1022, 999, 854, 782, 740, 685 cm⁻¹; HRMS (m/z) Calcd for (C₂₀H₂₀NO₃) ([M+H]⁺): 322.1438; found: 322.1438.

3-(3-(4-Chlorophenyl)prop-2-yn-1-yl)-2-methoxy-3,4-dihydroisoquinolin-1(2*H***)-one (3ld**). Purification by column chromatography (20% EtOAc in hexanes) gave **3ld** as a yellow oil (71.2 mg, 73% yield); R_f = 0.40 (33% EtOAc in hexanes); ¹H NMR (400 MHz, CDCl₃): δ 8.10 (d, *J* = 8.0 Hz, 1H), 7.45 (t, *J* = 7.5 Hz, 1H), 7.30–7.15 (m, 5H), 4.23–4.07 (m, 1H), 3.93 (s, 3H), 3.43 (dd, *J* = 16.4, 5.6 Hz, 1H), 3.33 (dd, *J* = 16.4, 4.4 Hz, 1H), 2.94 (dd, *J* = 16.8, 3.2 Hz, 1H), 2.68 (dd, *J* = 16.8, 9.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 163.4, 135.2, 134.0, 132.7 (2C), 132.5, 128.5 (2C), 128.1 (2C), 127.9, 127.1, 121.5, 86.4, 82.4, 63.0, 57.8, 32.8, 21.9; IR (neat): 2933, 1667, 1604, 1488, 1459, 1423, 1396, 1276, 1242, 1088, 1013, 826, 737, 720, 688 cm⁻¹; HRMS (m/z) Calcd for (C₁₉H₁₇ClNO₂) ([M+H]⁺): 326.0942; found: 326.0941.

3-(3-(4-Fluorophenyl)prop-2-yn-1-yl)-2-methoxy-3,4-dihydroisoquinolin-1(2*H***)-one (3le**). Purification by column chromatography (25% EtOAc in hexanes) gave **3le** as a yellow oil (63.0 mg, 68% yield); R_f = 0.40 (33% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃): δ 8.12 (d, *J* = 7.5 Hz, 1H), 7.47 (t, *J* = 7.5 Hz, 1H), 7.35 (t, *J* = 7.5 Hz, 1H), 7.32 (d, *J* = 8.0 Hz, 1H), 7.31 (d, *J* = 8.0 Hz, 1H), 7.24 (d, *J* = 7.5 Hz, 1H), 6.97 (t, *J* = 8.5 Hz, 2H), 4.23–4.13 (m, 1H), 3.96 (s, 3H), 3.45 (dd, *J* = 16.0, 6.0 Hz, 1H), 3.37 (dd, *J* = 16.0, 4.0 Hz, 1H), 2.94 (dd, *J* = 17.0, 3.0 Hz, 1H), 2.69 (dd, *J* = 17.0, 9.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 163.4, 162.2 (d, *J* = 246.2 Hz, 1C), 135.3, 133.3 (d, *J* = 8.8 Hz, 2C), 132.5, 128.1, 128.0, 127.9, 127.1, 119.1 (d, *J* = 2.5 Hz, 1C), 115.4 (d, *J* = 22.5 Hz, 2C), 85.0, 82.4, 63.0, 57.9, 32.7, 21.8; IR (neat): 2928, 1670,

1600, 1505, 1459, 1425, 1276, 1218, 1154, 1092, 1021, 997, 834, 725, 689 cm⁻¹; HRMS (m/z) Calcd for $(C_{19}H_{17}FNO_2)$ ([M+H]⁺): 310.1238; found: 310.1236.

2-Methoxy-3-(3-(4-(trifluoromethyl)phenyl)prop-2-yn-1-yl)-3,4-dihydroisoquinolin-1(2*H***)-one (3lf). Purification by column chromatography (25% EtOAc in hexanes) gave 3lf** as a yellow oil (81.6 mg, 76% yield); $R_f = 0.40$ (33% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃): δ 8.13 (d, J = 8.0 Hz, 1H), 7.54 (d, J = 8.0 Hz, 2H), 7.48 (t, J = 7.0 Hz, 1H), 7.43 (d, J = 8.0 Hz, 2H), 7.36 (t, J = 7.5 Hz, 1H), 7.25 (d, J = 7.5 Hz, 1H), 4.25–4.17 (m, 1H), 3.97 (s, 3H), 3.48 (dd, J = 16.5, 6.0 Hz, 1H), 3.36 (dd, J = 16.5, 4.0 Hz, 1H), 2.98 (dd, J = 17.0, 3.5 Hz, 1H), 2.74 (dd, J = 17.0, 9.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃, one carbon missing): δ 163.4, 135.2, 132.6, 131.7 (2C), 129.7 (q, J = 32.5 Hz, 1C), 128.1, 127.9, 127.2, 126.8, 125.1 (q, J = 2.5 Hz, 2C), 123.8 (q, J = 270.0 Hz, 1C), 88.1, 82.3, 63.0, 57.7, 32.8, 22.0; IR (neat): 2935, 1672, 1613, 1459, 1403, 1320, 1163, 1119, 1104, 1065, 1016, 840, 730, 688 cm⁻¹; HRMS (m/z) Calcd for (C₂₀H₁₇F₃NO₂) ([M+H]⁺): 360.1206; found: 360.1201.

2-Methoxy-3-(3-(thiophen-2-yl)prop-2-yn-1-yl)-3,4-dihydroisoquinolin-1(2*H***)-one (3lg**). Purification by column chromatography (20% EtOAc in hexanes) gave **3lg** as a yellow oil (65.4 mg, 73% yield); $R_f = 0.46$ (33% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃): δ 8.14 (d, J = 8.0 Hz, 1H), 7.48 (t, J = 7.5 Hz, 1H), 7.37 (t, J = 7.5 Hz, 1H), 7.26 (d, J = 8.0 Hz, 1H), 7.21 (d, J = 4.5 Hz, 1H), 7.15–7.10 (m, 1H), 7.00–6.90 (m, 1H), 4.25–4.15 (m, 1H), 3.96 (s, 3H), 3.45 (dd, J = 16.5, 5.5 Hz, 1H), 3.37 (dd, J = 16.5, 4.5 Hz, 1H), 3.00 (d, J = 16.5, 1H), 2.70 (dd, J = 16.5, 9.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 163.4, 135.2, 132.6, 131.6, 128.1, 128.09, 128.02, 127.2, 126.8, 126.5, 123.0, 89.4, 76.6, 63.1, 57.9, 32.7, 22.1; IR (neat): 2932, 2897, 1668, 1605, 1459, 1424, 1298, 1238, 1017, 997, 738, 690 cm⁻¹; HRMS (m/z) Calcd for (C₁₇H₁₆NO₂S) ([M+H]⁺): 298.0896; found: 298.0898.

3-(4,4-Dimethylpent-2-yn-1-yl)-2-methoxy-3,4-dihydroisoquinolin-1(2*H***)-one (3lh**). Purification by column chromatography (25% EtOAc in hexanes) gave **3lh** as a yellow oil (38.8 mg, 48% yield); $R_f = 0.60$ (33% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃): δ 8.07 (d, J = 7.5 Hz, 1H), 7.42 (t, J = 7.5 Hz, 1H), 7.31 (t, J = 7.5 Hz, 1H), 7.18 (d, J = 7.5 Hz, 1H), 4.05–3.95 (m, 1H), 3.89 (s, 3H), 3.32 (dd, J = 16.5, 6.0 Hz, 1H), 3.27 (dd, J = 16.5, 4.5 Hz, 1H), 2.65 (dd, J = 16.5, 3.0 Hz, 1H), 2.40 (dd, J = 16.5, 9.0 Hz, 1H), 1.12 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): δ 163.3, 135.5, 132.3, 128.1, 127.9, 127.8, 126.9, 92.1, 73.7, 62.9, 58.0, 32.4, 30.9, 27.2, 21.1; IR (neat): 2966, 1672, 1606, 1459, 1427, 1263, 1241, 1012, 740, 726, 690 cm⁻¹; HRMS (m/z) Calcd for (C₁₇H₂₂NO₂) ([M+H]⁺): 272.1645; found: 272.1647.

O N^{-OMe}

3-(Hept-2-yn-1-yl)-2-methoxy-3,4-dihydroisoquinolin-1(*2H*)-one (**3li**). Purification by column chromatography (25% EtOAc in hexanes) gave **3li** as a yellow oil (30.3 mg, 37% yield); $R_f = 0.60$ (33% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃): δ 8.10 (d, J = 8.0 Hz, 1H), 7.45 (t, J = 8.0 Hz, 1H), 7.34 (t, J = 7.5 Hz, 1H), 7.21 (d, J = 7.5 Hz, 1H), 4.07–3.97 (m, 1H), 3.91 (s, 3H), 3.41–3.25 (m, 2H), 2.71 (d, J = 16.5 Hz, 1H), 2.39 (dd, J = 16.5, 9.5 Hz, 1H), 2.11 (t, J = 7.0 Hz, 2H), 1.50–1.30 (m, 4H), 0.90 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 163.4, 135.5, 132.4, 128.1, 128.0, 127.9, 127.0, 83.6, 75.4, 63.0, 58.2, 32.6, 30.9, 21.9, 21.2, 18.3, 13.5; IR (neat): 2930, 2870, 1672, 1605, 1459, 1428, 1273, 1241, 1014, 998, 737, 688 cm⁻¹; HRMS (m/z) Calcd for (C₁₇H₂₂NO₂) ([M+H]⁺): 272.1645; found: 272.1646.

3-(3-(*Tert***-butyldimethylsilyl)prop-2-yn-1-yl)-2-methoxy-3,4-dihydroisoquinolin-1(***2H***)-one** (**3lj).** Purification by column chromatography (10% EtOAc in hexanes) gave **3lj** as a yellow oil (45.8 mg, 46% yield); $R_f = 0.68$ (33% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃): δ 8.10 (d, *J* = 7.5 Hz, 1H), 7.45 (t, *J* = 7.5 Hz, 1H), 7.34 (t, *J* = 7.5 Hz, 1H), 7.20 (d, *J* = 7.5 Hz, 1H), 4.16–4.02 (m, 1H), 3.91 (s, 3H), 3.49–3.28 (m, 2H), 2.79 (dd, *J* = 17.0, 3.0 Hz, 1H), 2.45 (dd, *J* = 17.0, 10.0 Hz, 1H), 0.91 (s, 9H), 0.06 (s, 6H); ¹³C NMR (125 MHz, CDCl₃): δ 163.4, 135.2, 132.5, 128.1, 128.0, 127.9, 127.1, 102.7, 86.2, 63.0, 57.9, 32.4, 26.0, 22.1, 16.4, 4.6; IR (neat): 2927, 2855, 2174, 1678, 1606, 1460, 1426, 1248, 1015, 823, 773, 680 cm⁻¹; HRMS (m/z) Calcd for (C₁₉H₂₈NO₂Si) ([M+H]⁺): 330.1884; found: 330.1886.

2-Methoxy-3-(3-(triisopropylsilyl)prop-2-yn-1-yl)-3,4-dihydroisoquinolin-1(2*H***)-one (3lk). Purification by column chromatography (10% EtOAc in hexanes) gave 3lk** as a white solid (40.1 mg, 36% yield); R_f = 0.48 (25% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃): δ 8.11 (d, *J* = 7.5 Hz, 1H), 7.45 (t, *J* = 7.5 Hz, 1H), 7.35 (t, *J* = 7.5 Hz, 1H), 7.19 (d, *J* = 7.5 Hz, 1H), 4.16–4.02 (m, 1H), 3.92 (s, 3H), 3.47–3.31 (m, 2H), 2.84 (d, *J* = 17.0 Hz, 1H), 2.45 (dd, *J* = 17.0, 10.0 Hz, 1H), 1.05 (s, 21H); ¹³C NMR (125 MHz, CDCl₃): δ 163.4, 135.3, 132.5, 128.18, 128.11, 127.9, 127.1, 103.8, 84.1, 63.1, 58.2, 32.4, 22.2, 18.6, 11.2; IR (neat): 2940, 2862, 2171, 1681, 1459, 1240, 1015, 995, 881, 676, 660 cm⁻¹; HRMS (m/z) Calcd for (C₂₂H₃₄NO₂Si) ([M+H]⁺): 372.2353; found: 372.2359.

2-Methoxy-3-(5-phenylpenta-2,4-diyn-1-yl)-3,4-dihydroisoquinolin-1(*2H*)-one (3ll). Purification by column chromatography (20% EtOAc in hexanes) gave **3ll** as a yellow oil (52.0 mg, 55% yield); $R_f = 0.48$ (33% EtOAc in hexanes); ¹H NMR (400 MHz, CDCl₃): δ 8.09 (d, J = 8.0 Hz, 1H), 7.55–7.38 (m, 3H), 7.38–7.17 (m, 5H), 4.20–4.05 (m, 1H), 3.91 (s, 3H), 3.39 (dd, J = 16.4, 5.6 Hz, 1H), 3.32 (dd, J = 16.4, 4.4 Hz,

1H), 2.91 (dd, J = 17.2, 3.6 Hz, 1H), 2.57 (dd, J = 17.2, 5.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 163.4, 135.0, 132.6, 132.4, 129.1, 128.3, 128.1, 128.0, 127.8, 127.2, 121.4, 79.5, 75.7, 73.6, 67.8, 63.1, 57.7, 32.6, 21.8; IR (neat): 2934, 1670, 1604, 1459, 1422, 1290, 1241, 1015, 996, 739, 687 cm⁻¹; HRMS (m/z) Calcd for (C₂₁H₁₈NO₂) ([M+H]⁺): 316.1332; found: 316.1333.

VI. Mechanism Investigation.

1. Radical Trapping Experiments.

To a reaction tube charged with *N*-methoxy-2,2-diphenylpent-4-enamide **1a** (31.4 mg, 0.2 mmol, 1.0 equiv) and hypervalent iodine reagent **2a** (83.6 mg, 0.24 mmol, 1.2 equiv), was added Cu(OTf)₂ (0.72 mg, 0.002 mmol, 1 mol%), TEMPO (37.5 mg, 0.24 mmol, 1.2 equiv) and CH₃CN (2 mL). The reaction tube was capped and the resulting mixure was stirred at 100 °C for 12 h. After cooling down to room temperature, the reaction mixture was filtered through a pad of Al₂O₃ and washed with EtOAc (15 mL). The filtrate was concentrated *in vacuo*. Aminoalkynylation product **3a** was not observed from the crude ¹H NMR. The resulting crude mixture was subject to flash column chromatography to provide aminooxygenation product **4** as a colorless oil (61.9 mg, 99% yield); R_f = 0.25 (12.5% EtOAc in hexanes); ¹H NMR (400 MHz, CDCl₃): δ 3.95–3.83 (m, 2H), 3.82–3.75 (m, 1H), 3.76 (s, 3H), 1.95 (dd, *J* = 12.8, 7.2 Hz, 1H), 1.73 (dd, *J* = 12.8, 7.6 Hz, 1H), 1.59–1.33 (m, 5H), 1.33–1.22 (m, 1H), 1.18 (s, 3H), 1.13 (s, br, 6H), 1.10 (s, 3H), 1.06 (s, 3H), 1.05 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 175.7, 76.5, 62.0, 59.9, 53.1, 39.6, 37.2, 35.4, 32.9, 25.5, 25.0, 20.1, 20.0, 16.9; IR (neat): 2969, 2929, 2869, 1711, 1453, 1373, 1359, 1261, 1243, 1132, 1039, 1024, 929, 794, 745, 556 cm⁻¹; HRMS (m/z) Calcd for (C₁₇H₃₃N₂O₃) ([M+H]⁺): 313.2489; found: 313.2485.

2. Deuterium-Labeling Experiments.

To a reaction tube charged with (*E*)-*N*-methoxy-2,2-dimethylpent-4-en-5-*d*-amide *D*-1a (47.4 mg, 0.3 mmol, 1.0 equiv) and hypervalent iodine reagent 2a (125.3 mg, 0.36 mmol, 1.2 equiv), was added Cu(OTf)₂ (1.08 mg, 0.003 mmol, 1 mol%) and CH₃CN (1.5 mL). The reaction tube was capped and the resulting mixure was stirred at 100 °C for 12 h. After cooling down to room temperature, the reaction mixture was filtered through a pad of Al₂O₃ and washed with EtOAc (15 mL). The filtrate was concentrated *in vacuo*. The resulting crude mixture was subject to flash column chromatography (33% EtOAc in hexanes) to provide the aminoalkynylation product **6** as a yellow oil (55.4 mg, 72% yield, inseparable diastereoisomer, *dr* = 1:1); R_f = 0.30 (33% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃): δ 7.50–7.35 (m, 2H), 7.35–7.22 (m, 3H),

3.90 (s, 3H), 3.92–2.82 (m, 1H), 2.81 (s, br, 0.5 H), 2.78 (d, J = 4.5 Hz, 0.5H), 2.06 (dd, J = 12.5, 7.5 Hz, 1H), 1.93–1.80 (m, 1H), 1.25 (s, 3H), 1.16 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 176.2, 131.4, 128.2, 128.0, 123.0, 84.3, 83.6, 63.0, 53.8, 37.4, 37.2, 25.7, 25.0, 23.4 (t, J = 18.9 Hz); IR (neat): 2963, 2931, 2868, 1706, 1441, 1361, 1259, 1015, 755, 691 cm⁻¹; HRMS (m/z) Calcd for (C₁₆H₂₉DNO₂) ([M+H]⁺): 259.1551; found: 259.1551.

3. Radical Clock Experiments.

To a reaction tube charged with *N*-methoxy-2,2-diphenylpent-4-enamide **1v** (59.1 mg, 0.3 mmol, 1.0 equiv) and hypervalent iodine reagent **2a** (125.3 mg, 0.36 mmol, 1.2 equiv), was added Cu(OTf)₂ (1.08 mg, 0.003 mmol, 1 mol%) and CH₃CN (1.5 mL). The reaction tube was capped and the resulting mixure was stirred at 100 °C for 5 h. After cooling down to room temperature, the reaction mixture was filtered through a pad of Al₂O₃ and washed with EtOAc (15 mL). The filtrate was concentrated *in vacuo*. Aminoalkynylation product **3va** was not observed from the crude ¹H NMR. The resulting crude mixture was subject to flash column chromatography to provide cyclopropane ring opening product **5** as a yellow oil (40.1 mg, 45% yield); R_f = 0.14 (25% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃): δ 7.50–7.35 (m, 2H), 7.35–7.22 (m, 3H), 5.91 (dt, *J* = 15.5, 7.0 Hz, 1H), 5.52 (dd, *J* = 15.5, 8.5 Hz, 1H), 4.11 (q, *J* = 8.0 Hz, 1H), 3.74 (s, 3H), 2.53 (t, *J* = 7.0 Hz, 2H), 2.47–2.33 (m, 2H), 2.01 (dd, *J* = 12.5, 7.0 Hz, 1H), 1.62 (dd, *J* = 12.5, 8.5 Hz, 1H), 1.20 (s, 3H), 1.13 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 176.1, 133.8, 131.4, 130.2, 128.1, 127.6, 123.6, 89.0, 81.3, 63.2, 58.1, 39.6, 37.5, 31.3, 25.5, 24.4, 19.2; IR (neat): 2964, 2931, 2868, 1709, 1441, 1241, 1033, 1014, 967, 756, 692 cm⁻¹; HRMS (m/z) Calcd for (C₁₉H₂₄NO₂) ([M+H]⁺): 298.1802; found: 298.1799.

4. ¹³C-Labeling Experiments.

To a reaction tube charged with *N*-methoxy-2,2-dimethylpent-4-en-5-*d*-amide **1a** (23.6 mg, 0.15 mmol, 1.0 equiv) and hypervalent iodine reagent ¹³C-2a⁴ (62.9 mg, 0.18 mmol, 1.2 equiv), was added Cu(OTf)₂ (0.54 mg, 0.0015 mmol, 1 mol%) and CH₃CN (1 mL). The reaction tube was capped and the resulting mixure was stirred at 100 °C for 2 h. After cooling down to room temperature, the reaction mixture was filtered through a pad of Al₂O₃ and washed with EtOAc (15 mL). The filtrate was concentrated *in vacuo*. The resulting crude mixture was subject to flash column chromatography (33% EtOAc in hexanes) to provide the aminoalkynylation product **7** as a yellow oil (29.7 mg, 77% yield); $R_f = 0.30$ (33% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃): δ 7.45–7.33 (m, 2H), 7.33–7.23 (m, 3H), 3.89 (s, 3H), 3.92–3.82 (m, 1H), 2.90–2.70 (m, 2H), 2.06 (dd, J = 12.5, 7.5 Hz, 1H), 1.87 (dd, J = 12.5, 8.0 Hz, 1H), 1.24 (s, 3H), 1.16 (s, 3H); ¹³C

NMR (125 MHz, CDCl₃): δ 176.3, 131.5, 128.2 (d, J = 5.0 Hz), 128.0, 123.0 (d, J = 90.8 Hz), 84.0, 83.7 (¹³C enriched), 63.0, 53.8, 37.5, 37.2, 25.7, 25.0, 23.6; IR (neat): 2964, 2930, 2868, 1706, 1441, 1362, 1264, 1035, 1014, 928, 755, 691 cm⁻¹; HRMS (m/z) Calcd for (C₁₅¹³CH₂₀NO₂) ([M+H]⁺): 259.1522; found: 259.1525.

VII. Synthesis of Bicyclic Heterocycles.

1. Selective Deprotection and Gold-Catalyzed Cyclization

To a 25 mL flask was added a solution of **3la** (146 mg, 0.5 mmol, 1.0 equiv) in DCM (3.5 mL). Then BBr₃ (1.0 M in DCM, 1.5 mL, 1.5 mmol, 3.0 equiv) was added dropwise. The resulting mixture was allowed to stir at room temperature for 1 h before quenching with a saturated aqueous solution of NaHCO₃ (10 mL). The organic layer was separated and the aqueous layer was extracted with DCM (10 mL). The combined organic solvent was dried over Na₂SO₄ and filtered off. The filtrate was concentrated under reduced pressure. The residue was dissolved in dioxane (3 mL). Then Bu₄NOH (1.5 M in H₂O, 1.5 mL, 2.25 mmol, 4.5 equiv), Cs₂CO₃ (353 mg, 1 mmol, 2.0 equiv) and H₂O (1.5 mL) were added sequencially. The resulting mixture was allowed to stir at 100 °C for 1 h.⁵ The reaction mixture was diluted with EtOAc (20 mL) and washed with a saturated aqueous solution of NH₄Cl (10 mL). The organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated. Purification by column chromatography (33% EtOAc in hexanes) gave 2-hydroxy-3-(3phenylprop-2-yn-1-yl)-3.4-dihydroisoquinolin-1(2H)-one 8 as a yellow oil (90.8 mg, 66% yield); $R_f = 0.38$ (33% EtOAc in hexanes); ¹H NMR (400 MHz, CDCl₃): δ 9.50–8.50 (br, 1H), 8.01 (d, J = 7.6 Hz, 1H), 7.60– 7.10 (m, 8H), 4.40–4.20 (m, 1H), 3.50 (dd, J = 16.4, 6.4 Hz, 1H), 3.33 (dd, J = 16.4, 4.0 Hz, 1H), 3.05 (dd, J = 16.4, 6.4 Hz, 1H), 3.65 (dd, J = 16= 16.8, 2.8 Hz, 1H), 2.69 (dd, J = 16.8, 9.2 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 161.6, 134.9, 132.4, 131.5, 128.2, 128.1, 128.0, 127.4, 127.2, 126.5, 123.0, 84.9, 83.5, 57.8, 31.7, 22.0; IR (neat): 3060, 2858, 1641, 1463, 729, 689 cm⁻¹; HRMS (m/z) Calcd for $(C_{18}H_{16}NO_2)$ ([M+H]⁺): 278.1175; found: 278.1176.

To a 4 mL vial was added Ph₃PAuCl (2.47 mg, 0.005 mmol, 5 mol%), AgSbF₆ (2.58 mg, 0.0075 mmol, 7.5 mo%) and DCM (1 mL). The resulting mixture was allowed to stir at room temperature for 15 min before adding a solution of 2-hydroxy-3-(3-phenylprop-2-yn-1-yl)-3,4-dihydroisoquinolin-1(2*H*)-one **8** (27.7 mg, 0.1 mmol, 1.0 equiv) in DCM (1 mL). The resulting mixture was allowed to stir at room temperature for 1 h. Purification by column chromatography (20% EtOAc in hexanes) gave 2-phenyl-4*a*,5-dihydro-[1,2]oxazino[2,3-*b*]isoquinolin-10(4*H*)-one **9** as a colorless oil (12.8 mg, 46% yield); R_f = 0.62 (33% EtOAc in hexanes); ¹H NMR (400 MHz, CDCl₃): δ 8.15 (d, *J* = 8.0 Hz, 1H), 7.73 (d, *J* = 7.6 Hz, 2H), 7.60–7.40 (m, 2H), 7.40–7.30 (m, 3H), 7.21 (d, *J* = 7.2 Hz, 1H), 5.32 (dd, *J* = 5.2, 2.8 Hz, 1H), 4.55–4.40 (m, 1H), 3.75 (dd, *J* = 16.4, 6.0 Hz, 1H), 3.02 (dd, *J* = 16.4, 2.4 Hz, 1H), 2.48 (ddd, *J* = 17.6, 11.2, 2.8 Hz, 1H), 2.19 (dt, *J* =

17.2, 5.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 164.1, 155.4, 135.4, 133.1, 132.9, 129.0, 128.7, 128.3, 128.1, 127.4, 126.9, 125.6, 97.1, 55.5, 33.0, 25.8; IR (neat): 3058, 2928, 2837, 1685, 1662, 1245, 926, 757 cm⁻¹; HRMS (m/z) Calcd for (C₁₈H₁₆NO₂) ([M+H]⁺): 278.1175; found: 278.1177.

A 25 mL round-bottomed flask was charged with **3la** (232.8 mg, 0.8 mmol, 1.0 equiv). The flask was degassed and refilled with N₂ for three times. Then SmI₂ (0.1 M in THF, 16 mL, 1.6 mmol, 2.0 equiv) was added dropwise under N₂ atmosphere. The resulting mixture was stirred at room temperature for 10 min and then the reaction was quenched by the addition of a saturated aqueous solution of Na₂S₂O₃. The organic layer was separated and the aqueous layer was extracted with EtOAc. The combined organic solvent was dried over Na₂SO₄ and filtered off. The filtrate was concentrated under reduced pressure. Purification by column chromatography (50% EtOAc in hexanes) gave 3-(3-phenylprop-2-yn-1-yl)-3,4-dihydroisoquinolin-1(*2H*)-one **10** as a yellow solid (198.4 mg, 95% yield); R_f = 0.21 (33% EtOAc in hexanes); ¹H NMR (400 MHz, CDCl₃): δ 8.07 (d, *J* = 7.6 Hz, 1H), 7.45 (t, *J* = 7.6 Hz, 1H), 7.42–7.32 (m, 3H), 7.32–7.25 (m, 3H), 7.22 (d, *J* = 7.6 Hz, 1H), 6.26 (s, br, 1H), 4.00–3.90 (m, 1H), 3.10 (dd, *J* = 15.6, 4.8 Hz, 1H), 3.00 (dd, *J* = 15.6, 9.6 Hz, 1H), 2.80–2.60 (m, 2H); ¹³C NMR (125 MHz, CDCl₃, one carbon missing): δ 165.8, 137.1, 132.4, 131.6, 128.3, 128.2, 128.0, 127.5, 127.2, 122.7, 84.4, 83.9, 50.3, 33.7, 26.3; IR (neat): 3188, 3053, 2924, 2896, 1660, 1335, 743, 687 cm⁻¹; HRMS (m/z) Calcd for (C₁₈H₁₆NO) ([M+H]⁺): 262.1226; found: 262.1224.

To a 4 mL vial was added Ph₃PAuCl (2.47 mg, 0.005 mmol, 5 mol%), AgSbF₆ (2.58 mg, 0.0075 mmol, 7.5 mol%) and DMF (0.5 mL). The resulting mixture was allowed to stir at room temperature for 15 min before adding a solution of 3-(3-phenylprop-2-yn-1-yl)-3,4-dihydroisoquinolin-1(2*H*)-one **10** (26.1 mg, 0.1 mmol, 1.0 equiv) in DMF (0.5 mL). The resulting mixture was allowed to stir at 60 °C for 20 min. The reaction was quenched by the addition of H₂O and Et₂O. The organic layer was separated and the aqueous layer was extracted with Et₂O. The combined organic solvent was dried over Na₂SO₄ and filtered off. The filtrate was concentrated under reduced pressure. Purification by column chromatography (20% EtOAc in hexanes) gave 3-phenyl-10,10*a*-dihydropyrrolo[1,2-*b*]isoquinolin-5(1*H*)-one **11** as a colorless oil (19.6 mg, 75% yield); R_f = 0.59 (33% EtOAc in hexanes); ¹H NMR (400 MHz, CD₃OD): δ 7.86 (d, *J* = 8.0 Hz, 1H), 7.62–7.22 (m, 8H), 5.60–5.50 (m, 1H), 4.50–4.30 (m, 1H), 3.40–3.20 (m, 1H), 3.20–3.00 (m, 1H), 3.00–2.90 (m, 1H), 2.70–2.50 (m, 1H); ¹³C NMR (125 MHz, CD₃OD): δ 162.8, 145.8, 139.1, 134.7, 131.6, 129.1, 128.8, 128.5, 128.4, 128.2, 116.6, 60.6, 36.9, 35.7; IR (neat): 3055, 2918, 2849, 1655, 1400, 1352, 743, 695 cm⁻¹; HRMS (m/z) Calcd for (C₁₈H₁₆NO) ([M+H]⁺): 262.1226; found: 262.1226.

To a 100 mL flask was added a solution of 3aa (1.03 g, 4 mmol, 1.0 equiv) in DCM (10 mL). Then BBr₃ (1.0 M in DCM, 12 mL, 12 mmol, 3.0 equiv) was added dropwise. The resulting mixture was allowed to stir at room temperature for 1 h before quenching with a saturated aqueous solution of NaHCO₃ (50 mL). The organic layer was separated and the aqueous layer was extracted with DCM (50 mL). The combined organic solvent was dried over Na₂SO₄ and filtered off. The filtrate was concentrated under reduced pressure. The residue was dissolved in dioxane (20 mL). Then Bu₄NOH (1.5 M in H₂O, 13.3 mL, 20 mmol, 5.0 equiv), Cs₂CO₃ (2.83 g, 8 mmol, 2.0 equiv) and H₂O (8 mL) were added sequencially. The resulting mixture was allowed to stir at 100 °C for 1 h.⁵ The reaction mixture was diluted with EtOAc (100 mL) and washed with a saturated aqueous solution of NH_4Cl (50 mL). The organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated. Purification by column chromatography (50% EtOAc in hexanes) gave 1-hydroxy-3,3dimethyl-5-(3-phenylprop-2-yn-1-yl)pyrrolidin-2-one **3aa-S1** as a yellow oil (767.8 mg, 79% yield); $R_f =$ 0.11 (33% EtOAc in hexanes); ¹H NMR (400 MHz, CDCl₃): δ 7.45-7.33 (m, 2H), 7.33-7.15 (m, 3H), 4.00- $3.80 \text{ (m, 1H)}, 2.97 \text{ (dd, } J = 16.8, 3.6 \text{ Hz}, 1\text{H}), 2.69 \text{ (dd, } J = 16.8, 7.6 \text{ Hz}, 1\text{H}), 2.10 \text{ (dd, } J = 16.8, 7.6 \text{ Hz}, 1\text{H}), 2.10 \text{ (dd, } J = 16.8, 7.6 \text{ Hz}, 1\text{H}), 3.80 \text{ (m, 1H)}, 3.80 \text{ (m$ 1.82 (dd, J = 12.8, 7.2 Hz, 1H), 1.16 (s, 3H), 1.10 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 175.4, 131.5, 128.0, 127.8, 123.1, 84.5, 83.0, 55.6, 37.9, 37.4, 25.7, 25.2, 23.7; IR (neat): 3060, 2962, 2867, 1679, 1489, 1362, 1301, 1268, 1029, 1005, 755, 736, 690 cm⁻¹; HRMS (m/z) Calcd for (C₁₅H₁₈NO₂) ([M+H]⁺): 244.1332; found: 244.1335.

To a 4 mL vial was added Ph₃PAuCl (4.94 mg, 0.01 mmol, 5 mol%), AgSbF₆ (5.16 mg, 0.015 mmol, 7.5 mo%) and DCM (1 mL). The resulting mixture was allowed to stir at room temperature for 15 min before adding a solution of 1-hydroxy-3,3-dimethyl-5-(3-phenylprop-2-yn-1-yl)pyrrolidin-2-one **3aa-S1** (48.6 mg, 0.2 mmol, 1.0 equiv) in DCM (1 mL). The resulting mixture was allowed to stir at room temperature for 1 h. Purification by column chromatography (20% EtOAc in hexanes) gave 6,6-dimethyl-2-phenyl-4,4a,5,6-tetrahydro-7*H*-pyrrolo[1,2-*b*][1,2]oxazin-7-one **3aa-S2** as a yellow oil (18.5 mg, 38% yield); R_f = 0.42 (33% EtOAc in hexanes); ¹H NMR (400 MHz, CDCl₃): δ 7.70–7.50 (m, 2H), 7.45–7.25 (m, 3H), 5.36 (dd, *J* = 6.4, 2.4 Hz, 1H), 3.90–3.75 (m, 1H), 2.54 (dt, *J* = 17.2, 5.2 Hz, 1H), 2.29 (dd, *J* = 12.8, 6.8 Hz, 1H), 2.27 (ddd, *J* = 17.2, 9.6, 2.4 Hz, 1H), 1.61 (dd, *J* = 12.8, 7.2 Hz, 1H), 1.26 (s, 3H), 1.23 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 171.7, 152.0, 132.4, 128.8, 128.2, 125.0, 94.7, 48.9, 39.9, 37.9, 29.6, 25.9, 25.3; IR (neat): 2962, 2927, 2868, 1714, 1658, 1446, 1328, 1307, 1276, 1239, 1076, 1052, 1004, 982, 756, 691 cm⁻¹; HRMS (m/z) Calcd for (C₁₅H₁₈NO₂) ([M+H]⁺): 244.1332; found: 244.1338.

2. Synthesis of Pyrrolizidine Derivatives

A 25 mL round-bottomed flask was charged with **3aa** (257 mg, 1 mmol, 1.0 equiv). The flask was degassed and refilled with N₂ for three times. Then SmI₂ (0.1 M in THF, 20 mL, 2.0 mmol, 2.0 equiv) was added dropwise under N₂ atmosphere. The resulting mixture was stirred at room temperature for 30 min and then the reaction was quenched by the addition of a saturated aqueous solution of Na₂S₂O₃. The organic layer was separated and the aqueous layer was extracted with EtOAc. The combined organic solvent was dried over Na₂SO₄ and filtered off. The filtrate was concentrated under reduced pressure. Purification by column chromatography (50% EtOAc in hexanes) gave 3,3-dimethyl-5-(3-phenylprop-2-yn-1-yl)pyrrolidin-2-one **12** as a white solid (220.2 mg, 97% yield); R_f = 0.21 (50% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃): δ 7.45–7.35 (m, 2H), 7.32–7.20 (m, 4H), 3.84–3.74 (m, 1H), 2.57 (d, *J* = 6.0 Hz, 1H), 2.13 (dd, *J* = 13.0, 7.0 Hz, 1H), 1.71 (dd, *J* = 13.0, 7.5 Hz, 1H), 1.19 (s, 3H), 1.15 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 182.7, 131.4, 128.0, 127.7, 123.0, 85.2, 82.7, 49.9, 42.0, 40.6, 27.0, 25.3, 25.0; IR (neat): 3170, 3078, 2956, 2867, 1682, 1270, 755, 689 cm⁻¹; HRMS (m/z) Calcd for (C₁₅H₁₈NO) ([M+H]⁺): 228.1383; found: 228.1384.

To a 4 mL vial was added Ph₃PAuCl (4.94 mg, 0.01 mmol, 5 mol%), AgSbF₆ (5.15 mg, 0.015 mmol, 7.5 mol%) and DMF (1 mL). The resulting mixture was allowed to stir at room temperature for 15 min before adding a solution of 3,3-dimethyl-5-(3-phenylprop-2-yn-1-yl)pyrrolidin-2-one **12** (45.4 mg, 0.2 mmol, 1.0 equiv) in DMF (1 mL). The resulting mixture was allowed to stir at 60 °C for 30 min. The reaction was quenched by the addition of H₂O and Et₂O. The organic layer was separated and the aqueous layer was extracted with Et₂O. The combined organic solvent was dried over Na₂SO₄ and filtered off. The filtrate was concentrated under reduced pressure. Purification by column chromatography (25% EtOAc in hexanes) gave 2,2-dimethyl-5-phenyl-1,2,7,7a-tetrahydro-3*H*-pyrrolizin-3-one **13** as a colorless oil (40.6 mg, 90% yield); R_f = 0.56 (33% EtOAc in hexanes); ¹H NMR (500 MHz, CD₃OD): δ 7.47 (d, *J* = 8.0 Hz, 2H), 7.35–7.25 (m, 3H), 5.79–5.74 (m, 1H), 4.70–4.55 (m, 1H), 2.72 (ddd, *J* = 16.5, 9.0, 3.5 Hz, 1H), 2.40 (dd, *J* = 16.5, 10.5 Hz, 1H), 2.30 (dd, *J* = 12.0, 6.5 Hz, 1H), 1.84 (dd, *J* = 12.0, 10.0 Hz, 1H), 1.33 (s, 3H), 1.16 (s, 3H); ¹³C NMR (125 MHz, CD₃OD): δ 179.4, 142.7, 132.1, 129.5, 128.9, 128.2, 116.7, 62.2, 48.4, 44.5, 37.0, 25.3, 24.7; IR (neat): 2961, 2928, 2867, 1695, 1447, 1388, 1287, 1243, 751, 696 cm⁻¹; HRMS (m/z) Calcd for (C₁₅H₁₈NO) ([M+H]⁺): 228.1383; found: 228.1384.

To a 15 mL round-bottomed flask was added Raney Ni (40 mg), 2,2-dimethyl-5-phenyl-1,2,7,7a-tetrahydro-3*H*-pyrrolizin-3-one **13** (45.4 mg, 0.2 mmol) and MeOH (8 mL) under N_2 atmosphere. An atmosphere of hydrogen was introduced by briefly evacuating the flask, then flushing with pure hydrogen (1 atm, hydrogen balloon). The mixture was stirred at room temperature overnight under H_2 atmosphere. The hydrogen was then removed under vacuum, and the flask was refilled with N_2 . The mixture was filtered through a pale of Celite and the filtrate was concentrated under reduced pressure. The crude reaction mixture contains two diastereoisomers with d.r. = 3:1 detected by ¹H NMR. Purification by column chromatography (33% EtOAc in hexanes) gave 2,2-dimethyl-5-phenylhexahydro-3*H*-pyrrolizin-3-one **14** as a mixture of separable diastereomers (34.2 mg major and 10.4 mg minor, 97% yield, relative stereochemistry was determined by the NOESY of both diasteromers).

Major diastereomer: colorless oil; $R_f = 0.20$ (33% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃): δ 7.45–7.05 (m, 5H), 4.67 (d, J = 9.0 Hz, 1H), 4.05–3.95 (m, 1H), 2.70–2.50 (m, 1H), 2.25–2.10 (m, 1H), 2.10–1.90 (m, 2H), 1.90–1.75 (m, 1H), 1.75–1.55 (m, 1H), 1.23 (s, 3H), 1.21 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 175.7, 141.4, 128.2, 126.8, 125.7, 59.6, 56.4, 47.3, 43.0, 38.7, 28.8, 25.5, 23.1; IR (neat): 2951, 2867, 1677, 1412, 748, 695 cm⁻¹; HRMS (m/z) Calcd for (C₁₅H₂₀NO) ([M+H]⁺): 230.1539; found: 230.1546.

Minor diastereomer: colorless oil; $R_f = 0.37$ (33% EtOAc in hexanes); ¹H NMR (500 MHz, Me Me Me Me Me Minor diastereomer: colorless oil; $R_f = 0.37$ (33% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃): δ 7.60–7.10 (m, 5H), 4.95 (t, J = 8.0 Hz, 1H), 4.20–4.00 (m, 1H), 2.75–2.60 (m, 1H), 2.35–2.10 (m, 2H), 2.10–1.95 (m, 1H), 1.75–1.60 (m, 1H), 1.52–1.38 (m, 1H), 1.33 (s, 3H), 1.21 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 179.5, 142.7, 128.4, 126.7, 125.3, 58.2, 56.8, 45.7, 43.7, 37.0, 33.2, 25.5, 25.1; IR (neat): 2959, 2866, 1687, 1400, 1132, 752, 696 cm⁻¹; HRMS (m/z) Calcd for (C₁₅H₂₀NO) ([M+H]⁺): 230.1539; found: 230.1545.

Relative stereochemistry was assigned on the basis of NOESY.

To a 25 mL round-bottomed flask charged with LiAlH₄ (19 mg, 0.5 mmol, 5.0 equiv), was added a solution of 2,2-dimethyl-5-phenylhexahydro-3*H*-pyrrolizin-3-one **14-major** (22.9 mg, 0.1 mmol, 1.0 equiv) in THF (4 mL) at room temperature. The resulting mixture was refluxed for 3 h. The reaction was quenched with the addition of an aqueous solution of NaOH (2 M, 1 mL). The mixture was filtered through a pale of Celite. The solvent was removed under reduced pressure to give 2,2-dimethyl-5-phenylhexahydro-1*H*-pyrrolizine **15** as a colorless oil (18.5 mg, 86% yield); R_f = 0.19 (5% MeOH in DCM); ¹H NMR (500 MHz, CDCl₃): δ 7.43 (d, *J* = 7.5 Hz, 2H), 7.33 (t, *J* = 7.5 Hz, 2H), 7.26 (t, *J* = 7.5 Hz, 1H), 4.22–4.10 (m, 1H), 3.82–3.67 (m, 1H), 2.20–1.80 (m, 6H), 1.70–1.60 (m, 1H), 1.26–1.16 (m, 1H), 1.10 (s, 3H), 0.97 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 140.2, 128.4, 127.9, 126.8, 65.8, 64.2, 62.1, 48.0, 39.6, 31.6, 27.5, 26.9, 26.8; IR (neat): 2949, 2863, 1449, 1364, 1120, 1056, 744, 697 cm⁻¹; HRMS (m/z) Calcd for (C₁₅H₂₂N) ([M+H]⁺): 216.1747; found: 216.1751.

VIII. Synthesis of Alkyne-Labeled Mesembrane.

To a solution of 2-(3',4'-dimethoxy-3,4-dihydro-[1,1'-biphenyl]-1(2*H*)-yl)acetic acid (3.3 g, 12 mmol, 1.0 equiv) in CH₂Cl₂ (60 mL) was added MeONH₂·HCl (1.5 g, 18 mmol, 1.5 equiv), EDCI (4.62 g, 24 mmol, 2.0 equiv) and DMAP (2.94 g, 24 mmol, 2.0 equiv) successively. The resulting mixture was allowed to stire at room temperature overnight, and then an aqueous solution of HCl (2 M) was added. The organic layer was separated and the aqueous layer was extracted with CH₂Cl₂ (10 mL). The combined extracts were washed with brine, dried over Na₂SO₄, and filtrated. The filtrate was concentrated. Purification by column chromatography (50% EtOAc in hexanes) gave **16** as a yellow oil (2.16 g, 59% yield); R_f = 0.12 (50% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃): δ 8.25 (s, 1H), 6.90–6.82 (m, 2H), 6.82–6.74 (m, 1H), 6.00 (d, *J* = 10.0 Hz, 1H), 5.92 (d, *J* = 10.0 Hz, 1H), 3.82 (s, 3H), 3.81 (s, 3H), 3.48 (s, 3H), 2.60–2.25 (m, 2H), 2.07–1.97 (m, 3H), 1.85 (t, *J* = 12.0 Hz, 1H), 1.62–1.45 (m, 1H), 1.39–1.20 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 168.5, 148.5, 147.2, 139.0, 131.4, 129.1, 119.0, 110.8, 110.3, 63.9, 55.8, 55.7, 46.7, 41.6, 36.4, 25.0, 18.5; IR (neat): 3190, 2931, 2833, 1651, 1511, 1442, 1252, 1135, 1023, 756, 699 cm⁻¹; HRMS (m/z) Calcd for (C₁₇H₂₄NO₄) ([M+H]⁺): 306.1700; found: 306.1697.

To a reaction tube charged with **16** (91.5 mg, 0.3 mmol, 1.0 equiv) and hypervalent iodine reagent **2a** (125.3 mg, 0.36 mmol, 1.2 equiv), was added $Cu(OTf)_2$ (1.08 mg, 0.003 mmol, 1 mol %) and CH_3CN (1.5 mL). The reaction tube was capped and the resulting mixure was allowed to stir at 100 °C for 12 h. After cooling down to room temperature, the reaction mixture was filtered through a pad of Al_2O_3 and washed with EtOAc (15 mL). The filtrate was concentrated *in vacuo*. The resulting crude mixture was subject to flash column

chromatography to provide the aminoalkynylation product **17a** as a mixture of separable diastereomers (100.7 mg, 83% yield, d.r. = 3.5:1 detected by crude ¹H NMR, major diastereomer shown); R_f = 0.35 (50% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃): δ 7.25–7.15 (m, 3H), 7.07 (d, J = 8.5 Hz, 1H), 7.05–6.95 (m, 3H), 6.78 (d, J = 8.5 Hz, 1H), 4.30 (d, J = 3.5 Hz, 1H), 3.88 (s, 3H), 3.82 (s, 3H), 3.81 (s, 3H), 3.27 (q, J = 3.5 Hz, 1H), 2.59 (d, J = 17.0 Hz, 1H), 2.43 (d, J = 17.0 Hz, 1H), 2.36–2.26 (m, 1H), 2.07–1.95 (m, 1H), 1.95–1.85 (m, 1H), 1.85–1.73 (m, 2H), 1.67–1.57 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 170.6, 148.7, 147.7, 136.7, 131.2, 127.8, 127.7, 122.9, 118.8, 110.8, 110.3, 89.7, 83.0, 65.6, 62.7, 56.0, 55.7, 45.2, 39.8, 32.8, 28.1, 25.8, 18.6; IR (neat): 2940, 2855, 1714, 1520, 1445, 1241, 1145, 1020, 756 cm⁻¹; HRMS (m/z) Calcd for (C₂₅H₂₈NO₄) ([M+H]⁺): 406.2013; found: 406.2011.

A 25 mL round-bottomed flask was charged with **17a-major** (202.5 mg, 0.5 mmol, 1.0 equiv). The flask was degassed and refilled with N₂ for three times. Then SmI₂ (0.1 M in THF, 10 mL, 1.0 mmol, 2.0 equiv) was added dropwise under N₂ atmosphere. The resulting mixture was stirred at room temperature for 5 min and then the reaction was quenched by the addition of a saturated aqueous solution of Na₂S₂O₃. The organic layer was separated and the aqueous layer was extracted with EtOAc. The combined organic solvent was dried over Na₂SO₄ and filtered off. The filtrate was concentrated under reduced pressure to give **17a-S1** as a yellow solid (190.2 mg, 100% yield); R_f = 0.12 (50% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃): δ 7.26 (s, 5H), 7.01 (d, *J* = 8.5 Hz, 1H), 6.95 (s, 1H), 6.80 (d, *J* = 8.5 Hz, 1H), 6.55 (s, br, 1H), 3.94 (d, *J* = 8.0 Hz, 1H), 3.87 (s, 3H), 3.84 (s, 3H), 2.80–2.70 (m, 1H), 2.60 (s, 2H), 2.05–1.90 (m, 3H), 1.90–1.80 (m, 1H), 1.55–1.50 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 176.4, 148.7, 147.7, 138.2, 131.4, 128.1, 127.9, 122.8, 118.2, 110.8, 109.9, 90.1, 82.8, 63.3, 56.0, 55.8, 45.5, 42.4, 34.5, 34.0, 27.8, 20.6; IR (neat): 2936, 1697, 1519, 1442, 1253, 1149, 1025, 758, 693 cm⁻¹; HRMS (m/z) Calcd for (C₂₄H₂₆NO₃) ([M+H]⁺): 376.1907; found: 376.1908.

To a solution of **17a-S1** (75 mg, 0.2 mmol, 1.0 equiv) in THF (2 mL) was added NaH (24 mg, 60% dispersion in mineral oil, 0.6 mmol, 3.0 equiv). The resulting mixture was allowed to stir at room temperature for 30 min and then methyl iodide (85.2 mg, 0.6 mmol, 3.0 equiv) was added. The resulting mixture was allowed to stir at room temperature for 90 min. The reaction was quenched by the addition of a saturated aqueous solution of NH₄Cl. The organic layer was separated and the aqueous layer was extracted with EtOAc. The combined organic solvent was dried over Na₂SO₄ and filtered off. The filtrate was concentrated under reduced pressure. Purification by column chromatography (50% EtOAc in hexanes) gave **17a-S2** as a yellow oil (72.1 mg, 93% yield); R_f = 0.19 (50% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃): δ 7.36–7.16 (m, 5H), 6.97 (d, *J* = 8.5 Hz, 1H), 6.92 (s, 1H), 6.81 (d, *J* = 8.5 Hz, 1H), 3.88 (s, 3H), 3.84 (s, 3H), 3.87–3.82 (m, 1H), 3.02 (s, 3H), 2.90–2.80 (m, 1H), 2.66 (d, *J* = 16.5 Hz, 1H), 2.60 (d, *J* = 16.5 Hz, 1H), 2.08–1.86 (m, 4H), 1.70–1.52 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 173.4, 148.8, 147.7, 138.5, 131.3, 128.1, 127.9, 123.0, 118.1, 110.9, 109.9, 90.9, 83.2, 69.0, 56.0, 55.8, 44.2, 42.8, 33.9, 32.7, 29.5, 28.5, 20.4; IR (neat): 2933, 2859, 1688, 1518, 1442, 1393, 1251, 1148, 1024, 756, 691 cm⁻¹; HRMS (m/z) Calcd for (C₂₅H₂₈NO₃) ([M+H⁺): 390.2064; found: 390.2063.

To a solution of **17a-S2** (77.8 mg, 0.2 mmol, 1.0 equiv) in THF (1 mL) was added Rh(acac)(cod) (1.24 mg, 0.004 mmol, 2 mol %). Then PhSiH₃ (0.1 mL, 0.8 mmol, 4.0 equiv) was added dropwise. The resulting solution was allowed to stir at 50 °C for 0.5 h. The solvent was removed under reduced pressure. Purification by column chromatography (33% EtOAc in hexanes containing 5% TEA) gave **18a** as a yellow oil (70.6 mg, 94% yield); R_f = 0.42 (50% EtOAc in hexanes containing 5% TEA); ¹H NMR (500 MHz, CDCl₃): δ 7.23–7.11 (m, 3H), 7.10–7.02 (m, 2H), 7.02–6.96 (m, 2H), 6.75 (d, *J* = 8.0 Hz, 1H), 3.84 (s, 3H), 3.78 (s, 3H), 3.28–3.18 (m, 1H), 3.02–2.94 (m, 2H), 2.52–2.45 (m, 1H), 2.44 (s, 3H), 2.16–2.08 (m, 1H), 2.01–1.81 (m, 5H), 1.65–1.53 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 148.3, 146.9, 139.9, 131.3, 127.7, 127.2, 123.6, 119.1, 111.1, 110.5, 92.4, 82.2, 73.4, 56.0, 55.6, 54.1, 47.6, 41.38, 41.31, 33.3, 28.9, 26.2, 19.6; IR (neat): 2932, 2832, 1736, 1517, 1452, 1246, 1145, 1026, 755, 691 cm⁻¹; HRMS (m/z) Calcd for (C₂₅H₃₀NO₂) ([M+H]⁺): 376.2271; found: 376.2272.

To a reaction tube charged with **16** (91.5 mg, 0.3 mmol, 1.0 equiv) and hypervalent iodine reagent **2j** (139 mg, 0.36 mmol, 1.2 equiv), was added Cu(CH₃CN)₄BF₄ (0.95 mg, 0.003 mmol, 1 mol %) and CH₃CN (1.5 mL). The reaction tube was capped and the resulting mixure was allowed to stir at 60 °C for 12 h. After cooling down to room temperature, the reaction mixture was filtered through a pad of Al₂O₃ and washed with EtOAc (15 mL). The filtrate was concentrated *in vacuo*. The residue was dissolved in THF (3 mL). Then TBAF (1 M in THF, 0.4 mL, 0.4 mmol) was added dropwise. The resulting mixure was allowed to stir at room temperature overnight. The reaction was quenched by the addition of a saturated aqueous solution of NH₄Cl. The organic layer was separated and the aqueous layer was extracted with EtOAc. The combined organic solvent was dried over Na₂SO₄ and filtered off. The filtrate was concentrated under reduced pressure. Purification by column chromatography (50% EtOAc in hexanes) gave **17j**' as a mixture of inseparable diastereomers as a white solid (53.46 mg, 54% yield, d.r. = 2:1 detected by crude ¹H NMR, major diastereoisomer are reported in *italics*): δ 7.00–6.75 (m, 3H, both), 4.20–4.10 (m, 1H, both), 3.90–3.30 (m, 9H, both), 3.05–2.90 (m, 1H, both), 2.56 (d, *J* = 16.8 Hz, 1H), 2.52 (d, *J* = 16.8 Hz, 1H), 2.43 (d, *J* = 16.8

Hz, 1H), 2.41 (d, J = 16.8 Hz, 1H), 2.25–2.10 (m, 1H, both), 2.05–1.40 (m, 6H, both); ¹³C NMR (125 MHz, CDCl₃, signals for the minor diastereoisomer are reported in *italics*): δ *172.2*, 170.1, *148.9*, 148.5, *147.8*, 147.6, 136.9, *136.2*, 118.5, *118.1*, *110.9*, 110.6, 110.0, *109.5*, 84.4, 83.9, 70.7, 70.6, 65.1, 63.2, 62.6, 62.4, 55.9 (both), 55.7 (both), *44.1*, 43.8, 40.6, 40.0, 33.7, 33.1, 28.6, 27.9, 26.5, 26.0, 20.4, 18.5; IR (neat): 3247, 2935, 1712, 1516, 1444, 1244, 1146, 1022 cm⁻¹; HRMS (m/z) Calcd for (C₁₉H₂₃NO₄) ([M+H]⁺): 330.1700; found: 330.1702.

A 25 mL round-bottomed flask was charged with 17j' (131.6 mg, 0.4 mmol, 1.0 equiv). The flask was degassed and refilled with N₂ for three times. Then SmI₂ (0.1 M in THF, 8 mL, 0.8 mmol, 2.0 equiv) was added dropwise under N₂ atmosphere. The resulting mixture was stirred at room temperature for 5 min and then the reaction was quenched by the addition of a saturated aqueous solution of Na₂S₂O₃. The organic layer was separated and the aqueous layer was extracted with EtOAc. The combined organic solvent was dried over Na₂SO₄ and filtered off. The filtrate was concentrated under reduced pressure. The residue was dissolved in THF (4 mL) Then NaH (48 mg, 60% dispersion in mineral oil, 1.2 mmol, 3.0 equiv) was added. The resulting mixture was allowed to stir at room temperature for 30 min and then methyl iodide (170.4 mg, 1.2 mmol, 3.0 equiv) was added. The resulting mixture was allowed to stir at room temperature overnight. The reaction was quenched by the addition of a saturated aqueous solution of NH₄Cl. The organic layer was separated and the aqueous layer was extracted with EtOAc. The combined organic solvent was dried over Na₂SO₄ and filtered off. The filtrate was concentrated under reduced pressure. Purification by column chromatography (50% EtOAc in hexanes) gave 17j'-S2 as a colorless oil (105.2 mg, 84% yield); $R_f = 0.20$ (67% EtOAc in hexanes); ¹H NMR (400 MHz, CDCl₃, signals for the minor diastereoisomer are reported in *italics*): δ 6.95–6.75 (m, 3H, both), 3.86 (s, 3H, both), 3.84 (s, 3H), 3.83 (s, 3H), 3.69 (d, J = 8.0 Hz, 1H, both), 2.98 (s, 3H), 2.94 (s, 3H), 2.63 (d, J = 16.4 Hz, 1H), 2.61 (d, J = 16.4 Hz, 1H), 2.51 (d, J = 16.4 Hz, 1H), 2.49 (d, J = 16.4 Hz, 1H), 2.18 (d, J = 2.4 Hz, 1H), 2.11 (d, J = 2.4 Hz, 1H), 2.00–1.40 (m, 6H, both); ¹³C NMR (125 MHz, CDCl₃, signals for the minor diastereoisomer are reported in *italics*): δ 174.5, 173.2, 148.9, 148.7, 147.70, 147.66, 138.6, 137.1, 118.2, 117.8, 110.9, 110.8, 109.8, 109.6, 85.8, 84.4, 72.0, 71.1, 68.9, 65.4, 55.9 (both), 55.8 (both), 45.9, 44.4, 43.5, 41.4, 34.2, 33.2, 32.6, 29.8, 29.0, 28.9, 28.8, 26.5, 20.5, 20.1; IR (neat): 2934, 1683, 1518, 1450, 1252, 1150, 1024 cm⁻¹; HRMS (m/z) Calcd for ($C_{19}H_{23}NO_3$) ([M+H]⁺): 314.1751; found: 314.1755.

To a solution of **17j'-S2** (46.95 mg, 0.15 mmol, 1.0 equiv) in THF (1 mL) was added Rh(acac)(cod) (0.93 mg, 0.003 mmol, 2 mol %). Then PhSiH₃ (0.075 mL, 0.6 mmol, 4.0 equiv) was added dropwise. The resulting solution was allowed to stir at 50 °C for 0.5 h. The solvent was removed under reduced pressure. Purification by column chromatography (33% EtOAc in hexanes containing 5% TEA) gave **18j'** as a colorless oil (38.9 mg, 86% yield); R_f = 0.42 (33% EtOAc in hexanes containing 5% TEA); ¹H NMR (400 MHz, CDCl₃, signals for the minor diastereoisomer are reported in *italics*): δ 7.05–6.75 (m, 3H, both), 3.88 (s, 3H), 3.87 (s, 3H), 3.85 (s, 3H, both), 3.35–3.25 (m, 1H), 3.20–3.10 (m, 1H), 2.95–2.85 (m, 1H, both), 2.75–2.55 (m, 2H, both), 2.50–2.30 (m, 3H, both), 2.10–1.40 (m, 9H, both); ¹³C NMR (125 MHz, CDCl₃,

signals for the minor diastereoisomer are reported in *italics*): δ *148.8*, 148.3, *147.1*, 147.0, 140.0, *138.1*, 118.9, *118.7*, 110.9 (both), 110.4 (both), 87.8, 87.0, 73.1, 71.0, 69.9, 69.5, 56.0 (both), 55.8 (both), *55.0*, 53.9, *49.1*, 48.0, *43.3*, 41.8, *40.6*, 40.1, 33.9, *33.2*, 29.1, *28.7*, 26.6 (both), *22.8*, 19.6; IR (neat): 3284, 2933, 2832, 2781, 1517, 1452, 1249, 1146, 1026, 765, 641 cm⁻¹; HRMS (m/z) Calcd for (C₁₉H₂₃NO₂) ([M+H]⁺): 300.1958; found: 300.1962.

To a reaction tube charged with **16** (91.5 mg, 0.3 mmol, 1.0 equiv) and hypervalent iodine reagent **2l** (133.9 mg, 0.36 mmol, 1.2 equiv), was added Cu(CH₃CN)₄BF₄ (0.95 mg, 0.003 mmol, 1 mol %) and CH₃CN (1.5 mL). The reaction tube was capped and the resulting mixure was allowed to stir at 100 °C for 12 h. After cooling down to room temperature, the reaction mixture was filtered through a pad of Al₂O₃ and washed with EtOAc (15 mL). The filtrate was concentrated *in vacuo*. The resulting crude mixture was subject to flash column chromatography to provide the aminoalkynylation product **171** as a mixture of separable diastereomers (90.5 mg, 76% yield, d.r. = 2.5:1 detected by crude ¹H NMR, relative stereochemistry of **171** was determined by the X-ray structure of both diasteromers).

171-major: brown solid; $R_f = 0.35$ (50% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃): δ 7.39 (d, J = 7.5 Hz, 2H), 7.33–7.20 (m, 3H), 7.03–6.93 (m, 2H), 6.82 (d, J = 9.0 Hz, 1H), 4.20 (d, J = 3.5 Hz, 1H), 3.90 (s, 3H), 3.80 (s, 3H), 3.77 (s, 3H), 3.11 (q, J = 3.5 Hz, 1H), 2.54 (d, J = 17.0 Hz, 1H), 2.43 (d, J = 17.0 Hz, 1H), 2.25–2.15 (m, 1H), 1.94–1.80 (m, 2H), 1.80–1.64 (m, 2H), 1.63–1.49 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 170.1, 148.7, 147.7, 136.5, 132.2, 128.8, 128.1, 121.3, 118.4, 110.8, 110.0, 83.7, 76.1, 73.3, 67.5, 64.7, 62.4, 55.9, 55.6, 43.7, 39.9, 33.0, 28.8, 25.6, 18.6; IR (neat): 2939, 1715, 1515, 1442, 1243, 1229, 1144, 1022, 750, 686 cm⁻¹; HRMS (m/z) Calcd for (C₂₇H₂₈NO₄) ([M+H]⁺): 430.2013;

found: 430.2008.

 $\begin{array}{c} \mathsf{OMe} \\ \mathsf{OMe} \\ \mathsf{OMe} \\ \mathsf{OMe} \\ \mathsf{OMe} \\ \mathsf{OMe} \\ \mathsf{N} \\ \mathsf{OMe} \\ \mathsf{OMe}$

A 25 mL round-bottomed flask was charged with **171-major** (82.6 mg, 0.2 mmol, 1.0 equiv). The flask was degassed and refilled with N₂ for three times. Then SmI₂ (0.1 M in THF, 4 mL, 0.4 mmol, 2.0 equiv) was added dropwise under N₂ atmosphere. The resulting mixture was stirred at room temperature for 5 min and then the reaction was quenched by the addition of a saturated aqueous solution of Na₂S₂O₃. The organic layer was separated and the aqueous layer was extracted with EtOAc. The combined organic solvent was dried over Na₂SO₄ and filtered off. The filtrate was concentrated under reduced pressure to give **171-S1** as a yellow oil (80.4 mg, 100% yield); R_f = 0.14 (50% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃): δ 7.44 (d, *J* = 7.0 Hz, 2H), 7.38–7.24 (m, 3H), 6.96 (d, *J* = 8.5 Hz, 1H), 6.93 (s, 1H), 6.82 (d, *J* = 8.5 Hz, 1H), 6.74 (s, br, 1H), 3.94–3.86 (s, 4H), 3.82 (s, 3H), 2.74–2.64 (m, 1H), 2.64–2.52 (m, 2H), 2.01–1.85 (m, 3H), 1.85–1.72 (m, 1H), 1.60–1.45 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 176.1, 148.7, 147.7, 138.0, 132.3, 129.0, 128.2, 121.4, 118.0, 110.8, 109.7, 84.3, 76.3, 73.5, 67.3, 62.5, 55.9, 55.7, 45.6, 41.7, 35.0, 34.1, 27.6, 20.5; IR (neat): 2933, 1693, 1517, 1441, 1250, 1229, 1147, 1022, 753, 687 cm⁻¹; HRMS (m/z) Calcd for (C₂₆H₂₆NO₃) ([M+H]⁺): 400.1907; found: 400.1910.

To a solution of **17I-S1** (60 mg, 0.15 mmol, 1.0 equiv) in THF (1.5 mL) was added NaH (18 mg, 60% dispersion in mineral oil, 0.45 mmol, 3.0 equiv). The resulting mixture was allowed to stir at room temperature for 30 min and then methyl iodide (63.9 mg, 0.45 mmol, 3.0 equiv) was added. The resulting mixture was allowed to stir at room temperature overnight. The reaction was quenched by the addition of a saturated aqueous solution of NH₄Cl. The organic layer was separated and the aqueous layer was extracted with EtOAc. The combined organic solvent was dried over Na₂SO₄ and filtered off. The filtrate was concentrated under reduced pressure. Purification by column chromatography (50% EtOAc in hexanes) gave **17I-S2** as a yellow oil (49.5 mg, 80% yield); $R_f = 0.09$ (33% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃): δ 7.46 (d, J = 7.5 Hz, 2H), 7.39–7.27 (m, 3H), 6.92 (d, J = 8.5 Hz, 1H), 6.88 (s, 1H), 6.82 (d, J = 8.5 Hz, 1H), 3.90 (s, 3H), 3.83 (s, 3H), 3.77 (d, J = 8.0 Hz, 1H), 2.98 (s, 3H), 2.75–2.69 (m, 1H), 2.64 (d, J = 16.5 Hz, 1H), 2.57 (d, J = 16.5 Hz, 1H), 2.00–1.76 (m, 4H), 1.65–1.49 (m, 2H); ¹³C NMR (125 MHz, CDCl₃, one carbon missing): δ 173.2, 148.8, 147.8, 138.4, 132.4, 129.1, 128.3, 121.5, 117.9, 110.9, 109.7, 84.7, 73.4, 68.7, 68.0, 56.0, 55.8, 44.3, 41.6, 34.1, 33.5, 29.6, 28.5, 20.5; IR (neat): 2932, 1689, 1517, 1441,

1392, 1250, 1149, 1025, 756, 729, 690 cm⁻¹; HRMS (m/z) Calcd for $(C_{27}H_{28}NO_3)$ ([M+H]⁺): 414.2064; found: 414.2066.

To a solution of **171-S2** (41.3 mg, 0.1 mmol, 1.0 equiv) in THF (1 mL) was added Rh(acac)(cod) (0.62 mg, 0.002 mmol, 2 mol %). Then PhSiH₃ (0.05 mL, 0.4 mmol, 4.0 equiv) was added dropwise. The resulting solution was allowed to stir at 50 °C for 0.5 h. The solvent was removed under reduced pressure. Purification by column chromatography (33% EtOAc in hexanes containing 5% TEA) gave **181** as a yellow oil (37.6 mg, 94% yield); R_f = 0.42 (50% EtOAc in hexanes containing 5% TEA); ¹H NMR (500 MHz, CDCl₃): δ 7.43 (d, *J* = 7.0 Hz, 2H), 7.37–7.23 (m, 3H), 7.10–7.00 (m, 2H), 6.83 (d, *J* = 8.0 Hz, 1H), 3.95 (s, 3H), 3.80 (s, 3H), 3.20 (td, *J* = 9.0, 3.5 Hz, 1H), 2.99 (d, *J* = 4.5 Hz, 1H), 2.86 (q, *J* = 4.5 Hz, 1H), 2.47 (q, *J* = 9.0 Hz, 1H), 2.42 (s, 3H), 2.12–1.97 (m, 2H), 1.97–1.77 (m, 4H), 1.62–1.48 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 148.6, 147.2, 139.5, 132.4, 128.6, 128.2, 122.1, 119.0, 111.2, 110.6, 86.7, 75.4, 74.0, 72.9, 66.7, 56.2, 55.7, 53.8, 47.9, 41.5, 40.1, 33.5, 29.8, 25.9, 19.7; IR (neat): 2933, 1736, 1517, 1441, 1237, 1146, 1027, 755, 729, 689 cm⁻¹; HRMS (m/z) Calcd for (C₂₇H₃₀NO₂) ([M+H]⁺): 400.2271; found: 400.2277.

X. References

1. R. Frei, M. D. Wodrich, D. P. Hari, P.-A. Borin, C. Chauvier and J. Waser, *J. Am. Chem. Soc.*, 2014, **136**, 16563–16573.

2. H. Takahata, T. Takamatsu, Y. Chen, N. Ohkubo, T. Yamazaki and T. Momose, *J. Org. Chem.*, 1990, **55**, 3792–3797.

3. H. Takahata, T. Takamatsu and T. Yamazaki, J. Org. Chem., 1989, 54, 4812-4822.

4. B. Lu, J. Wu and N. Yoshikai, J. Am. Chem. Soc., 2014, 136, 11598-11601.

5. G. Chelucci, F. Capitta and S. Baldino, Tetrahedron, 2008, 64, 10250-10257.

X. NMR Spectra.

S34

S35

S107

XI. X-Ray Data

1. Crystal Structure Report for rds667 (3pa-major)

A colorless block-like specimen of $C_{22}H_{23}NO_2$, approximate dimensions 0.092 mm x 0.251 mm x 0.387 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured.

The total exposure time was 9.52 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a triclinic unit cell yielded a total of 27055 reflections to a maximum θ angle of 29.75° (0.72 Å resolution), of which 5179 were independent (average redundancy 5.224, completeness = 99.6%, R_{int} = 3.37%, R_{sig} = 3.05%) and 3980 (76.85%) were greater than $2\sigma(F^2)$. The final cell constants of <u>a</u> = 9.3352(7) Å, <u>b</u> = 10.2282(9) Å, <u>c</u> = 11.6109(9) Å, α = 70.977(2)°, β = 69.277(3)°, γ = 63.872(2)°, volume = 911.65(13) Å³, are based upon the refinement of the XYZ-centroids of 7324 reflections above 20 $\sigma(I)$ with 4.528° < 2 θ < 59.04°. Data were corrected for absorption effects using the Multi-Scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.966. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.9710 and 0.9930. The final anisotropic full-matrix least-squares refinement on F² with 229 variables converged at R1 = 4.22%, for the observed data and wR2 = 10.38% for all data. The goodness-of-fit was 1.037. The largest peak in the final difference electron density synthesis was 0.350 e⁷/Å³ and the largest hole was -0.205 e⁷/Å³ with an RMS deviation of 0.042 e⁷/Å³. On the basis of the final model, the calculated density was 1.215 g/cm³ and F(000), 356 e⁷.

Sample and crystal data for rds667.

Identification code	rds667		
Chemical formula	$C_{22}H_{23}NO_2$		
Formula weight	333.41 g/mol		
Temperature	121(2) K		
Wavelength	0.71073 Å		
Crystal size	0.092 x 0.251 x 0.387 mm		
Crystal habit	colorless block		
Crystal system	triclinic		
Space group	P -1		
Unit cell dimensions	a = 9.3352(7) Å	$\alpha = 70.977(2)^{\circ}$	
	b = 10.2282(9) Å	$\beta = 69.277(3)^{\circ}$	
	c = 11.6109(9) Å	$\gamma = 63.872(2)^{\circ}$	

Volume	911.65(13) Å ³
Z	2
Density (calculated)	1.215 g/cm^3
Absorption coefficient	0.077 mm^{-1}
F(000)	356

Data collection and structure refinement for rds667.

Theta range for data collection	1.92 to 29.75°		
Index ranges	-13<=h<=12, -14<=k<=14, -16<=l<=16		
Reflections collected	27055		
Independent reflections	5179 [R(int) = 0.0337]		
Coverage of independent reflections	99.6%		
Absorption correction	Multi-Scan		
Max. and min. transmission	0.9930 and 0.9710		
Refinement method	Full-matrix least-squares on F ²		
Refinement program	SHELXL-2014/7 (Sheldrick, 2014)		
Function minimized	$\Sigma w (F_o^2 - F_c^2)^2$		
Data / restraints / parameters	5179 / 0 / 229		
Goodness-of-fit on F ²	1.037		
Final R indices	3980 data; I>2σ(I)	R1 = 0.0422, wR2 = 0.0944	
	all data	R1 = 0.0627, wR2 = 0.1038	
Weighting scheme	w=1/[$\sigma^{2}(F_{o}^{2})+(0.0421P)^{2}$ where P=($F_{o}^{2}+2F_{c}^{2})/3$	² +0.2729P]	
Largest diff. peak and hole	0.350 and -0.205 eÅ ⁻³		
R.M.S. deviation from mean	0.042 eÅ ⁻³		

Atomic coordinates and equivalent isotropic atomic displacement parameters (\mathring{A}^2) for rds667. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x/a	y/b	z/c	U(eq)
O1	0.98048(10)	0.17571(9)	0.63364(8)	0.02538(19)
C1	0.13770(13)	0.42874(12)	0.64168(10)	0.0175(2)
C2	0.05056(14)	0.39440(14)	0.78158(11)	0.0237(2)
O2	0.19244(10)	0.31650(9)	0.46822(7)	0.02135(18)
N1	0.13890(11)	0.31034(10)	0.59775(8)	0.01752(19)
C4	0.01951(13)	0.25426(12)	0.66679(10)	0.0178(2)
C9	0.41649(13)	0.28301(12)	0.67892(11)	0.0190(2)
C5	0.33354(15)	0.18515(14)	0.44035(12)	0.0281(3)
C6	0.76539(14)	0.40751(14)	0.79407(12)	0.0265(3)
C7	0.95659(16)	0.17517(14)	0.90093(12)	0.0281(3)
C8	0.31343(13)	0.42558(12)	0.61590(10)	0.0165(2)
C22	0.23052(14)	0.70194(13)	0.58258(11)	0.0222(2)
C10	0.49116(14)	0.16386(12)	0.73328(11)	0.0197(2)

	x/a	y/b	z/c	U(eq)
C11	0.57484(13)	0.01920(12)	0.80062(10)	0.0176(2)
C13	0.56142(14)	0.79443(13)	0.95075(11)	0.0226(2)
C12	0.48371(14)	0.93378(13)	0.88518(11)	0.0206(2)
C3	0.94621(13)	0.30762(12)	0.79041(10)	0.0188(2)
C21	0.20885(15)	0.82850(13)	0.61664(12)	0.0263(3)
C17	0.30087(13)	0.56119(12)	0.65251(10)	0.0172(2)
C16	0.74557(14)	0.96193(13)	0.78326(11)	0.0224(2)
C20	0.26002(15)	0.81632(14)	0.71915(13)	0.0278(3)
C18	0.35146(14)	0.54995(13)	0.75562(11)	0.0211(2)
C14	0.73095(15)	0.73813(13)	0.93319(11)	0.0234(2)
C15	0.82237(14)	0.82186(14)	0.84946(12)	0.0257(3)
C19	0.33205(15)	0.67735(15)	0.78803(12)	0.0269(3)
Bond le	ngths (Å) for ro	<u>ds667.</u>		
O1-C4		1.2186(14)	C1-N1	1.4539(14)
C1-C2		1.5389(16)	C1-C8	1.5472(14)
C1-H1		1.0	C2-C3	1.5424(16)
C2-H2A		0.99	C2-H2B	0.99
O2-N1		1.3963(12)	O2-C5	1.4380(14)
N1-C4		1.3582(14)	C4-C3	1.5208(16)
C9-C10		1.1963(16)	C9-C8	1.4678(15)
C5-H5A		0.98	С5-Н5В	0.98
C5-H5C		0.98	C6-C3	1.5341(15)
C6-H6A		0.98	С6-Н6В	0.98
C6-H6C		0.98	C7-C3	1.5266(16)
C7-H7A		0.98	С7-Н7В	0.98
C7-H7C		0.98	C8-C17	1.5245(15)
C8-H8		1.0	C22-C21	1.3854(17)
C22-C17	7	1.3949(16)	C22-H22	0.95
C10-C1	1	1.4391(15)	C11-C16	1.3969(15)
C11-C12	2	1.3983(16)	C13-C12	1.3821(16)
C13-C14	4	1.3868(17)	С13-Н13	0.95
C12-H12	2	0.95	C21-C20	1.3834(18)
C21-H2	1	0.95	C17-C18	1.3900(16)
C16-C15	5	1.3874(17)	С16-Н16	0.95
C20-C19)	1.3820(18)	С20-Н20	0.95
C18-C19)	1.3913(17)	C18-H18	0.95
C14-C15	5	1.3859(17)	C14-H14	0.95
C15-H1:	5	0.95	С19-Н19	0.95
<u>Bond ar</u>	ngles (°) for rds	<u>667.</u>		
N1-C1-C	22	100.55(8)	N1-C1-C8	111.89(9)

C2-C1-C8	114.98(9)	N1-C1-H1	109.7
С2-С1-Н1	109.7	C8-C1-H1	109.7
C1-C2-C3	106.35(9)	C1-C2-H2A	110.5
С3-С2-Н2А	110.5	C1-C2-H2B	110.5
С3-С2-Н2В	110.5	H2A-C2-H2B	108.6
N1-O2-C5	110.25(8)	C4-N1-O2	119.13(9)
C4-N1-C1	115.44(9)	O2-N1-C1	116.86(8)
O1-C4-N1	125.25(10)	O1-C4-C3	127.31(10)
N1-C4-C3	107.44(9)	C10-C9-C8	175.41(11)
O2-C5-H5A	109.5	O2-C5-H5B	109.5
H5A-C5-H5B	109.5	O2-C5-H5C	109.5
Н5А-С5-Н5С	109.5	H5B-C5-H5C	109.5
С3-С6-Н6А	109.5	С3-С6-Н6В	109.5
H6A-C6-H6B	109.5	С3-С6-Н6С	109.5
Н6А-С6-Н6С	109.5	H6B-C6-H6C	109.5
С3-С7-Н7А	109.5	С3-С7-Н7В	109.5
Н7А-С7-Н7В	109.5	С3-С7-Н7С	109.5
Н7А-С7-Н7С	109.5	H7B-C7-H7C	109.5
C9-C8-C17	114.23(9)	C9-C8-C1	110.53(9)
C17-C8-C1	108.76(8)	С9-С8-Н8	107.7
С17-С8-Н8	107.7	С1-С8-Н8	107.7
C21-C22-C17	120.53(11)	С21-С22-Н22	119.7
С17-С22-Н22	119.7	C9-C10-C11	177.62(12)
C16-C11-C12	119.15(10)	C16-C11-C10	121.39(10)
C12-C11-C10	119.46(10)	C12-C13-C14	120.13(11)
С12-С13-Н13	119.9	С14-С13-Н13	119.9
C13-C12-C11	120.48(10)	С13-С12-Н12	119.8
С11-С12-Н12	119.8	C4-C3-C7	110.18(9)
C4-C3-C6	106.90(9)	C7-C3-C6	109.95(10)
C4-C3-C2	103.66(9)	C7-C3-C2	113.20(10)
C6-C3-C2	112.60(10)	C20-C21-C22	120.20(11)
С20-С21-Н21	119.9	C22-C21-H21	119.9
C18-C17-C22	118.89(10)	C18-C17-C8	122.39(10)
C22-C17-C8	118.68(10)	C15-C16-C11	119.90(11)
С15-С16-Н16	120.0	C11-C16-H16	120.0
C19-C20-C21	119.75(11)	С19-С20-Н20	120.1
С21-С20-Н20	120.1	C17-C18-C19	120.30(11)
С17-С18-Н18	119.8	С19-С18-Н18	119.8
C15-C14-C13	119.82(11)	C15-C14-H14	120.1
C13-C14-H14	120.1	C14-C15-C16	120.51(11)
C14-C15-H15	119.7	С16-С15-Н15	119.7
C20-C19-C18	120.31(11)	С20-С19-Н19	119.8
С18-С19-Н19	119.8		

Torsion angles (°) for rds667.

N1-C1-C2-C3	-24.43(11)	C8-C1-C2-C3	-144.77(9)
C5-O2-N1-C4	-93.24(11)	C5-O2-N1-C1	120.30(10)
C2-C1-N1-C4	24.72(12)	C8-C1-N1-C4	147.24(9)
C2-C1-N1-O2	172.42(9)	C8-C1-N1-O2	-65.06(12)
02-N1-C4-O1	18.78(16)	C1-N1-C4-O1	165.70(10)
O2-N1-C4-C3	-161.21(8)	C1-N1-C4-C3	-14.29(12)
N1-C1-C8-C9	-59.35(12)	C2-C1-C8-C9	54.52(12)
N1-C1-C8-C17	174.49(9)	C2-C1-C8-C17	-71.64(11)
C14-C13-C12-C11	0.05(17)	C16-C11-C12-C13	-0.03(16)
C10-C11-C12-C13	179.89(10)	O1-C4-C3-C7	55.52(15)
N1-C4-C3-C7	-124.49(10)	O1-C4-C3-C6	-63.92(14)
N1-C4-C3-C6	116.08(10)	O1-C4-C3-C2	176.93(11)
N1-C4-C3-C2	-3.07(11)	C1-C2-C3-C4	17.56(11)
C1-C2-C3-C7	136.92(10)	C1-C2-C3-C6	-97.60(11)
C17-C22-C21-C20	1.33(18)	C21-C22-C17-C18	-1.10(17)
C21-C22-C17-C8	176.60(10)	C9-C8-C17-C18	-13.45(14)
C1-C8-C17-C18	110.54(11)	C9-C8-C17-C22	168.93(10)
C1-C8-C17-C22	-67.08(12)	C12-C11-C16-C15	0.09(17)
C10-C11-C16-C15	-179.83(11)	C22-C21-C20-C19	-0.38(18)
C22-C17-C18-C19	-0.05(16)	C8-C17-C18-C19	-177.66(10)
C12-C13-C14-C15	-0.14(18)	C13-C14-C15-C16	0.20(18)
C11-C16-C15-C14	-0.18(18)	C21-C20-C19-C18	-0.78(18)
C17-C18-C19-C20	0.99(18)		

Anisotropic atomic displacement parameters (\AA^2) for rds667.

The	anisotropic	atomic	displacement	factor exponent	t takes the form:	$-2\pi^2$ h ² a ^{*2}	2 U ₁₁ + +	+ 2 h k a* b*	U_{12}
			1			L .			

	U ₁₁	U_{22}	U ₃₃	U_{23}	U ₁₃	U_{12}
01	0.0285(4)	0.0251(4)	0.0292(5)	-0.0035(3)	-0.0080(4)	-0.0163(4)
C1	0.0147(5)	0.0162(5)	0.0223(5)	-0.0045(4)	-0.0042(4)	-0.0062(4)
C2	0.0197(5)	0.0310(6)	0.0234(6)	-0.0122(5)	0.0027(4)	-0.0134(5)
02	0.0238(4)	0.0242(4)	0.0143(4)	-0.0032(3)	-0.0028(3)	-0.0094(3)
N1	0.0180(4)	0.0203(5)	0.0153(4)	-0.0042(3)	-0.0015(3)	-0.0095(4)
C4	0.0153(5)	0.0152(5)	0.0210(5)	0.0002(4)	-0.0068(4)	-0.0050(4)
C9	0.0162(5)	0.0204(5)	0.0207(5)	-0.0050(4)	-0.0026(4)	-0.0079(4)
C5	0.0266(6)	0.0280(6)	0.0264(6)	-0.0118(5)	0.0029(5)	-0.0099(5)
C6	0.0160(5)	0.0242(6)	0.0298(6)	-0.0006(5)	-0.0020(5)	-0.0055(5)
C7	0.0287(6)	0.0262(6)	0.0215(6)	0.0019(5)	-0.0063(5)	-0.0079(5)
C8	0.0152(5)	0.0168(5)	0.0175(5)	-0.0016(4)	-0.0033(4)	-0.0076(4)
C22	0.0236(5)	0.0212(6)	0.0234(6)	0.0002(4)	-0.0070(4)	-0.0121(5)
C10	0.0190(5)	0.0198(5)	0.0213(5)	-0.0059(4)	-0.0040(4)	-0.0075(4)
C11	0.0197(5)	0.0164(5)	0.0176(5)	-0.0057(4)	-0.0054(4)	-0.0053(4)

	U_{11}	\mathbf{U}_{22}	U ₃₃	U_{23}	U_{13}	U_{12}
C13	0.0254(6)	0.0218(6)	0.0207(6)	-0.0027(4)	-0.0036(4)	-0.0117(5)
C12	0.0173(5)	0.0226(6)	0.0221(5)	-0.0061(4)	-0.0042(4)	-0.0070(4)
C3	0.0156(5)	0.0186(5)	0.0198(5)	-0.0018(4)	-0.0028(4)	-0.0069(4)
C21	0.0251(6)	0.0189(6)	0.0341(7)	-0.0015(5)	-0.0058(5)	-0.0113(5)
C17	0.0136(5)	0.0185(5)	0.0200(5)	-0.0032(4)	-0.0017(4)	-0.0087(4)
C16	0.0194(5)	0.0216(6)	0.0257(6)	-0.0021(4)	-0.0043(4)	-0.0099(4)
C20	0.0250(6)	0.0249(6)	0.0379(7)	-0.0129(5)	-0.0013(5)	-0.0133(5)
C18	0.0182(5)	0.0232(6)	0.0221(6)	-0.0026(4)	-0.0049(4)	-0.0093(4)
C14	0.0258(6)	0.0183(5)	0.0231(6)	-0.0031(4)	-0.0081(5)	-0.0046(5)
C15	0.0172(5)	0.0245(6)	0.0314(6)	-0.0036(5)	-0.0070(5)	-0.0049(5)
C19	0.0248(6)	0.0345(7)	0.0280(6)	-0.0114(5)	-0.0051(5)	-0.0142(5)

Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å²) for rds667.

	x/a	y/b	z/c	U(eq)
H1	0.0681	0.5273	0.5999	0.021
H2A	-0.0207	0.4877	0.8128	0.028
H2B	0.1324	0.3338	0.8324	0.028
H5A	0.3725	0.1925	0.3491	0.042
H5B	0.3029	0.0975	0.4795	0.042
H5C	0.4214	0.1759	0.4734	0.042
H6A	-0.2921	0.3505	0.7881	0.04
H6B	-0.2403	0.4926	0.7232	0.04
H6C	-0.2870	0.4432	0.8732	0.04
H7A	-0.1041	0.1196	0.8975	0.042
H7B	-0.0917	0.2109	0.9800	0.042
H7C	0.0722	0.1100	0.8963	0.042
H8	0.3632	0.4346	0.5233	0.02
H22	0.1972	0.7111	0.5110	0.027
H13	0.4986	-0.2629	1.0080	0.027
H12	0.3675	-0.0282	0.8976	0.025
H21	0.1587	0.9239	0.5695	0.032
H16	0.8090	0.0188	0.7262	0.027
H20	0.2457	0.9032	0.7421	0.033
H18	0.3995	0.4548	0.8042	0.025
H14	0.7843	-0.3576	0.9784	0.028
H15	0.9385	-0.2170	0.8373	0.031
H19	0.3685	0.6688	0.8578	0.032

2. Crystal Structure Report for rds624 (17a-major)

A colorless block-like specimen of $C_{31}H_{35}NO_6$, approximate dimensions 0.220 mm x 0.392 mm x 0.538 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured.

The total exposure time was 6.26 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a monoclinic unit cell yielded a total of 94581 reflections to a maximum θ angle of 35.12° (0.62 Å resolution), of which 12175 were independent (average redundancy 7.768, completeness = 99.7%, $R_{int} = 3.57\%$, $R_{sig} = 2.44\%$) and 9610 (78.93%) were greater than $2\sigma(F^2)$. The final cell constants of <u>a</u> = 14.8729(4) Å, <u>b</u> = 11.2262(3) Å, <u>c</u> = 16.4910(5) Å, $\beta = 92.9640(13)^\circ$, volume = 2749.76(13) Å³, are based upon the refinement of the XYZ-centroids of 275 reflections above 20 $\sigma(I)$ with 5.230° < 2 θ < 60.61°. Data were corrected for absorption effects using the Multi-Scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.930. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.9550 and 0.9810.

The final anisotropic full-matrix least-squares refinement on F^2 with 348 variables converged at R1 = 5.19%, for the observed data and wR2 = 15.81% for all data. The goodness-of-fit was 1.042. The largest peak in the final difference electron density synthesis was 0.868 e⁻/Å³ and the largest hole was -0.891 e⁻/Å³ with an RMS deviation of 0.073 e⁻/Å³. On the basis of the final model, the calculated density was 1.250 g/cm³ and F(000), 1104 e⁻.

Sample and crystal data for rds624.

Identification code	rds624	
Chemical formula	$C_{31}H_{35}NO_{6}$	
Formula weight	517.60 g/mol	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal size	0.220 x 0.392 x 0.538 mm	l
Crystal habit	colorless block	
Crystal system	monoclinic	
Space group	P 1 21/c 1	
Unit cell dimensions	a = 14.8729(4) Å	$\alpha = 90^{\circ}$
	b = 11.2262(3) Å	$\beta = 92.9640(13)^{\circ}$
	c = 16.4910(5) Å	$\gamma = 90^{\circ}$
Volume	2749.76(13) Å ³	
Z	4	
Density (calculated)	1.250 g/cm^3	
------------------------	-------------------------	
Absorption coefficient	0.086 mm^{-1}	
F(000)	1104	

Data collection and structure refinement for rds624.

Theta range for data collection	2.20 to 35.12°		
Index ranges	-23<=h<=24, -18<=k<=1	18, -26<=l<=18	
Reflections collected	94581		
Independent reflections	12175 [R(int) = 0.0357]		
Coverage of independent reflections	99.7%		
Absorption correction	Multi-Scan		
Max. and min. transmission	0.9810 and 0.9550		
Refinement method	Full-matrix least-squares on F ²		
Refinement program	SHELXL-2014/7 (Sheldrick, 2014)		
Function minimized	$\Sigma \mathrm{w}(\mathrm{F_o}^2 - \mathrm{F_c}^2)^2$		
Data / restraints / parameters	12175 / 0 / 348		
Goodness-of-fit on F ²	1.042		
Δ/σ_{max}	0.001		
Final R indices	9610 data; I>2σ(I)	R1 = 0.0519, $wR2 = 0.1448$	
	all data	R1 = 0.0688, $wR2 = 0.1581$	
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.0820P) ² where P=(F_o^2 +2 F_c^2)/3	2+1.2208P]	
Largest diff. peak and hole	0.868 and -0.891 $e^{A^{-3}}$		
R.M.S. deviation from mean	0.073 eÅ ⁻³		

Atomic coordinates and equivalent isotropic atomic displacement parameters (Å²) for rds624.

 $\overline{U(eq)}$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x/a	y/b	z/c	U(eq)
01	0.63629(5)	0.94950(6)	0.48374(4)	0.01555(13)
O2	0.58490(5)	0.15223(7)	0.56066(4)	0.01534(13)
O3	0.22184(5)	0.17390(8)	0.12783(5)	0.01821(14)
O4	0.21076(5)	0.09559(11)	0.27560(5)	0.0308(2)
N1	0.58442(5)	0.14179(7)	0.47633(5)	0.01112(13)
C1	0.51613(6)	0.20878(7)	0.42852(5)	0.00997(14)
C2	0.53566(6)	0.16348(7)	0.34179(5)	0.00934(13)
C3	0.61989(6)	0.22692(8)	0.31234(6)	0.01155(14)
C4	0.61751(6)	0.36227(8)	0.32004(6)	0.01466(16)
C5	0.60958(6)	0.39706(8)	0.40878(6)	0.01515(16)
C6	0.52405(6)	0.34367(8)	0.44254(6)	0.01246(15)
C7	0.56191(6)	0.03179(8)	0.35888(5)	0.01206(14)
C8	0.59976(6)	0.03088(8)	0.44547(5)	0.01132(14)
C9	0.67374(7)	0.18205(12)	0.59154(7)	0.0227(2)

	x/a	y/b	z/c	U(eq)
C10	0.44249(6)	0.40179(8)	0.40771(6)	0.01489(16)
C11	0.37432(7)	0.44776(9)	0.38016(6)	0.01629(17)
C12	0.29596(7)	0.50131(9)	0.35179(7)	0.01743(17)
C13	0.22705(7)	0.55240(10)	0.33031(7)	0.01823(18)
C14	0.14626(6)	0.61805(9)	0.31118(6)	0.01617(17)
C15	0.06250(7)	0.56997(11)	0.32845(7)	0.02137(19)
C16	0.98466(7)	0.63644(12)	0.31396(8)	0.0256(2)
C17	0.98943(8)	0.75073(12)	0.28272(8)	0.0257(2)
C18	0.07231(8)	0.79901(11)	0.26486(8)	0.0248(2)
C19	0.15046(7)	0.73272(10)	0.27836(7)	0.02070(19)
C20	0.45325(6)	0.17291(7)	0.28312(5)	0.00970(13)
C21	0.45791(6)	0.21430(8)	0.20430(5)	0.01223(15)
C22	0.38205(6)	0.21668(8)	0.15047(6)	0.01307(15)
C23	0.29964(6)	0.17708(8)	0.17523(6)	0.01252(15)
C24	0.29367(6)	0.13581(9)	0.25521(6)	0.01478(16)
C25	0.36936(6)	0.13325(9)	0.30770(5)	0.01337(15)
C26	0.22784(7)	0.20642(10)	0.04456(6)	0.01979(19)
C27	0.18786(8)	0.11500(17)	0.35675(8)	0.0359(3)
O1S	0.99208(8)	0.81083(13)	0.05570(9)	0.0501(3)
O2S	0.12522(6)	0.71439(9)	0.06310(7)	0.0313(2)
C1S	0.07167(9)	0.81341(12)	0.05117(9)	0.0280(2)
C2S	0.12678(9)	0.92287(13)	0.04103(9)	0.0311(3)
C3S	0.07744(10)	0.60424(13)	0.07964(11)	0.0368(3)
C4S	0.14528(13)	0.50579(16)	0.08933(12)	0.0462(4)
Bond ler	ıgths (Å) for rds	<u>624.</u>		
O1-C8		1.2217(11)	O2-N1	1.3952(10)
O2-C9		1.4309(13)	O3-C23	1.3631(11)
O3-C26		1.4281(13)	O4-C24	1.3713(12)
O4-C27		1.4147(15)	N1-C8	1.3686(12)
N1-C1		1.4615(11)	C1-C6	1.5354(12)
C1-C2		1.5594(12)	C1-H1	1.0
C2-C20		1.5254(12)	C2-C3	1.5411(12)
C2-C7		1.5511(12)	C3-C4	1.5254(13)
СЗ-НЗА		0.99	С3-Н3В	0.99
C4-C5		1.5250(14)	C4-H4A	0.99
C4-H4B		0.99	C5-C6	1.5365(13)
C5-H5A		0.99	C5-H5B	0.99
C6-C10		1.4679(13)	С6-Н6	1.0
C7-C8		1.5077(12)	С7-Н7А	0.99
С7-Н7В		0.99	С9-Н9А	0.98
C9-H9B		0.98	С9-Н9С	0.98

C10-C11	1.2054(13)	C11-C12	1.3719(14)
C12-C13	1.2113(14)	C13-C14	1.4309(14)
C14-C19	1.3990(15)	C14-C15	1.4004(14)
C15-C16	1.3878(16)	С15-Н15	0.95
C16-C17	1.3857(19)	C16-H16	0.95
C17-C18	1.3920(18)	C17-H17	0.95
C18-C19	1.3884(15)	C18-H18	0.95
С19-Н19	0.95	C20-C21	1.3856(12)
C20-C25	1.4041(12)	C21-C22	1.3993(12)
C21-H21	0.95	C22-C23	1.3850(13)
С22-Н22	0.95	C23-C24	1.4051(13)
C24-C25	1.3844(13)	С25-Н25	0.95
C26-H26A	0.98	C26-H26B	0.98
C26-H26C	0.98	C27-H27A	0.98
С27-Н27В	0.98	С27-Н27С	0.98
O1S-C1S	1.1904(18)	O2S-C1S	1.3756(16)
O2S-C3S	1.4590(18)	C1S-C2S	1.4913(19)
C2S-H2SA	0.98	C2S-H2SB	0.98
C2S-H2SC	0.98	C3S-C4S	1.500(2)
C3S-H3SA	0.99	C3S-H3SB	0.99
C4S-H4SA	0.98	C4S-H4SB	0.98
C4S-H4SC	0.98		

Bond angles (°) for rds624.

N1-O2-C9	109.36(7)	C23-O3-C26	116.83(8)
C24-O4-C27	116.41(9)	C8-N1-O2	117.05(7)
C8-N1-C1	113.08(7)	O2-N1-C1	117.51(7)
N1-C1-C6	112.37(7)	N1-C1-C2	99.77(6)
C6-C1-C2	116.31(7)	N1-C1-H1	109.3
С6-С1-Н1	109.3	C2-C1-H1	109.3
C20-C2-C3	114.05(7)	C20-C2-C7	111.58(7)
C3-C2-C7	107.26(7)	C20-C2-C1	112.17(7)
C3-C2-C1	109.35(7)	C7-C2-C1	101.61(7)
C4-C3-C2	114.29(7)	С4-С3-НЗА	108.7
С2-С3-НЗА	108.7	C4-C3-H3B	108.7
С2-С3-Н3В	108.7	НЗА-СЗ-НЗВ	107.6
C5-C4-C3	109.77(8)	C5-C4-H4A	109.7
С3-С4-Н4А	109.7	C5-C4-H4B	109.7
С3-С4-Н4В	109.7	H4A-C4-H4B	108.2
C4-C5-C6	110.76(7)	C4-C5-H5A	109.5
С6-С5-Н5А	109.5	C4-C5-H5B	109.5
С6-С5-Н5В	109.5	H5A-C5-H5B	108.1
C10-C6-C1	108.91(7)	C10-C6-C5	111.57(8)

C1-C6-C5	112.87(7)	С10-С6-Н6	107.8
С1-С6-Н6	107.8	С5-С6-Н6	107.8
C8-C7-C2	104.87(7)	С8-С7-Н7А	110.8
С2-С7-Н7А	110.8	С8-С7-Н7В	110.8
С2-С7-Н7В	110.8	H7A-C7-H7B	108.8
O1-C8-N1	124.50(8)	O1-C8-C7	128.95(8)
N1-C8-C7	106.55(7)	О2-С9-Н9А	109.5
О2-С9-Н9В	109.5	H9A-C9-H9B	109.5
О2-С9-Н9С	109.5	Н9А-С9-Н9С	109.5
Н9В-С9-Н9С	109.5	C11-C10-C6	178.46(11)
C10-C11-C12	177.79(11)	C13-C12-C11	176.56(12)
C12-C13-C14	175.24(12)	C19-C14-C15	119.43(9)
C19-C14-C13	120.36(9)	C15-C14-C13	120.15(10)
C16-C15-C14	120.04(11)	C16-C15-H15	120.0
С14-С15-Н15	120.0	C17-C16-C15	120.24(10)
С17-С16-Н16	119.9	C15-C16-H16	119.9
C16-C17-C18	120.14(10)	C16-C17-H17	119.9
С18-С17-Н17	119.9	C19-C18-C17	120.03(11)
С19-С18-Н18	120.0	C17-C18-H18	120.0
C18-C19-C14	120.10(10)	С18-С19-Н19	120.0
С14-С19-Н19	120.0	C21-C20-C25	117.74(8)
C21-C20-C2	122.73(7)	C25-C20-C2	119.46(8)
C20-C21-C22	121.58(8)	C20-C21-H21	119.2
C22-C21-H21	119.2	C23-C22-C21	120.25(8)
С23-С22-Н22	119.9	C21-C22-H22	119.9
O3-C23-C22	125.26(8)	O3-C23-C24	115.90(8)
C22-C23-C24	118.84(8)	O4-C24-C25	123.53(9)
O4-C24-C23	116.11(8)	C25-C24-C23	120.32(8)
C24-C25-C20	121.26(8)	С24-С25-Н25	119.4
С20-С25-Н25	119.4	O3-C26-H26A	109.5
O3-C26-H26B	109.5	H26A-C26-H26B	109.5
ОЗ-С26-Н26С	109.5	H26A-C26-H26C	109.5
H26B-C26-H26C	109.5	O4-C27-H27A	109.5
O4-C27-H27B	109.5	H27A-C27-H27B	109.5
О4-С27-Н27С	109.5	H27A-C27-H27C	109.5
Н27В-С27-Н27С	109.5	C1S-O2S-C3S	115.32(11)
01S-C1S-02S	122.80(14)	O1S-C1S-C2S	125.54(14)
O2S-C1S-C2S	111.37(11)	C1S-C2S-H2SA	109.5
C1S-C2S-H2SB	109.5	H2SA-C2S-H2SB	109.5
C1S-C2S-H2SC	109.5	H2SA-C2S-H2SC	109.5
H2SB-C2S-H2SC	109.5	O2S-C3S-C4S	108.25(13)
O2S-C3S-H3SA	110.0	C4S-C3S-H3SA	110.0
O2S-C3S-H3SB	110.0	C4S-C3S-H3SB	110.0

H3SA-C3S-H3SB	108.4	C3S-C4S-H4SA	109.5
C3S-C4S-H4SB	109.5	H4SA-C4S-H4SB	109.5
C3S-C4S-H4SC	109.5	H4SA-C4S-H4SC	109.5
H4SB-C4S-H4SC	109.5		
Torsion angles (°) for rds6	<u>524.</u>		
C9-O2-N1-C8	91.77(10)	C9-O2-N1-C1	-128.56(9)
C8-N1-C1-C6	-158.40(8)	O2-N1-C1-C6	60.40(10)
C8-N1-C1-C2	-34.54(9)	O2-N1-C1-C2	-175.74(7)
N1-C1-C2-C20	154.98(7)	C6-C1-C2-C20	-83.96(9)
N1-C1-C2-C3	-77.46(8)	C6-C1-C2-C3	43.61(9)
N1-C1-C2-C7	35.70(8)	C6-C1-C2-C7	156.76(7)
C20-C2-C3-C4	75.72(10)	C7-C2-C3-C4	-160.19(7)
C1-C2-C3-C4	-50.78(10)	C2-C3-C4-C5	60.09(10)
C3-C4-C5-C6	-58.85(10)	N1-C1-C6-C10	-167.35(8)
C2-C1-C6-C10	78.56(9)	N1-C1-C6-C5	68.16(10)
C2-C1-C6-C5	-45.94(10)	C4-C5-C6-C10	-70.62(10)
C4-C5-C6-C1	52.41(10)	C20-C2-C7-C8	-147.17(7)
C3-C2-C7-C8	87.25(8)	C1-C2-C7-C8	-27.46(8)
O2-N1-C8-O1	-20.22(13)	C1-N1-C8-O1	-161.61(9)
O2-N1-C8-C7	158.88(7)	C1-N1-C8-C7	17.48(10)
C2-C7-C8-O1	-173.10(9)	C2-C7-C8-N1	7.86(9)
C19-C14-C15-C16	-0.79(17)	C13-C14-C15-C16	176.47(11)
C14-C15-C16-C17	-0.29(19)	C15-C16-C17-C18	0.72(19)
C16-C17-C18-C19	-0.05(19)	C17-C18-C19-C14	-1.04(19)
C15-C14-C19-C18	1.46(17)	C13-C14-C19-C18	-175.80(11)
C3-C2-C20-C21	11.78(12)	C7-C2-C20-C21	-109.95(9)
C1-C2-C20-C21	136.80(8)	C3-C2-C20-C25	-171.28(8)
C7-C2-C20-C25	66.99(10)	C1-C2-C20-C25	-46.27(10)
C25-C20-C21-C22	-0.12(13)	C2-C20-C21-C22	176.87(8)
C20-C21-C22-C23	-0.05(14)	C26-O3-C23-C22	4.57(14)
C26-O3-C23-C24	-175.15(9)	C21-C22-C23-O3	-179.11(9)
C21-C22-C23-C24	0.60(14)	C27-O4-C24-C25	35.73(18)
C27-O4-C24-C23	-146.60(12)	O3-C23-C24-O4	1.00(14)
C22-C23-C24-O4	-178.74(10)	O3-C23-C24-C25	178.74(9)
C22-C23-C24-C25	-0.99(15)	O4-C24-C25-C20	178.42(10)
C23-C24-C25-C20	0.85(15)	C21-C20-C25-C24	-0.29(14)
C2-C20-C25-C24	-177.38(9)	C3S-O2S-C1S-O1S	1.6(2)
C3S-O2S-C1S-C2S	175.66(12)	C1S-O2S-C3S-C4S	178.88(13)

Anisotropic atomic displacement parameters (Å²) for rds624.

The anisotropic atc	mic displacemen	t factor exponent ta	akes the form: -2π	τ^{2} [h ² a ^{*2} U ₁₁ +	$. + 2 h k a^* b^* U_{12}]$
U_{11}	\mathbf{U}_{22}	U ₃₃	U ₂₃	U ₁₃	U ₁₂

S185

	U ₁₁	U_{22}	U_{33}	U_{23}	U ₁₃	U ₁₂
01	0.0182(3)	0.0123(3)	0.0158(3)	0.0042(2)	-0.0022(2)	0.0022(2)
O2	0.0146(3)	0.0230(3)	0.0083(3)	-0.0004(2)	-0.0003(2)	0.0009(2)
O3	0.0122(3)	0.0280(4)	0.0139(3)	0.0018(3)	-0.0042(2)	-0.0032(3)
O4	0.0133(3)	0.0638(7)	0.0155(3)	0.0010(4)	0.0015(3)	-0.0152(4)
N1	0.0137(3)	0.0114(3)	0.0081(3)	0.0002(2)	-0.0012(2)	0.0013(2)
C1	0.0096(3)	0.0096(3)	0.0106(3)	0.0003(3)	-0.0004(2)	0.0002(2)
C2	0.0096(3)	0.0087(3)	0.0097(3)	0.0009(2)	0.0002(2)	-0.0002(2)
C3	0.0095(3)	0.0123(3)	0.0129(3)	0.0020(3)	0.0009(3)	-0.0002(3)
C4	0.0135(4)	0.0122(3)	0.0183(4)	0.0038(3)	0.0010(3)	-0.0025(3)
C5	0.0138(4)	0.0106(3)	0.0209(4)	-0.0008(3)	-0.0010(3)	-0.0025(3)
C6	0.0119(3)	0.0103(3)	0.0151(4)	-0.0013(3)	-0.0011(3)	0.0018(3)
C7	0.0159(4)	0.0087(3)	0.0113(3)	0.0003(3)	-0.0016(3)	0.0006(3)
C8	0.0117(3)	0.0104(3)	0.0119(3)	0.0018(3)	0.0002(3)	-0.0004(3)
C9	0.0183(4)	0.0321(5)	0.0171(4)	-0.0070(4)	-0.0056(3)	-0.0002(4)
C10	0.0147(4)	0.0117(3)	0.0182(4)	-0.0014(3)	0.0005(3)	0.0020(3)
C11	0.0150(4)	0.0141(4)	0.0198(4)	-0.0002(3)	0.0008(3)	0.0023(3)
C12	0.0144(4)	0.0168(4)	0.0211(4)	0.0010(3)	0.0006(3)	0.0021(3)
C13	0.0136(4)	0.0187(4)	0.0222(4)	0.0001(3)	-0.0002(3)	0.0016(3)
C14	0.0111(3)	0.0188(4)	0.0183(4)	-0.0001(3)	-0.0015(3)	0.0019(3)
C15	0.0129(4)	0.0252(5)	0.0257(5)	0.0024(4)	-0.0012(3)	-0.0014(3)
C16	0.0110(4)	0.0388(6)	0.0269(5)	0.0012(5)	-0.0005(4)	0.0007(4)
C17	0.0160(4)	0.0344(6)	0.0264(5)	-0.0025(4)	-0.0035(4)	0.0101(4)
C18	0.0207(5)	0.0227(5)	0.0301(6)	0.0022(4)	-0.0056(4)	0.0061(4)
C19	0.0136(4)	0.0216(4)	0.0265(5)	0.0032(4)	-0.0027(3)	0.0013(3)
C20	0.0094(3)	0.0091(3)	0.0105(3)	0.0005(3)	-0.0002(2)	-0.0008(2)
C21	0.0113(3)	0.0133(3)	0.0119(3)	0.0030(3)	-0.0005(3)	-0.0022(3)
C22	0.0126(3)	0.0146(4)	0.0118(3)	0.0027(3)	-0.0018(3)	-0.0020(3)
C23	0.0109(3)	0.0142(4)	0.0122(3)	-0.0009(3)	-0.0019(3)	-0.0007(3)
C24	0.0101(3)	0.0218(4)	0.0124(4)	-0.0003(3)	0.0006(3)	-0.0036(3)
C25	0.0115(3)	0.0178(4)	0.0108(3)	0.0013(3)	0.0002(3)	-0.0035(3)
C26	0.0194(4)	0.0240(5)	0.0153(4)	0.0037(3)	-0.0061(3)	-0.0033(4)
C27	0.0145(4)	0.0742(11)	0.0196(5)	0.0081(6)	0.0054(4)	-0.0002(5)
O1S	0.0310(6)	0.0538(8)	0.0648(9)	-0.0054(7)	-0.0041(5)	0.0022(5)
O2S	0.0234(4)	0.0292(5)	0.0416(6)	-0.0029(4)	0.0031(4)	0.0001(3)
C1S	0.0229(5)	0.0282(6)	0.0326(6)	-0.0050(5)	-0.0014(4)	0.0005(4)
C2S	0.0294(6)	0.0305(6)	0.0329(6)	-0.0003(5)	-0.0015(5)	-0.0034(5)
C3S	0.0328(7)	0.0292(6)	0.0485(9)	-0.0061(6)	0.0041(6)	-0.0022(5)
C4S	0.0521(10)	0.0357(8)	0.0527(10)	0.0003(7)	0.0209(8)	0.0111(7)
Hvdr	ogen atomic coo	ordinates and iso	tropic atomic dis	placement paran	neters (Å ²) for ro	ls624.

ii y ai ogen	atomic coor amates and	isoti opie atonne aispi	comene parameters (11)1011450211
	x/a	y/b	z/c	U(eq)
H1	0.4549	0.1815	0.4428	0.012

	x/a	y/b	z/c	U(eq)
H3A	0.6735	0.1966	0.3439	0.014
H3B	0.6269	0.2060	0.2547	0.014
H4A	0.6732	0.3967	0.2994	0.018
H4B	0.5655	0.3943	0.2870	0.018
H5A	0.6077	0.4849	0.4135	0.018
H5B	0.6631	0.3681	0.4412	0.018
H6	0.5267	0.3579	0.5025	0.015
H7A	0.5085	-0.0207	0.3525	0.014
H7B	0.6076	0.0046	0.3214	0.014
H9A	0.6776	0.1720	0.6507	0.034
H9B	0.6869	0.2650	0.5780	0.034
H9C	0.7175	0.1295	0.5671	0.034
H15	0.0590	0.4918	0.3501	0.026
H16	-0.0721	0.6035	0.3255	0.031
H17	-0.0640	0.7962	0.2735	0.031
H18	0.0754	0.8774	0.2434	0.03
H19	0.2069	0.7653	0.2653	0.025
H21	0.5140	0.2417	0.1864	0.015
H22	0.3871	0.2456	0.0968	0.016
H25	0.3644	0.1041	0.3614	0.016
H26A	0.2509	0.2880	0.0412	0.03
H26B	0.1680	0.2019	0.0169	0.03
H26C	0.2688	0.1517	0.0185	0.03
H27A	0.2256	0.0647	0.3932	0.054
H27B	0.1244	0.0949	0.3623	0.054
H27C	0.1978	0.1989	0.3709	0.054
H2SA	0.1695	0.9094	-0.0013	0.047
H2SB	0.1599	0.9415	0.0924	0.047
H2SC	0.0871	0.9897	0.0254	0.047
H3SA	0.0335	0.5860	0.0342	0.044
H3SB	0.0443	0.6127	0.1299	0.044
H4SA	0.1814	0.5028	0.0414	0.069
H4SB	0.1140	0.4297	0.0952	0.069
H4SC	0.1847	0.5205	0.1378	0.069

3. Crystal Structure Report for rds625 (17a-minor)

A colorless plate-like specimen of $C_{58}H_{62}N_2O_{10}$, approximate dimensions 0.098 mm x 0.225 mm x 0.352 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured.

The total exposure time was 28.09 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a triclinic unit cell yielded a total of 98492 reflections to a maximum θ angle of 30.59° (0.70 Å resolution), of which 15311 were independent (average redundancy 6.433, completeness = 99.6%, R_{int} = 4.16%, R_{sig} = 3.23%) and 11862 (77.47%) were greater than $2\sigma(F^2)$. The final cell constants of <u>a</u> = 10.3428(7) Å, <u>b</u> = 16.0861(11) Å, <u>c</u> = 17.3663(12) Å, α = 65.705(3)°, β = 73.172(4)°, γ = 89.520(4)°, volume = 2500.3(3) Å³, are based upon the refinement of the XYZ-centroids of 9798 reflections above 20 $\sigma(I)$ with 4.656° < 2 θ < 60.92°. Data were corrected for absorption effects using the Multi-Scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.925. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.9700 and 0.9920.

The final anisotropic full-matrix least-squares refinement on F^2 with 696 variables converged at R1 = 6.16%, for the observed data and wR2 = 17.71% for all data. The goodness-of-fit was 1.098. The largest peak in the final difference electron density synthesis was 0.664 e⁻/Å³ and the largest hole was -0.485 e⁻/Å³ with an RMS deviation of 0.068 e⁻/Å³. On the basis of the final model, the calculated density was 1.258 g/cm³ and F(000), 1008 e⁻.

Sample and crystal data for rds625.

rds625		
$C_{58}H_{62}N_2O_{10}$		
947.09 g/mol		
100(2) K		
0.71073 Å		
0.098 x 0.225 x 0.352 mm		
colorless plate		
triclinic		
P -1		
a = 10.3428(7) Å	$\alpha = 65.705(3)^{\circ}$	
b = 16.0861(11) Å	$\beta = 73.172(4)^{\circ}$	
c = 17.3663(12) Å	$\gamma = 89.520(4)^{\circ}$	
2500.3(3) Å ³		
2		
1.258 g/cm^3		
	rds625 $C_{58}H_{62}N_2O_{10}$ 947.09 g/mol 100(2) K 0.71073 Å 0.098 x 0.225 x 0.352 mm colorless plate triclinic P -1 a = 10.3428(7) Å b = 16.0861(11) Å c = 17.3663(12) Å 2500.3(3) Å ³ 2 1.258 g/cm ³	

Absorption coefficient	0.086 mm ⁻¹
F(000)	1008

Data collection and structure refinement for rds625.

Theta range for data collection	1.48 to 30.59°		
Index ranges	-14<=h<=14, -22<=k<	<=22, -24<=1<=24	
Reflections collected	98492		
Independent reflections	15311 [R(int) = 0.0410	6]	
Coverage of independent reflections	99.6%		
Absorption correction	Multi-Scan		
Max. and min. transmission	0.9920 and 0.9700		
Refinement method	Full-matrix least-squares on F ²		
Refinement program	SHELXL-2014/7 (Sheldrick, 2014)		
Function minimized	$\Sigma w(F_o^2 - F_c^2)^2$		
Data / restraints / parameters	15311 / 70 / 696		
Goodness-of-fit on F ²	1.098		
Final R indices	11862 data; I>2σ(I)	R1 = 0.0616, wR2 = 0.1663	
	all data	R1 = 0.0813, $wR2 = 0.1771$	
Weighting scheme	w=1/[$\sigma^{2}(F_{o}^{2})+(0.0750)$ where P=($F_{o}^{2}+2F_{c}^{2}$)/3	P) ² +2.1946P]	
Largest diff. peak and hole	0.664 and -0.485 $e^{A^{-3}}$		
R.M.S. deviation from mean	0.068 eÅ ⁻³		

Atomic coordinates and equivalent isotropic atomic displacement parameters (Å²) for rds625.

 $U(\mbox{eq})$ is defined as one third of the trace of the orthogonalized $U_{\mbox{\scriptsize ij}}$ tensor.

	x/a	y/b	z/c	U(eq)
01	0.14864(12)	0.06430(8)	0.42312(8)	0.0166(2)
O2	0.18174(12)	0.96240(8)	0.58399(8)	0.0163(2)
O3	0.42852(12)	0.17598(8)	0.75151(9)	0.0209(3)
O4	0.49008(12)	0.03146(8)	0.72538(9)	0.0222(3)
N1	0.12870(13)	0.04657(9)	0.56441(9)	0.0133(2)
C1	0.02133(15)	0.05484(10)	0.63677(10)	0.0122(3)
C2	0.98180(15)	0.15110(10)	0.58432(10)	0.0116(3)
C3	0.09017(16)	0.22744(11)	0.56759(11)	0.0146(3)
C4	0.12166(17)	0.21867(11)	0.65108(12)	0.0177(3)
C5	0.17219(18)	0.12635(12)	0.69346(12)	0.0200(3)
C6	0.06491(17)	0.04753(11)	0.71651(11)	0.0160(3)
C7	0.99631(16)	0.14902(11)	0.49363(10)	0.0137(3)
C8	0.09958(15)	0.08374(10)	0.48562(10)	0.0133(3)
C9	0.32547(17)	0.97835(13)	0.56474(13)	0.0222(3)
C10	0.10492(18)	0.95641(12)	0.76063(11)	0.0187(3)
C11	0.13623(19)	0.88119(13)	0.79622(12)	0.0210(3)
C12	0.17008(19)	0.79456(13)	0.83722(12)	0.0225(3)

	x/a	y/b	z/c	U(eq)
C13	0.1981(2)	0.71842(13)	0.87401(12)	0.0252(4)
C14	0.2327(2)	0.62871(14)	0.91930(14)	0.0296(4)
C15	0.3534(2)	0.60117(15)	0.88168(15)	0.0332(5)
C16	0.3878(3)	0.51524(18)	0.9273(2)	0.0506(7)
C17	0.3050(4)	0.4582(2)	0.0119(2)	0.0712(11)
C18	0.1865(4)	0.4852(2)	0.0506(2)	0.0784(13)
C19	0.1479(3)	0.56981(19)	0.00403(19)	0.0547(8)
C20	0.83673(15)	0.16131(10)	0.63015(10)	0.0117(3)
C21	0.80139(16)	0.23843(10)	0.64463(10)	0.0136(3)
C22	0.66569(16)	0.24558(11)	0.68547(11)	0.0147(3)
C23	0.56334(16)	0.17574(11)	0.71218(11)	0.0147(3)
C24	0.59711(16)	0.09691(11)	0.69786(11)	0.0152(3)
C25	0.73097(16)	0.09077(10)	0.65703(11)	0.0140(3)
C26	0.39058(19)	0.25366(13)	0.76911(13)	0.0247(4)
C27	0.52330(18)	0.94497(12)	0.72624(14)	0.0227(4)
05	0.42083(13)	0.56417(8)	0.42335(8)	0.0178(2)
O6	0.23903(12)	0.46253(8)	0.58630(8)	0.0171(2)
07	0.83718(13)	0.67723(8)	0.74236(9)	0.0205(3)
08	0.80234(14)	0.53297(9)	0.71591(10)	0.0238(3)
N2	0.30920(14)	0.54707(9)	0.56511(9)	0.0142(3)
C28	0.35035(16)	0.55643(10)	0.63579(10)	0.0130(3)
C29	0.43821(15)	0.65262(10)	0.58146(10)	0.0120(3)
C30	0.34395(16)	0.72896(11)	0.56610(11)	0.0149(3)
C31	0.23435(17)	0.72050(11)	0.65068(12)	0.0180(3)
C32	0.14474(17)	0.62788(12)	0.69534(13)	0.0208(3)
C33	0.23346(17)	0.54970(11)	0.71681(11)	0.0168(3)
C34	0.50756(16)	0.64992(11)	0.49077(10)	0.0141(3)
C35	0.41180(16)	0.58408(11)	0.48509(11)	0.0140(3)
C36	0.11107(18)	0.47772(13)	0.57021(14)	0.0249(4)
C37	0.15291(18)	0.45850(12)	0.76421(12)	0.0194(3)
C38	0.08650(18)	0.38422(13)	0.80206(12)	0.0213(3)
C39	0.00992(19)	0.29901(13)	0.84309(12)	0.0221(3)
C40	0.94234(19)	0.22529(13)	0.87917(12)	0.0233(4)
C41	0.85467(19)	0.13969(12)	0.92560(12)	0.0229(3)
C42	0.7840(2)	0.10997(14)	0.88204(13)	0.0270(4)
C43	0.6934(3)	0.03020(16)	0.92894(16)	0.0369(5)
C44	0.6712(3)	0.98003(16)	0.01993(16)	0.0388(5)
C45	0.7403(3)	0.00882(15)	0.06357(14)	0.0358(5)
C46	0.8322(2)	0.08807(15)	0.01703(13)	0.0323(5)
C47	0.54145(15)	0.66300(10)	0.62544(10)	0.0123(3)
C48	0.56089(16)	0.73937(11)	0.64099(11)	0.0145(3)
C49	0.65848(16)	0.74647(11)	0.68026(11)	0.0152(3)

	x/a	y/b	z/c	U(eq)
C50	0.73832(16)	0.67698(11)	0.70478(11)	0.0150(3)
C51	0.72032(17)	0.59893(11)	0.68948(11)	0.0159(3)
C52	0.62380(16)	0.59300(11)	0.65022(11)	0.0148(3)
C53	0.8518(2)	0.75214(13)	0.76472(13)	0.0241(4)
C54	0.7683(2)	0.44653(12)	0.71754(15)	0.0259(4)
O1S	0.2715(4)	0.1303(3)	0.1306(3)	0.0438(9)
O2S	0.3973(3)	0.2364(3)	0.9972(3)	0.0476(9)
C1S	0.2821(5)	0.1859(4)	0.0539(4)	0.0410(11)
C2S	0.1676(5)	0.2103(9)	0.0161(4)	0.071(2)
C3S	0.5165(4)	0.2230(3)	0.0259(3)	0.0388(10)
C4S	0.6279(5)	0.2914(3)	0.9531(3)	0.0479(12)
O1T	0.3320(12)	0.1724(9)	0.0932(7)	0.079(3)
O2T	0.4189(7)	0.2598(7)	0.9491(7)	0.062(2)
C1T	0.3194(15)	0.2242(12)	0.0203(9)	0.070(4)
C2T	0.1817(19)	0.237(3)	0.0064(18)	0.168(16)
C3T	0.5526(8)	0.2354(7)	0.9574(6)	0.052(2)
C4T	0.6016(18)	0.2886(14)	0.9986(16)	0.120(8)
Bond len	øths (Å) for rds	625.		
01-C8		1 2211(19)	02-N1	1 4023(16)
02-C9		1 427(2)	03-C23	1 3644(19)
03-C26		1.430(2)	O4-C24	1.3644(19)
O4-C27		1.425(2)	N1-C8	1.372(2)
N1-C1		1.469(2)	C1-C6	1.537(2)
C1-C2		1.562(2)	C1-H1	1.0
C2-C20		1.524(2)	C2-C3	1.546(2)
C2-C7		1.552(2)	C3-C4	1.527(2)
С3-НЗА		0.99	C3-H3B	0.99
C4-C5		1.526(2)	C4-H4A	0.99
C4-H4B		0.99	C5-C6	1.532(2)
C5-H5A		0.99	С5-Н5В	0.99
C6-C10		1.468(2)	С6-Н6	1.0
C7-C8		1.509(2)	C7-H7A	0.99
C7-H7B		0.99	С9-Н9А	0.98
C9-H9B		0.98	С9-Н9С	0.98
C10-C11		1.202(3)	C11-C12	1.375(3)
C12-C13		1.204(3)	C13-C14	1.431(3)
C14-C15		1.393(3)	C14-C19	1.397(3)
C15-C16		1.385(3)	С15-Н15	0.95
C16-C17		1.382(4)	C16-H16	0.95
C17-C18		1.378(5)	С17-Н17	0.95
C18-C19		1.392(4)	C18-H18	0.95

С19-Н19	0.95	C20-C21	1.390(2)
C20-C25	1.411(2)	C21-C22	1.405(2)
C21-H21	0.95	C22-C23	1.380(2)
С22-Н22	0.95	C23-C24	1.412(2)
C24-C25	1.384(2)	С25-Н25	0.95
C26-H26A	0.98	C26-H26B	0.98
C26-H26C	0.98	C27-H27A	0.98
С27-Н27В	0.98	С27-Н27С	0.98
O5-C35	1.2186(19)	O6-N2	1.4005(17)
O6-C36	1.429(2)	O7-C50	1.3637(19)
O7-C53	1.431(2)	O8-C51	1.3659(19)
O8-C54	1.424(2)	N2-C35	1.374(2)
N2-C28	1.472(2)	C28-C33	1.531(2)
C28-C29	1.561(2)	C28-H28	1.0
C29-C47	1.527(2)	C29-C30	1.546(2)
C29-C34	1.549(2)	C30-C31	1.528(2)
С30-Н30А	0.99	C30-H30B	0.99
C31-C32	1.528(2)	C31-H31A	0.99
С31-Н31В	0.99	C32-C33	1.535(2)
C32-H32A	0.99	C32-H32B	0.99
C33-C37	1.468(2)	С33-Н33	1.0
C34-C35	1.508(2)	C34-H34A	0.99
C34-H34B	0.99	С36-Н36А	0.98
С36-Н36В	0.98	С36-Н36С	0.98
C37-C38	1.199(3)	C38-C39	1.379(3)
C39-C40	1.199(3)	C40-C41	1.432(3)
C41-C42	1.399(3)	C41-C46	1.403(3)
C42-C43	1.381(3)	C42-H42	0.95
C43-C44	1.394(3)	C43-H43	0.95
C44-C45	1.381(3)	C44-H44	0.95
C45-C46	1.382(3)	C45-H45	0.95
С46-Н46	0.95	C47-C48	1.390(2)
C47-C52	1.406(2)	C48-C49	1.401(2)
C48-H48	0.95	C49-C50	1.382(2)
C49-H49	0.95	C50-C51	1.410(2)
C51-C52	1.385(2)	С52-Н52	0.95
С53-Н53А	0.98	С53-Н53В	0.98
С53-Н53С	0.98	C54-H54A	0.98
C54-H54B	0.98	C54-H54C	0.98
O1S-C1S	1.234(6)	O2S-C1S	1.314(6)
O2S-C3S	1.442(5)	C1S-C2S	1.490(5)
C2S-H2SA	0.98	C2S-H2SB	0.98
C2S-H2SC	0.98	C3S-C4S	1.473(6)

C3S-H3SA	0.99	C3S-H3SB	0.99
C4S-H4SA	0.98	C4S-H4SB	0.98
C4S-H4SC	0.98	O1T-C1T	1.240(13)
O2T-C1T	1.267(13)	O2T-C3T	1.466(10)
C1T-C2T	1.511(15)	C2T-H2TA	0.98
С2Т-Н2ТВ	0.98	C2T-H2TC	0.98
C3T-C4T	1.492(12)	СЗТ-НЗТА	0.99
СЗТ-НЗТВ	0.99	С4Т-Н4ТА	0.98
С4Т-Н4ТВ	0.98	C4T-H4TC	0.98
Bond angles (°) for rd	<u>s625.</u>		
N1-O2-C9	109.08(12)	C23-O3-C26	117.36(13)
C24-O4-C27	116.38(13)	C8-N1-O2	115.72(12)
C8-N1-C1	111.75(12)	O2-N1-C1	117.15(12)
N1-C1-C6	115.16(13)	N1-C1-C2	99.93(12)
C6-C1-C2	114.05(12)	N1-C1-H1	109.1
С6-С1-Н1	109.1	С2-С1-Н1	109.1
C20-C2-C3	113.99(12)	C20-C2-C7	111.89(12)
C3-C2-C7	107.70(12)	C20-C2-C1	111.43(12)
C3-C2-C1	109.65(12)	C7-C2-C1	101.41(11)
C4-C3-C2	114.13(13)	С4-С3-НЗА	108.7
С2-С3-НЗА	108.7	С4-С3-Н3В	108.7
С2-С3-Н3В	108.7	НЗА-СЗ-НЗВ	107.6
C5-C4-C3	110.13(13)	С5-С4-Н4А	109.6
С3-С4-Н4А	109.6	С5-С4-Н4В	109.6
С3-С4-Н4В	109.6	H4A-C4-H4B	108.1
C4-C5-C6	110.04(13)	C4-C5-H5A	109.7
С6-С5-Н5А	109.7	C4-C5-H5B	109.7
С6-С5-Н5В	109.7	H5A-C5-H5B	108.2
C10-C6-C5	112.91(14)	C10-C6-C1	110.97(13)
C5-C6-C1	113.39(14)	С10-С6-Н6	106.3
С5-С6-Н6	106.3	С1-С6-Н6	106.3
C8-C7-C2	104.89(12)	С8-С7-Н7А	110.8
С2-С7-Н7А	110.8	С8-С7-Н7В	110.8
С2-С7-Н7В	110.8	Н7А-С7-Н7В	108.8
O1-C8-N1	124.59(15)	O1-C8-C7	128.40(15)
N1-C8-C7	107.00(13)	О2-С9-Н9А	109.5
О2-С9-Н9В	109.5	Н9А-С9-Н9В	109.5
О2-С9-Н9С	109.5	Н9А-С9-Н9С	109.5
Н9В-С9-Н9С	109.5	C11-C10-C6	178.87(18)
C10-C11-C12	179.1(2)	C13-C12-C11	179.1(2)
C12-C13-C14	178.4(2)	C15-C14-C19	119.5(2)
C15-C14-C13	120.67(19)	C19-C14-C13	119.7(2)

C16-C15-C14	120.2(2)	C16-C15-H15	119.9
С14-С15-Н15	119.9	C17-C16-C15	119.9(2)
С17-С16-Н16	120.0	C15-C16-H16	120.0
C18-C17-C16	120.5(2)	C18-C17-H17	119.7
С16-С17-Н17	119.7	C17-C18-C19	120.1(3)
С17-С18-Н18	119.9	C19-C18-H18	119.9
C18-C19-C14	119.7(2)	C18-C19-H19	120.2
С14-С19-Н19	120.2	C21-C20-C25	117.53(14)
C21-C20-C2	123.40(13)	C25-C20-C2	119.04(13)
C20-C21-C22	121.34(14)	C20-C21-H21	119.3
C22-C21-H21	119.3	C23-C22-C21	120.56(14)
С23-С22-Н22	119.7	C21-C22-H22	119.7
O3-C23-C22	125.37(14)	O3-C23-C24	115.66(14)
C22-C23-C24	118.96(14)	O4-C24-C25	124.59(14)
O4-C24-C23	115.35(14)	C25-C24-C23	120.05(14)
C24-C25-C20	121.54(14)	C24-C25-H25	119.2
С20-С25-Н25	119.2	O3-C26-H26A	109.5
O3-C26-H26B	109.5	H26A-C26-H26B	109.5
O3-C26-H26C	109.5	H26A-C26-H26C	109.5
H26B-C26-H26C	109.5	O4-C27-H27A	109.5
О4-С27-Н27В	109.5	H27A-C27-H27B	109.5
О4-С27-Н27С	109.5	H27A-C27-H27C	109.5
H27B-C27-H27C	109.5	N2-O6-C36	108.95(12)
C50-O7-C53	117.14(13)	C51-O8-C54	116.50(13)
C35-N2-O6	115.70(12)	C35-N2-C28	111.48(12)
O6-N2-C28	117.26(12)	N2-C28-C33	115.51(13)
N2-C28-C29	99.98(12)	C33-C28-C29	114.00(12)
N2-C28-H28	109.0	C33-C28-H28	109.0
С29-С28-Н28	109.0	C47-C29-C30	114.01(12)
C47-C29-C34	112.21(12)	C30-C29-C34	107.67(12)
C47-C29-C28	110.99(12)	C30-C29-C28	109.66(12)
C34-C29-C28	101.54(12)	C31-C30-C29	114.13(13)
С31-С30-Н30А	108.7	С29-С30-Н30А	108.7
С31-С30-Н30В	108.7	С29-С30-Н30В	108.7
H30A-C30-H30B	107.6	C30-C31-C32	110.42(13)
С30-С31-Н31А	109.6	C32-C31-H31A	109.6
С30-С31-Н31В	109.6	C32-C31-H31B	109.6
H31A-C31-H31B	108.1	C31-C32-C33	109.60(14)
С31-С32-Н32А	109.8	С33-С32-Н32А	109.8
С31-С32-Н32В	109.8	С33-С32-Н32В	109.8
H32A-C32-H32B	108.2	C37-C33-C28	111.58(14)
C37-C33-C32	112.52(14)	C28-C33-C32	113.52(14)
С37-С33-Н33	106.2	С28-С33-Н33	106.2

С32-С33-Н33	106.2	C35-C34-C29	105.00(12)
C35-C34-H34A	110.7	C29-C34-H34A	110.7
C35-C34-H34B	110.7	C29-C34-H34B	110.7
H34A-C34-H34B	108.8	O5-C35-N2	124.55(15)
O5-C35-C34	128.33(15)	N2-C35-C34	107.11(13)
O6-C36-H36A	109.5	O6-C36-H36B	109.5
H36A-C36-H36B	109.5	O6-C36-H36C	109.5
H36A-C36-H36C	109.5	H36B-C36-H36C	109.5
C38-C37-C33	179.19(19)	C37-C38-C39	178.2(2)
C40-C39-C38	179.4(2)	C39-C40-C41	176.1(2)
C42-C41-C46	119.51(17)	C42-C41-C40	120.61(17)
C46-C41-C40	119.75(18)	C43-C42-C41	119.99(18)
С43-С42-Н42	120.0	C41-C42-H42	120.0
C42-C43-C44	119.9(2)	C42-C43-H43	120.1
С44-С43-Н43	120.1	C45-C44-C43	120.6(2)
C45-C44-H44	119.7	C43-C44-H44	119.7
C44-C45-C46	120.0(2)	C44-C45-H45	120.0
С46-С45-Н45	120.0	C45-C46-C41	120.07(19)
С45-С46-Н46	120.0	C41-C46-H46	120.0
C48-C47-C52	117.60(14)	C48-C47-C29	123.45(13)
C52-C47-C29	118.93(13)	C47-C48-C49	121.40(14)
С47-С48-Н48	119.3	C49-C48-H48	119.3
C50-C49-C48	120.47(14)	С50-С49-Н49	119.8
С48-С49-Н49	119.8	O7-C50-C49	125.37(14)
O7-C50-C51	115.60(14)	C49-C50-C51	119.03(14)
O8-C51-C52	124.46(14)	O8-C51-C50	115.65(14)
C52-C51-C50	119.89(14)	C51-C52-C47	121.61(14)
С51-С52-Н52	119.2	C47-C52-H52	119.2
07-C53-H53A	109.5	О7-С53-Н53В	109.5
H53A-C53-H53B	109.5	O7-C53-H53C	109.5
H53A-C53-H53C	109.5	H53B-C53-H53C	109.5
O8-C54-H54A	109.5	O8-C54-H54B	109.5
H54A-C54-H54B	109.5	O8-C54-H54C	109.5
H54A-C54-H54C	109.5	H54B-C54-H54C	109.5
C1S-O2S-C3S	117.8(4)	O1S-C1S-O2S	122.9(4)
O1S-C1S-C2S	125.5(5)	O2S-C1S-C2S	111.5(5)
C1S-C2S-H2SA	109.5	C1S-C2S-H2SB	109.5
H2SA-C2S-H2SB	109.5	C1S-C2S-H2SC	109.5
H2SA-C2S-H2SC	109.5	H2SB-C2S-H2SC	109.5
O2S-C3S-C4S	106.8(4)	O2S-C3S-H3SA	110.4
C4S-C3S-H3SA	110.4	O2S-C3S-H3SB	110.4
C4S-C3S-H3SB	110.4	H3SA-C3S-H3SB	108.6
C3S-C4S-H4SA	109.5	C3S-C4S-H4SB	109.5

H4SA-C4S-H4SB	109.5	C3S-C4S-H4SC	109.5
H4SA-C4S-H4SC	109.5	H4SB-C4S-H4SC	109.5
C1T-O2T-C3T	115.7(10)	O1T-C1T-O2T	123.2(12)
O1T-C1T-C2T	122.0(16)	O2T-C1T-C2T	114.0(14)
С1Т-С2Т-Н2ТА	109.5	C1T-C2T-H2TB	109.5
Н2ТА-С2Т-Н2ТВ	109.5	C1T-C2T-H2TC	109.5
Н2ТА-С2Т-Н2ТС	109.5	H2TB-C2T-H2TC	109.5
O2T-C3T-C4T	109.2(9)	О2Т-С3Т-Н3ТА	109.8
С4Т-С3Т-Н3ТА	109.8	О2Т-С3Т-Н3ТВ	109.8
С4Т-С3Т-Н3ТВ	109.8	НЗТА-СЗТ-НЗТВ	108.3
СЗТ-С4Т-Н4ТА	109.5	С3Т-С4Т-Н4ТВ	109.5
Н4ТА-С4Т-Н4ТВ	109.5	С3Т-С4Т-Н4ТС	109.5
Н4ТА-С4Т-Н4ТС	109.5	Н4ТВ-С4Т-Н4ТС	109.5
Torsion angles (°) for rds6	<u>25.</u>		
C9-O2-N1-C8	101.72(16)	C9-O2-N1-C1	-123.10(15)
C8-N1-C1-C6	-159.34(13)	O2-N1-C1-C6	63.80(17)
C8-N1-C1-C2	-36.70(15)	O2-N1-C1-C2	-173.57(11)
N1-C1-C2-C20	155.69(12)	C6-C1-C2-C20	-80.90(16)
N1-C1-C2-C3	-77.17(14)	C6-C1-C2-C3	46.25(17)
N1-C1-C2-C7	36.50(13)	C6-C1-C2-C7	159.91(13)
C20-C2-C3-C4	74.21(17)	C7-C2-C3-C4	-161.02(13)
C1-C2-C3-C4	-51.49(17)	C2-C3-C4-C5	58.78(18)
C3-C4-C5-C6	-58.20(18)	C4-C5-C6-C10	-177.89(14)
C4-C5-C6-C1	54.79(19)	N1-C1-C6-C10	-63.35(18)
C2-C1-C6-C10	-178.06(13)	N1-C1-C6-C5	64.97(17)
C2-C1-C6-C5	-49.74(18)	C20-C2-C7-C8	-145.36(12)
C3-C2-C7-C8	88.62(14)	C1-C2-C7-C8	-26.49(14)
O2-N1-C8-O1	-21.0(2)	C1-N1-C8-O1	-158.49(14)
O2-N1-C8-C7	157.81(12)	C1-N1-C8-C7	20.29(16)
C2-C7-C8-O1	-175.77(15)	C2-C7-C8-N1	5.52(16)
C19-C14-C15-C16	1.3(4)	C13-C14-C15-C16	178.1(2)
C14-C15-C16-C17	-2.8(5)	C15-C16-C17-C18	1.6(6)
C16-C17-C18-C19	1.1(7)	C17-C18-C19-C14	-2.5(6)
C15-C14-C19-C18	1.4(5)	C13-C14-C19-C18	-175.4(3)
C3-C2-C20-C21	8.6(2)	C7-C2-C20-C21	-113.91(16)
C1-C2-C20-C21	133.34(15)	C3-C2-C20-C25	-173.60(14)
C7-C2-C20-C25	63.90(18)	C1-C2-C20-C25	-48.84(18)
C25-C20-C21-C22	0.7(2)	C2-C20-C21-C22	178.59(14)
C20-C21-C22-C23	-0.2(2)	C26-O3-C23-C22	-2.1(2)
C26-O3-C23-C24	178.53(15)	C21-C22-C23-O3	-179.32(15)
C21-C22-C23-C24	0.0(2)	C27-O4-C24-C25	11.8(2)
C27-O4-C24-C23	-169.34(16)	O3-C23-C24-O4	0.0(2)

C22-C23-C24-O4	-179.42(15)	O3-C23-C24-C25	178.94(15)
C22-C23-C24-C25	-0.5(2)	04-C24-C25-C20	179.92(15)
C23-C24-C25-C20	1.1(2)	C21-C20-C25-C24	-1.2(2)
C2-C20-C25-C24	-179.13(15)	C36-O6-N2-C35	-102.43(16)
C36-O6-N2-C28	122.73(15)	C35-N2-C28-C33	159.28(13)
O6-N2-C28-C33	-64.08(17)	C35-N2-C28-C29	36.50(15)
O6-N2-C28-C29	173.13(12)	N2-C28-C29-C47	-155.79(12)
C33-C28-C29-C47	80.36(16)	N2-C28-C29-C30	77.34(14)
C33-C28-C29-C30	-46.51(17)	N2-C28-C29-C34	-36.35(14)
C33-C28-C29-C34	-160.20(13)	C47-C29-C30-C31	-74.01(17)
C34-C29-C30-C31	160.81(13)	C28-C29-C30-C31	51.13(17)
C29-C30-C31-C32	-58.39(18)	C30-C31-C32-C33	57.97(18)
N2-C28-C33-C37	63.88(18)	C29-C28-C33-C37	178.88(13)
N2-C28-C33-C32	-64.54(18)	C29-C28-C33-C32	50.46(18)
C31-C32-C33-C37	176.95(15)	C31-C32-C33-C28	-55.12(19)
C47-C29-C34-C35	144.92(13)	C30-C29-C34-C35	-88.83(14)
C28-C29-C34-C35	26.35(15)	O6-N2-C35-O5	21.3(2)
C28-N2-C35-O5	158.65(15)	O6-N2-C35-C34	-157.60(12)
C28-N2-C35-C34	-20.24(17)	C29-C34-C35-O5	175.78(15)
C29-C34-C35-N2	-5.38(16)	C46-C41-C42-C43	-0.3(3)
C40-C41-C42-C43	-176.0(2)	C41-C42-C43-C44	0.8(4)
C42-C43-C44-C45	-0.8(4)	C43-C44-C45-C46	0.1(4)
C44-C45-C46-C41	0.5(4)	C42-C41-C46-C45	-0.4(3)
C40-C41-C46-C45	175.4(2)	C30-C29-C47-C48	-7.3(2)
C34-C29-C47-C48	115.48(16)	C28-C29-C47-C48	-131.69(15)
C30-C29-C47-C52	174.10(14)	C34-C29-C47-C52	-63.17(18)
C28-C29-C47-C52	49.66(18)	C52-C47-C48-C49	-0.3(2)
C29-C47-C48-C49	-178.94(15)	C47-C48-C49-C50	-0.1(2)
C53-O7-C50-C49	5.3(2)	C53-O7-C50-C51	-175.64(15)
C48-C49-C50-O7	179.14(16)	C48-C49-C50-C51	0.2(2)
C54-O8-C51-C52	-11.8(3)	C54-O8-C51-C50	167.97(16)
07-C50-C51-O8	1.3(2)	C49-C50-C51-O8	-179.66(15)
O7-C50-C51-C52	-178.96(15)	C49-C50-C51-C52	0.1(2)
O8-C51-C52-C47	179.27(16)	C50-C51-C52-C47	-0.5(3)
C48-C47-C52-C51	0.6(2)	C29-C47-C52-C51	179.29(15)
C3S-O2S-C1S-O1S	2.3(7)	C3S-O2S-C1S-C2S	177.6(5)
C1S-O2S-C3S-C4S	-176.3(4)	C3T-O2T-C1T-O1T	1.(2)
C3T-O2T-C1T-C2T	-170.(2)	C1T-O2T-C3T-C4T	-76.8(16)

Anis	<u>Anisotropic atomic displacement parameters (Ų) for rds625.</u>							
The a	The anisotropic atomic displacement factor exponent takes the form: $-2\pi^2$ [h ² a ^{*2} U ₁₁ + + 2 h k a [*] b [*] U ₁₂]							
	U ₁₁	\mathbf{U}_{22}	U ₃₃	U_{23}	U ₁₃	U ₁₂		
O1	0.0180(5)	0.0170(5)	0.0174(5)	-0.0113(5)	-0.0034(4)	0.0013(4)		

	U ₁₁	U_{22}	U ₃₃	U ₂₃	U ₁₃	U ₁₂
02	0.0145(5)	0.0139(5)	0.0240(6)	-0.0103(5)	-0.0077(5)	0.0061(4)
03	0.0137(5)	0.0178(6)	0.0291(7)	-0.0120(5)	-0.0008(5)	0.0039(4)
04	0.0128(5)	0.0155(5)	0.0374(7)	-0.0140(5)	-0.0025(5)	0.0004(4)
N1	0.0130(6)	0.0133(6)	0.0163(6)	-0.0086(5)	-0.0052(5)	0.0049(5)
C1	0.0112(6)	0.0134(6)	0.0145(7)	-0.0080(5)	-0.0046(5)	0.0029(5)
C2	0.0109(6)	0.0120(6)	0.0140(7)	-0.0073(5)	-0.0040(5)	0.0026(5)
C3	0.0119(6)	0.0141(7)	0.0192(7)	-0.0091(6)	-0.0038(6)	0.0002(5)
C4	0.0172(7)	0.0175(7)	0.0248(8)	-0.0129(6)	-0.0099(6)	0.0018(6)
C5	0.0203(8)	0.0221(8)	0.0273(9)	-0.0154(7)	-0.0141(7)	0.0053(6)
C6	0.0180(7)	0.0174(7)	0.0161(7)	-0.0092(6)	-0.0075(6)	0.0040(6)
C7	0.0147(7)	0.0141(7)	0.0136(7)	-0.0069(6)	-0.0051(5)	0.0030(5)
C8	0.0120(6)	0.0129(6)	0.0160(7)	-0.0074(6)	-0.0039(5)	-0.0009(5)
C9	0.0134(7)	0.0249(8)	0.0332(10)	-0.0159(8)	-0.0090(7)	0.0077(6)
C10	0.0203(8)	0.0230(8)	0.0159(7)	-0.0096(6)	-0.0083(6)	0.0045(6)
C11	0.0231(8)	0.0236(8)	0.0173(8)	-0.0086(7)	-0.0082(6)	0.0026(7)
C12	0.0254(9)	0.0241(8)	0.0180(8)	-0.0083(7)	-0.0078(7)	0.0029(7)
C13	0.0285(9)	0.0241(9)	0.0201(8)	-0.0064(7)	-0.0081(7)	0.0046(7)
C14	0.0324(10)	0.0220(9)	0.0259(9)	-0.0025(7)	-0.0085(8)	0.0064(7)
C15	0.0351(11)	0.0306(10)	0.0263(10)	-0.0064(8)	-0.0074(8)	0.0092(8)
C16	0.0468(15)	0.0380(13)	0.0524(16)	-0.0091(12)	-0.0106(12)	0.0227(11)
C17	0.063(2)	0.0363(14)	0.070(2)	0.0104(14)	-0.0085(17)	0.0222(14)
C18	0.0591(19)	0.0468(17)	0.0598(19)	0.0241(15)	0.0096(16)	0.0149(14)
C19	0.0394(13)	0.0399(13)	0.0451(15)	0.0067(11)	0.0055(11)	0.0145(11)
C20	0.0111(6)	0.0123(6)	0.0126(6)	-0.0058(5)	-0.0041(5)	0.0022(5)
C21	0.0138(7)	0.0125(6)	0.0162(7)	-0.0074(6)	-0.0053(6)	0.0031(5)
C22	0.0159(7)	0.0136(7)	0.0171(7)	-0.0089(6)	-0.0055(6)	0.0046(5)
C23	0.0126(7)	0.0157(7)	0.0151(7)	-0.0069(6)	-0.0028(6)	0.0043(5)
C24	0.0124(7)	0.0138(7)	0.0190(7)	-0.0070(6)	-0.0042(6)	0.0014(5)
C25	0.0129(7)	0.0129(7)	0.0181(7)	-0.0086(6)	-0.0043(6)	0.0022(5)
C26	0.0197(8)	0.0218(8)	0.0288(9)	-0.0135(7)	0.0018(7)	0.0056(6)
C27	0.0192(8)	0.0148(7)	0.0346(10)	-0.0123(7)	-0.0065(7)	0.0005(6)
05	0.0228(6)	0.0174(5)	0.0193(6)	-0.0119(5)	-0.0095(5)	0.0071(4)
06	0.0153(5)	0.0134(5)	0.0262(6)	-0.0109(5)	-0.0080(5)	0.0000(4)
07	0.0234(6)	0.0186(6)	0.0299(7)	-0.0145(5)	-0.0171(5)	0.0048(5)
08	0.0262(6)	0.0174(6)	0.0427(8)	-0.0179(6)	-0.0245(6)	0.0112(5)
N2	0.0148(6)	0.0135(6)	0.0178(6)	-0.0089(5)	-0.0069(5)	0.0003(5)
C28	0.0132(6)	0.0130(6)	0.0152(7)	-0.0076(6)	-0.0056(5)	0.0020(5)
C29	0.0125(6)	0.0110(6)	0.0145(7)	-0.0068(5)	-0.0053(5)	0.0030(5)
C30	0.0167(7)	0.0132(7)	0.0192(7)	-0.0088(6)	-0.0092(6)	0.0054(5)
C31	0.0155(7)	0.0180(7)	0.0257(8)	-0.0136(7)	-0.0077(6)	0.0067(6)
C32	0.0144(7)	0.0217(8)	0.0271(9)	-0.0134(7)	-0.0032(6)	0.0048(6)
C33	0.0152(7)	0.0175(7)	0.0176(7)	-0.0085(6)	-0.0035(6)	0.0017(6)

	U ₁₁	U_{22}	U ₃₃	U_{23}	U ₁₃	U ₁₂
C34	0.0149(7)	0.0142(7)	0.0144(7)	-0.0070(6)	-0.0048(6)	0.0017(5)
C35	0.0155(7)	0.0128(6)	0.0168(7)	-0.0076(6)	-0.0076(6)	0.0049(5)
C36	0.0168(8)	0.0271(9)	0.0378(10)	-0.0174(8)	-0.0132(7)	0.0020(7)
C37	0.0180(7)	0.0211(8)	0.0183(8)	-0.0092(6)	-0.0031(6)	0.0021(6)
C38	0.0193(8)	0.0236(8)	0.0188(8)	-0.0081(7)	-0.0040(6)	0.0029(6)
C39	0.0210(8)	0.0229(8)	0.0183(8)	-0.0062(7)	-0.0041(7)	0.0030(6)
C40	0.0231(8)	0.0242(8)	0.0192(8)	-0.0070(7)	-0.0051(7)	0.0018(7)
C41	0.0239(8)	0.0205(8)	0.0193(8)	-0.0050(7)	-0.0050(7)	-0.0004(7)
C42	0.0315(10)	0.0276(9)	0.0193(8)	-0.0071(7)	-0.0084(7)	0.0005(8)
C43	0.0413(12)	0.0357(11)	0.0358(11)	-0.0137(9)	-0.0173(10)	-0.0058(9)
C44	0.0426(13)	0.0273(10)	0.0342(11)	-0.0030(9)	-0.0092(10)	-0.0134(9)
C45	0.0456(13)	0.0292(10)	0.0212(9)	-0.0004(8)	-0.0095(9)	-0.0087(9)
C46	0.0426(12)	0.0288(10)	0.0206(9)	-0.0040(8)	-0.0123(8)	-0.0077(9)
C47	0.0114(6)	0.0123(6)	0.0139(7)	-0.0065(5)	-0.0036(5)	0.0012(5)
C48	0.0141(7)	0.0123(6)	0.0185(7)	-0.0077(6)	-0.0056(6)	0.0029(5)
C49	0.0169(7)	0.0131(7)	0.0181(7)	-0.0090(6)	-0.0055(6)	0.0015(5)
C50	0.0143(7)	0.0158(7)	0.0174(7)	-0.0083(6)	-0.0068(6)	0.0005(5)
C51	0.0162(7)	0.0144(7)	0.0214(8)	-0.0092(6)	-0.0097(6)	0.0041(5)
C52	0.0151(7)	0.0137(7)	0.0206(7)	-0.0106(6)	-0.0079(6)	0.0039(5)
C53	0.0344(10)	0.0209(8)	0.0283(9)	-0.0152(7)	-0.0192(8)	0.0044(7)
C54	0.0287(9)	0.0165(8)	0.0433(11)	-0.0161(8)	-0.0219(9)	0.0097(7)
O1S	0.0486(19)	0.060(2)	0.0409(18)	-0.0353(16)	-0.0199(15)	0.0186(15)
O2S	0.0277(15)	0.077(2)	0.0345(18)	-0.0199(17)	-0.0117(14)	0.0167(15)
C1S	0.035(2)	0.074(3)	0.040(2)	-0.043(2)	-0.0215(18)	0.029(2)
C2S	0.027(2)	0.162(7)	0.036(2)	-0.051(3)	-0.0165(18)	0.037(3)
C3S	0.0371(18)	0.050(2)	0.040(2)	-0.0252(17)	-0.0199(15)	0.0162(16)
C4S	0.040(2)	0.047(2)	0.055(3)	-0.020(2)	-0.015(2)	0.0140(18)
O1T	0.085(7)	0.104(7)	0.057(5)	-0.045(5)	-0.019(5)	0.041(6)
O2T	0.049(4)	0.092(6)	0.056(5)	-0.041(4)	-0.020(3)	0.015(3)
C1T	0.066(6)	0.093(9)	0.056(5)	-0.040(5)	-0.012(5)	0.020(6)
C2T	0.072(9)	0.28(4)	0.122(16)	-0.056(17)	-0.036(9)	0.035(11)
C3T	0.043(4)	0.066(5)	0.057(6)	-0.033(4)	-0.019(4)	0.009(4)
C4T	0.099(11)	0.166(16)	0.22(2)	-0.159(18)	-0.111(14)	0.075(11)
<u>Hyd</u> r	<u>ogen atomic c</u> ooi	rdinates and isot	ropic atomic dis	placement paramo	eters (Å ²) for rds	<u>s625.</u>
	x/a		y/b	z/c		U(eq)
H1	-0.	0576	0.0068	0.6581		0.015

	X/a	y/D	Z/C	U(eq)
H1	-0.0576	0.0068	0.6581	0.015
H3A	0.1754	0.2263	0.5237	0.018
H3B	0.0582	0.2878	0.5411	0.018
H4A	0.1921	0.2693	0.6353	0.021
H4B	0.0385	0.2236	0.6942	0.021
H5A	0.1906	0.1207	0.7481	0.024

	x/a	y/b	z/c	U(eq)
H5B	0.2582	0.1229	0.6516	0.024
Н6	-0.0180	0.0527	0.7606	0.019
H7A	-0.0920	0.1266	0.4929	0.016
H7B	0.0287	0.2111	0.4442	0.016
H9A	0.3671	0.0196	0.5016	0.033
H9B	0.3632	-0.0802	0.5782	0.033
H9C	0.3448	0.0067	0.6012	0.033
H15	0.4124	-0.3586	0.8246	0.04
H16	0.4682	-0.5045	0.9004	0.061
H17	0.3301	-0.6001	1.0436	0.085
H18	0.1310	-0.5540	1.1092	0.094
H19	0.0644	-0.4126	1.0297	0.066
H21	-0.1296	0.2873	0.6265	0.016
H22	-0.3558	0.2989	0.6948	0.018
H25	-0.2479	0.0378	0.6469	0.017
H26A	-0.5827	0.3096	0.7131	0.037
H26B	-0.5633	0.2589	0.8092	0.037
H26C	-0.7082	0.2457	0.7971	0.037
H27A	-0.4332	-0.0473	0.6651	0.034
H27B	-0.5600	-0.0987	0.7533	0.034
H27C	-0.4141	-0.0786	0.7609	0.034
H28	0.4106	0.5087	0.6561	0.016
H30A	0.4004	0.7894	0.5386	0.018
H30B	0.2990	0.7276	0.5234	0.018
H31A	0.1774	0.7709	0.6356	0.022
H31B	0.2780	0.7262	0.6924	0.022
H32A	0.0966	0.6236	0.6552	0.025
H32B	0.0756	0.6225	0.7508	0.025
H33	0.2769	0.5563	0.7588	0.02
H34A	0.5200	0.7118	0.4412	0.017
H34B	0.5976	0.6277	0.4885	0.017
H36A	0.1266	0.5176	0.5071	0.037
H36B	0.0584	0.5072	0.6064	0.037
H36C	0.0605	0.4187	0.5861	0.037
H42	-0.2016	0.1447	0.8202	0.032
H43	-0.3537	0.0095	0.8993	0.044
H44	-0.3920	-0.0744	1.0522	0.047
H45	-0.2754	-0.0258	1.1256	0.043
H46	-0.1197	0.1076	1.0470	0.039
H48	0.5068	0.7878	0.6246	0.017
H49	0.6699	0.7994	0.6901	0.018
H52	0.6130	0.5403	0.6398	0.018

	x/a	y/b	z/c	U(eq)
H53A	0.8780	0.8099	0.7104	0.036
H53B	0.9222	0.7429	0.7939	0.036
H53C	0.7650	0.7549	0.8052	0.036
H54A	0.7820	0.4540	0.6567	0.039
H54B	0.6727	0.4235	0.7532	0.039
H54C	0.8267	0.4026	0.7439	0.039
H2SA	0.1662	0.1772	-0.0202	0.106
H2SB	0.1799	0.2767	-0.0211	0.106
H2SC	0.0812	0.1931	0.0646	0.106
H3SA	0.5399	0.1599	0.0382	0.047
H3SB	0.4999	0.2320	0.0809	0.047
H4SA	0.6417	0.2826	-0.1012	0.072
H4SB	0.7118	0.2836	-0.0306	0.072
H4SC	0.6043	0.3534	-0.0574	0.072
H2TA	0.1206	0.1790	0.0431	0.252
H2TB	0.1917	0.2549	-0.0564	0.252
H2TC	0.1434	0.2850	0.0235	0.252
H3TA	0.6181	0.2497	-0.1021	0.063
НЗТВ	0.5456	0.1686	-0.0051	0.063
H4TA	0.6004	0.3544	-0.0358	0.18
H4TB	0.6948	0.2772	-0.0011	0.18
H4TC	0.5419	0.2693	0.0599	0.18