

(A) Co-immunoprecipitation analysis showing Zc3h13 interacts with WTAP, Virilizer and Hakai in mESC with/without RNase treatment. Mock, mES cells transfected with empty vector; IP, immunoprecipitation; IB, immunoblotting.

(B) Western blot analysis of overexpression of the indicated truncated fragments of Zc3h13 with Flag-HA tag in mouse ESCs. α -Tubulin is used as a loading control.

(C) Interactions between Zc3h13 truncated fragments (Zc3h13₁₋₉₀₀ and Zc3h13₉₀₁₋₁₇₂₉) and Virilizer, WTAP and Hakai were determined by co-immunoprecipitation. FH-Zc3h13, Flag-HA-Zc3h13; Mock, mES cells transfected with empty vector; IP, immunoprecipitation; IB, immunoblotting.

Figure S2. MeRIP-seq data analysis of Zc3h13 kd and control mESCs. Related to Figure 2.

(A) Western blot analysis of Zc3h13 protein levels in the indicated mES cell lines. Lamin B1 is used as a loading control. shCtrl, control.

(B) Statistics of m⁶A peaks from MeRIP-seq data of Zc3h13 kd and control mES cells. Venn diagram shows overlap of m⁶A peaks between control and Zc3h13-depleted mESCs. Pie chart depicts the number of increased, decreased and unchanged m⁶A peaks of above overlapping m⁶A peaks. The table lists m⁶A peak numbers, in consistent with Venn diagram and pie chart.

(C) The overlap of Zc3h13-dependent m⁶A peaks between two MeRIP-seq replicates.

(D) UCSC snapshots of MeRIP-seq reads along the indicated mRNAs.

(E) Box plot of normalized m^6A reads density of all the m^6A peaks in control and Zc3h13 kd mESCs. ****p < 0.0001; t test.

(F) UCSC snapshots of MeRIP-seq reads of Zc3h13 target m⁶A peaks on Atg13 mRNA. The region selected for minigene construction was highlighted by orange box.

Figure S3. Inhibition Zc3h13 complex component regulates the cellular localizations of WTAP, Virilizer, Hakai, Mettl3 or Mettl14 in mESCs. Related to Figure 3.

(A) Western blot quantification of cytoplasmic WTAP, Virilizer and Hakai in Zc3h13 kd and control mESCs using Image Lab software. For each protein, the ratio of intensity of cytoplasmic fraction relative to whole cell lysate was displayed. Data are represented as mean \pm SEM from three biological replicates. **p < 0.01; ***p < 0.001; t test.

(B) Western blot quantification of nuclear Mettl3 and Mettl14 in Zc3h13 kd and control mESCs using Image Lab software. For each protein, the ratio of intensity of nuclear fraction relative to whole cell

lysate was displayed. Data are represented as mean \pm SEM from three biological replicates. *p < 0.05; **p < 0.01; t test.

(C) Western blot analysis of cytoplasmic and nuclear fractions of hnRNP A1, ASF/SF2, HuR and TDP-43 in Zc3h13 knockdown and control mESCs.

(D) Western blot analysis of cytoplasmic and nuclear fractions of WTAP, Virilizer, Hakai, Mettl3 and Mettl14 in Zc3h13 kd, rescue and control mESCs.

(E) Western blot analysis of cytoplasmic and nuclear fractions of Zc3h13 in Mettl3 or Mettl14 knockdown and control mESCs.

(F) Western blot analysis of WTAP, Virilizer, Hakai, Mettl3 and Mettl14 knockdown efficiency in the indicated kd mES cell lines. Gapdh or β -actin is used as a loading control. shCtrl, control.

(G) Western blot analysis of cytoplasmic and nuclear fractions of Zc3h13 knockdown and control mESCs used for m⁶A LC-MS/MS and MeRIP-seq.

(H) The numbers of differential m⁶A peaks of cytoplasmic or nuclear fractions in Zc3h13 kd versus control mESCs.

(I) Quantification of fluorescence intensity of indicated proteins at nuclear speckles (SC35-staining region) in Zc3h13 kd and control mES cells using Image-Pro Plus software. Data are represented as mean \pm SEM from three biological replicates. *p < 0.05; **p < 0.01; t test.

(J-L) Western blot analysis of cytoplasmic and nuclear fractions of Mettl3 and Mettl14 in WTAP kd (J), Virilizer kd (K), or Hakai kd (L) mESCs and control cells.

For western blot analysis of fractionation assays (C-E, G, J-L), Lamin B1 and α -Tubulin were used as nuclear and cytoplasmic markers, respectively. WCL, whole cell lysate; C, cytoplasmic fraction; N, nuclear fraction. shCtrl, control.

Ε

Α

	WTAP	HA	DAPI	merge
shCtrl + Mock	00 00 00 00		800 ab	
shZc3h13 + Mock	e 52 5		1200	- <u>-</u>
shZc3h13 + Zc3h13 ₁₋₉₀₀	e , C ;	100	e, 9 ₃	0103
shZc3h13 + Zc3h13 ₉₀₁₋₁₇₂₉	ه ه د د م ه		а 8 е. – ₁₀ 8	ي بي - مع و
shZc3h13 + Zc3h13-FL	· · · · · · · · · · · · · · · · · · ·			

shCtrl shZc3h13 Mock Zc3h13₁₋₉₀₀ Zc3h13₉₀₁₋₁₇₂₉ Zc3h13-FL ÷ -+ + -· + · + · · · + · · + + - + + + -250 KD-IB: HA 150 KD 100 KD-IB: Lamin B1 Developmental genes

⇒ shCtrl + Mock
⇒ shZc3h13 + Mock
⇒ shZc3h13 + Zc3h13_{1.900}
⇒ shZc3h13 + Zc3h13₉₀₁₋₁₇₂₉
⇒ shZc3h13 + Zc3h13-FL

	Hakai	HA	DAPI	merge
shCtrl + Mock	000		6 0 0 6 0	
shZc3h13 + Mock			ан _а – 2 ⁴⁰	·**
shZc3h13 + Zc3h13 ₁₋₉₀₀	\$		÷ .	20 4
shZc3h13 + Zc3h13 ₉₀₁₋₁₇₂₉	°	* 3 W	00 0	· • • •
shZc3h13 + Zc3h13-FL	4000 00 00	4000 a	6.000 000	40,100

Mettl3 HA DAPI merge shCtrl + Mock sl N s Z s Z s Z

	8 6		8 e. "	8 m 1
hZc3h13 + lock	<u> </u>		0 0 0 0	8 8
hZc3h13 + c3h13 ₁₋₉₀₀	6.05		* P.	105
hZc3h13 + c3h13 ₉₀₁₋₁₇₂₉	10 A	See.	* *** ₉ 0	
hZc3h13 + c3h13-FL			**************************************	

G	
	sl
	N

	Virilizer	HA	DAPI	merge
shCtrl + Mock	6.9% g 6		• 2 ⁴ 8 •	6.8 ⁶ .8
shZc3h13 + Mock	: * :::::::::::::::::::::::::::::::::::		9 5 0.0) / / 6) 69
shZc3h13 + Zc3h13 ₁₋₉₀₀			8 ⁶⁸ 8	9.49
shZc3h13 + Zc3h13 ₉₀₁₋₁₇₂₉	0	• • • •	* *	000
shZc3h13 + Zc3h13-FL	0 ° °	ے ہے۔ 1905ء کے		0 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

I

Zc3h13₉₀₁₋₁₇₂₉

shZc3h13 + Zc3h13-FL

Mettl14

В

Н

J

Figure S4. C-terminal domain of Zc3h13 (aa 901-1729) significantly rescues the dampened self-renewal capacity and nuclear localization of complex components in Zc3h13 knockdown mESCs. Related to Figure 4.

(A) Western blot analysis of Zc3h13 knockdown efficiency in the indicated mES cell lines. Lamin B1 is used as a loading control. ShCtrl, control; Mock, mES cells transfected with empty vector; FL, full length.

(B) Western blot analysis of overexpression of the indicated Zc3h13 truncations with Flag-HA tag in the indicated mESCs. Lamin B1 is used as a loading control.

(C and D) RT-qPCR analysis of pluripotency genes (C) and differentiation genes (D) in the indicated mES cell lines. Data are represented as mean \pm SD from five biological replicates. *p < 0.05; **p < 0.01; ***p<0.001; ns, no significance; t test.

(E-I) Immunofluorescence analysis of WTAP (E), Hakai (F), Virilizer (G), Mettl3 (H), Mettl14 (I) in the indicated rescue mES cell lines. Flag-HA-Zc3h13-full length (FL), Flag-HA-Zc3h13₁₋₉₀₀, or Flag-HA-Zc3h13₉₀₁₋₁₇₂₉ were overexpressed in Zc3h13 kd mESCs, detected with WTAP (red), Hakai (red), Virilizer (red), Mettl3 (red), Mettl14 (red), HA (green, Zc3h13 constructs) antibodies and DAPI (blue, cell nuclei). Mock, mES cells transfected with empty vector. Scale bar, 10 μ m.

(J) Quantification of relative nuclear immunofluoresence intensity of indicated proteins in the indicated mES cell lines using Image-Pro Plus software. Data are represented as mean \pm SEM from three biological replicates. *p < 0.05; **p < 0.01; ***p<0.001; ns, no significance; t test.

(K) GO biological process enrichment analysis of the 577 differentially expressed genes in Zc3h13

knockdown versus control mES cells.

(L) UCSC snapshots of MeRIP-seq and Zc3h13 RIP-seq reads along indicated mRNAs. Transcription directions are showed by arrows. UCSC ranges are shown at the left side of each track.

(M) RIP-qPCR analysis of Zc3h13 binding level of the indicated mRNAs. Data are represented as mean \pm SD from three biological replicates. *p < 0.05; **p < 0.01; ***p<0.001; t test.

(N) MeRIP-qPCR analysis of m⁶A level in the indicated mRNAs in control and Zc3h13 kd mESCs. shCtrl, control. Data are represented as mean \pm SD from three biological replicates. *p < 0.05; **p<0.01; ***p < 0.001; t test.

Table S2.	Oligonucleotides	used in this study.	Related to ST	'AR Methods.
I doit 02.	ongonacieonaes	used in this study.	iterated to DI	

Gene Name	Primers (5'-3')			
Zc3h13 cloning primers				
ppB-Zc3h13	Forward	ATAACCGGTATGTCAAAAATTAGGAGAAAGGTC		
	Reverse	ACGCGTCGACCTAGGACACACACAGCTCCTG		
ppB-Zc3h13(1-900)	Forward	ATAACCGGTATGTCAAAAATTAGGAGAAAGGT		
	Reverse	ACGCGTCGACTTATTTCTTGGACTTCCTCTCCTC		
ppB-Zc3h13(901-1729)	Forward	ACGGACCGGTCGCTATAGAAATGAAGGGAGTC		
	Reverse	ACGCGTCGACCTAGGACACACACAGCTCCTG		
ppB-Zc3h13(1-1460)	Forward	ATAACCGGTATGTCAAAAATTAGGAGAAAGGTC		
	Reverse	ACGCGTCGACCTACTCATGTTCACTCTCTAATTT		
ppB-Zc3h13(1461-1729)	Forward	CGCACCGGTAGAGATCTGGAAGGCAGCTC		
	Reverse	ACGCGTCGACCTAGGACACACACAGCTCCTG		
shRNA primers		•		
shZc3h13-1	Forward	CCGGGACACGTGCTTTGGTTCATTTCTCGAGAAATGA		
		ACCAAAGCACGTGTCTTTTTG		
	Reverse	AATTCAAAAAGACACGTGCTTTGGTTCATTTCTCGAG		
		AAATGAACCAAAGCACGTGTC		
shZc3h13-2	Forward	CCGGCATGAGGATAGTCAGGTATTTCTCGAGAAATAC		
		CTGACTATCCTCATGTTTTTG		
	Reverse	AATTCAAAAACATGAGGATAGTCAGGTATTTCTCGAG		
		AAATACCTGACTATCCTCATG		
shWTAP	Forward	CCGGGGAAAGTACACAGATCTTAATCTCGAGATTAAG		
		ATCTGTGTACTTTCCTTTTTG		
	Reverse	AATTCAAAAAGGAAAGTACACAGATCTTAATCTCGAG		
		ATTAAGATCTGTGTACTTTCC		
shHakai	Forward	CCGGCCATTACAATCCTAACTCTTTCTCGAGAAAGAG		
		TTAGGATTGTAATGGTTTTTG		
	Reverse	AATTCAAAAACCATTACAATCCTAACTCTTTCTCGAGA		
		AAGAGTTAGGATTGTAATGG		
shVirilizer	Forward	CCGGGCGTGTTCCTTCAGCACTTGTCTCGAGACAAGT		
		GCTGAAGGAACACGCTTTTTG		
	Reverse	AATTCAAAAAGCGTGTTCCTTCAGCACTTGTCTCGAG		
		ACAAGTGCTGAAGGAACACGC		
shMettl3	Forward	CCGGCGTCAGTATCTTGGGCAAATTCTCGAGAATTTG		
		CCCAAGATACTGACGTTTTTG		
	Reverse	AATTCAAAAACGTCAGTATCTTGGGCAAATTCTCGAG		
		AATTTGCCCAAGATACTGACG		
shMett14	Forward	CCGGGCTGGACCTGGGATGATATTACTCGAGTAATATC		
		ATCCCAGGTCCAGCTTTTTG		
	Reverse	AATTCAAAAAGCTGGACCTGGGATGATATTACTCGAG		
		TAATATCATCCCAGGTCCAGC		

MeRIP-qPCR prin	ners	
Ndc1	Forward	ACTGTGTTCATTACCCTGCTG
	Reverse	CAAGCACCACGACAAAGGAA
Tbx3	Forward	AAATAAACCACGGGCCTTCC
	Reverse	TTTAGTGCTCCCTCCCAGAC
Naa30	Forward	GGAACTGACAGCAAGGAACG
	Reverse	AACAGCTGCATGGGAATCAC
Pex11b	Forward	CTGGCTTTGAAGTTTCGGCT
	Reverse	TGAGCACATCCAGCAAGAGA
Pgp	Forward	TGCGTGTCCCAGGAGTATG
	Reverse	GTCTTCAGGCTACAGGTGGA
Ddx47	Forward	GAAAGACTTCTGCTCGCCTG
	Reverse	CAGGTGAGGAATGCAAGCTG
Nxt1	Forward	CAACAAACAGCGGGACTTCA
	Reverse	TGCTATCTTCCACACCGTGT
Tcl1	Forward	GGTTTGCATATCCCTGGCTG
	Reverse	CTTTGATTGCAGAGCGGTGT
RIP-qPCR primer	s	
Pgp	Forward	TGCGTGTCCCAGGAGTATG
	Reverse	GTCTTCAGGCTACAGGTGGA
Ddx47	Forward	GAAAGACTTCTGCTCGCCTG
	Reverse	CAGGTGAGGAATGCAAGCTG
Nxt1	Forward	CAACAAACAGCGGGACTTCA
	Reverse	TGCTATCTTCCACACCGTGT
Tcl1	Forward	GGTTTGCATATCCCTGGCTG
	Reverse	CTTTGATTGCAGAGCGGTGT
RT-qPCR primers		
Esrrb	Forward	TTTCTGGAACCCATGGAGAG
	Reverse	AGCCAGCACCTCCTTCTACA
Klf4	Forward	CCAGCAAGTCAGCTTGTGAA
	Reverse	GGGCATGTTCAAGTTGGATT
Nanog	Forward	CAGGTGTTTGAGGGTAGCTC
	Reverse	CGGTTCATCATGGTACAGTC
Oct4	Forward	GGCGTTCTCTTTGGAAAGGT
	Reverse	CTTCGGGCACTTCAGAAACA
Sox2	Forward	AAGGGTTCTTGCTGGGTTTT
	Reverse	AGACCACGAAAACGGTCTTG
Tbx3	Forward	AGGAGCGTGTCTGTCAGGTT
	Reverse	GCCATTACCTCCCCAATTTT
Cdx2	Forward	GAAACCTGTGCGAGTGGATG
	Reverse	CAGCCAGCTCACTTTTCCTC
Fgf5	Forward	CCGGATGGCAAAGTCAATGG
	Reverse	ACTCTCGGCCTGTCTTTTCA

Foxa2 Forward		ATGGGCCCAGTCACGAACAAA	
	Reverse	ACACAGACAGGTGAGACTGCT	
Gata4 Forward		CCTGGAAGACACCCCAATCT	
	Reverse	TTAATGAGGGGCCGGTTGAT	
Gata6	Forward	TTCTACACAAGCGACCACCT	
	Reverse	CACCAAGAATCCTGTCGCAC	
Sox17	Forward	CACAACGCAGAGCTAAGCAA	
	Reverse	CGCTTCTCTGCCAAGGTC	
Eomes	Forward	CAGGCGCATGTTTCCTTTCT	
	Reverse	ATCTCCTGCCTCATCCAGTG	
Т	Forward	ACCCAGCTCTAAGGAACCAC	
	Reverse	GCTGGCGTTATGACTCACAG	
Gapdh Forward		CTGCGACTTCAACAGCAACT	
	Reverse	GAGTTGGGATAGGGCCTCTC	
Zc3h13 target m ⁶ A sequence for min		igene reporters	
Atg13 fragment inserted into		CACCCTTTGTGAAGCAGCTGAGGACAGTCCTTGCTGA	
minigene reporter (wt)		GGCTCTGTTACAGCCAGCTTCCAGCTCGACGGCCCGA	
		GTCCTCGCCAAGTCCGGCACTGGGC	
Atg13 fragment inserted into		CTCCCTTTGTGTTGCTGCTGTGGTCTGTCCTTGCTGTG	
minigene reporter (Mutant)		GCTCTGTTTCTGCCTGCTTCCTGCTCGTCGGCCCGTGT	
		CCTCGCCTTGTCCGGCTCTGGGC	
MeRIP-qPCR primers for minigene re		reporters	
Atg13 Forward		AAGCTTCGATTAGTGAACGGA	
	Reverse	AAGATCTCTGTCTCGAGCCG	