Supplementary Figure 1

Supplementary Figure 1: GPR81-signaling in immune cells limits colitis in mice. (A) Reciprocal bone marrow chimeras of WT (CD45.1) and GPR81^{-/-} (CD45.2) mice were treated with 2.5% DSS in drinking water for 6 days . Weight loss in WT \rightarrow WT, WT \rightarrow GPR81^{-/-} and GPR81^{-/-} \rightarrow WT group mice in response to DSS treatment. (B, C) Rag2^{-/-}/GPR81^{-/-} and Rag2^{-/-} mice (littermate control) were treated with 2.5% DSS in drinking water for 5 days and at day 9 colons of mice were analyzed for inflammation. (B, C) Change in body weight and colon length (day 9) of Rag2^{-/-}/GPR81^{-/-} and Rag2^{-/-} mice . (D) CD45RB^{hi}CD4⁺ T cells isolated from WT or GPR81^{-/-} mice were adoptively transferred into Rag2^{-/-} mice. Weight loss in Rag2^{-/-} mice at indicated time points (weeks) post naïve CD4⁺ T cell adoptive transfer. Data are representative of two independent experiments. Error bars indicate mean ± SEM.

Supplementary Figure 2

Supplementary Figure 2: GPR81 expression levels in immune cells. (A) Quantitative real-time PCR analysis of mRNA expression of GPR81 in DCs, macrophages (M ϕ), epithelial cells (EPi), CD4+ T cells, CD8⁺ T cells and B cells isolated from the colon (COL), spleen (SPL), mesenteric lymph nodes (MLN) and lung (LNG) of WT mice (n=3). (B) Western blot analysis of GPR81 in cell lysate DC and macrophages isolated from the spleen, small intestine lamina propria (SI-LP) and colon of WT mice.

Supplementary Figure 3: GPR81 signaling in intestinal APCs suppresses Th1/Th17 cell differentiation and induces regulatory T cell differentiation. (A) Representative FACS plots showing the frequencies of IL-17A⁺, IFN- γ^+ , Foxp3⁺ and IL-10⁺ OT-II CD4⁺ T cells after culturing with colonic DCs and macrophages isolated from GPR81^{-/-} and WT mice. (B) Representative FACS plots showing the frequencies of adoptively transferred naïve OT-II CD4⁺ T cells positive for IFN- γ , IL-17A, Foxp3 and/or IL-10 isolated from colons of WT and GPR81^{-/-} mice treated orally with OVA protein.

Supplementary Figure 4

Supplementary Figure 4: GPR81-signaling regulates balance between regulatory T cell and Th1/Th17 cell numbers in the colon. (A,B) Representative FACS plot and cumulative frequencies of endogenous CD4⁺ T cells positive for IL-17A, IFN-γ and IL-10 in the colon of GPR81^{-/-} and WT mice. (C) GPR81 agonist treatment did not protect Rag2^{-/-} /GPR81^{-/-} mice from T-cell transfer model of experimental colitis. CD45RB^{hi}CD4⁺ T cells isolated from WT mice were adoptively transferred into Rag2^{-/-} /GPR81^{-/-} mice. Animals were treated with GPR81 agonist orally (3-chloro-5-hydroxybenzoic acid (3Cl-5OH-BA); 10 mg/kg; on Weeks 1, 2, 3 and 4) and monitored over a period of time for percent weight loss compared to initial weight. Data are representative of two independent experiments (n=5). Error bars indicate mean ± SEM.