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Supplementary Text S1 

1 Fitting the Kernel Regression 

1.1 Intuitive Description 

Defining growth trajectories can be thought of as charting a curve through shape space. Each 

point on the curve corresponds to an expected head for a given age (a). Each point on the 

curve is defined by fitting a linear partial least-squares regression model, weighted so as to 

maximise the influence of observations closest in age to a and to minimise the influence of 

observations further away. This regression is used to predict the expected head and growth 

vectors at each point on the head at age a. The model fitting is illustrated schematically in the 

supplementary file Movie S1. 

1.2 Weighted Partial Least-Squares Regression 

Each image f is represented by a vector containing the co-ordinates of all k sampled points, 

after images are aligned to the sample mean and scaled to unit size by generalised Procrustes 

analysis. 

𝑓 = [𝑥1, 𝑦1, 𝑧1 … 𝑥𝑘 , 𝑦𝑘, 𝑧𝑘] 

The sample of images is represented as an n (observations) x (kx3) co-ordinates matrix Y, 

where each row corresponds to an image. In the regression of size Y is an n x 1 matrix 

containing size for each observation. The matrix of predictor variables X contains only one 

variable (age) and is an n x 1 matrix where each row contains the age (in years) of the 

observation in the corresponding row of Y. Weights for each observation were calculated as 

described below in section 1.3. Each matrix was centred on its weighted column means (�̅� 

and �̅�). Then each row of each matrix was multiplied by its corresponding weight. Partial 

least-squares regression of Y onto X was then performed (without further centring) using the 

SIMPLS algorithm, described in detail elsewhere1.  This defines, for each variable in X, a 

vector of kx3 regression coefficients m that describe how each co-ordinate changes per unit of 

the predictor variable (per year). As there was only one predictor in the regression there is 

only one regression vector m: 

𝑚 = [𝑐𝑥1
, 𝑐𝑦1

, 𝑐𝑧1
… 𝑐𝑥𝑘

,  𝑐𝑦𝑘
, 𝑐𝑧𝑘

] 

where, for example 𝑐𝑥𝑖
, represents a scalar regression coefficient describing the change in the 

x co-ordinate of the ith point on the image.   

The expected head (e) at age a is produced by evaluating the regression at a and adding the 

mean co-ordinates �̅� back on. 

e = 𝑎 ⋅ 𝑚 + �̅� 

The vector m also defines the predicted growth vectors at each point. Specifically the growth 

vector at point i is: 

[𝑐𝑥𝑖
, 𝑐𝑦𝑖

, 𝑐𝑧𝑖
] 

This describes the predicted change in three dimensions of that point on the head. 



1.3 Weighting 

In the weighted partial least-squares regression each observation is assigned a weight that 

reflects how close its age is to a. Specifically the observation’s age 𝑥𝑖 is converted into a z-

score  according to a normal distribution centered on a with standard deviation σ.  

𝑧𝑖 =  
𝑥𝑖 − 𝑎

𝜎
 

The weight for each observation 𝑤𝑖 is then calculated by evaluating the standard normal 

probability density function at 𝑧𝑖: 

𝑤𝑖 =
1

√2𝜋
 𝑒

−𝑧𝑖
2

2  

1.4 Tuning σ  

The value of σ in the above equation determines the width of the kernel. The effect of 

increasing σ is to use a wider range of ages to define the local linear regression. This 

linearises the overall kernel regression. (Figure S1.1). The value of σ must be tuned so as to 

best model the data. If σ is too small, then the regression will model noise in the sample 

rather than the true population trend (the model will be over-fitted). If σ is too large detail in 

the true relationship will be lost (the model will be under-fitted).  

 

Figure Text S1.1 The effect of altering sigma on the fitted model. From left to right this shows the kernel 

regression model fitted to the same data using different values of σ. As σ increases the regression curve becomes 

more linear.  

In general an over-fitted or under-fitted model will ‘explain’ data not used to build it (unseen 

data), more poorly than will a well-fitted model. In order to determine the appropriate σ we 

use a repeated one-dimensional grid search2 to estimate the error on unseen data for a user-

selected sample of possible values for σ.  

To estimate the error for each σ the sample is split into 10 ‘folds’. To ensure the sampling in 

each fold is as even and consistent as possible these folds are constructed so that the number 

of observations of each age is proportional to the numbers in the total sample. For each fold 

the model is fitted using the other nine folds. For each observation in the test fold, error is 

calculated as the sum of absolute differences in each point co-ordinate between it and its age 



appropriate expected head. Each fold serves as the test fold in turn and thereby an error is 

computed for each observation in the sample. The sum of errors over all observations is taken 

as the error for the value of σ. This was repeated 50 times for each σ and the mean error from 

thee repetitions was taken as the final error value. 

We performed this separately for boys and girls and estimated an optimal σ (the one with 

lowest error) for each of the two samples. We then used the most conservative (largest) σ of 

the two to fit the models to both samples. The rationale for using the same σ for both samples 

is described below in section 2.3. 

2 Simulations 

In these simulations we use the simulated dataset shown in Figure S1.2. Here the colour of 

each marker represents the age. The two axes represent two response variables (e.g. axes of 

shape space). The data were generated by randomly sampling 200 ages between zero and 

eighteen. Their x and y co-ordinates were predicted from the function plotted in blue below. 

Random fluctuations from this true population trend were simulated by adding random 

Gaussian noise to the co-ordinates. The better a regression is the more closely it will estimate 

this true population trend from noisy data.  

 

Figure Text S1.2 Simulated data and true function. The spacing of points on the true function correspond to one 

year intervals. 

2.1 Performance under uneven sampling 

Previous work has used the weighted mean head as the expected head 3. In contrast we use a 

weighted partial least-squares regression function to predict the expected head. This approach 

is more robust when data is unevenly sampled.  

Data are always unevenly sampled at the edges of the range of ages.  To further illustrate the 

point we also removed 75% of observations from the middle of the age range. We then fitted 

a kernel regression as described above, with σ equal to 2.5 years. We compare this with the 



weighted means calculated using the same weights as the kernel regression (see Figure S1.3). 

The curve of the weighted means is truncated relative to the true function at its ends. The 

points on this curve are also more spaced out relative to the true function where the data is 

more poorly sampled. Essentially the points on this curve are ‘pulled’ from areas of low 

sampling towards areas of higher sampling. By contrast the regression in the left panel much 

more closely approximates the true function. 

 

Figure Text S1.3 Compares the kernel regression fitted as described in section 1 (left) to the weighted means 

calculated using the same weights (right). 

2.2 Performance on small sample sizes 

In general, as sample size decreases a larger σ is required to avoid over-fitting. As the effect 

of increasing σ is to linearize the regression, this is also the effect of reducing sample size on 

the regression. We tuned σ and fitted the kernel regression using different sample sizes. As 

sample size decreases the, optimised σ becomes larger and the regression becomes more 

linear (Figure S1.4). 

 

Figure Text S1.4 Regression model behaviour under small sample sizes. For each sample, σ was tuned and the 

regression model was fitted.   

2.3 Justification for using the same σ to model both populations. 

In our analysis we estimated the optimal value of σ for each sample (boys and girls) and used 

the most conservative (larger) to fit models to both samples. This is justified because, 

everything else being equal, fitting with different values of σ introduces differences in the 

estimated growth trajectories when they do not exist. In each panel of Figure S1.5 two 



samples are plotted with identical growth trajectories (they were generated from the same 

true function). In the left panel the two samples are fitted with different values of σ, whereas 

in the right panel they are fitted using the same σ.  In the left panel there are large differences 

introduced by one regression being more smoothed (more linear) than the other. In the right 

panel the two trajectories correctly appear very similar (the fact that they are not identical 

reflects sampling error).  

 

Figure Text S1.5 Compares fitting with different σ to fitting with the same σ. Both panels contain two different 

datasets (triangles and circles) generated using the same true function as their growth trajectory. When these are 

fitted with kernel regressions with different values of σ (left) spurious differences between them are introduced, 

whereas when they are fitted with the same σ they appear (correctly) more similar.  
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Table S1. Exact p-values of the Procrustes distance statistic for each age. Values less than 

.0001 are truncated as “<.0001”. 

Age p 

1.12 0.0023 

1.5 0.0016 

2 0.0005 

2.5 0.0002 

3 <0.0001 

3.5 <0.0001 

4 <0.0001 

4.5 <0.0001 

5.5 <0.0001 

6 <0.0001 

6.5 <0.0001 

7 <0.0001 

7.5 <0.0001 

8 <0.0001 

8.5 <0.0001 

9 <0.0001 

9.5 <0.0001 

10 <0.0001 

10.5 <0.0001 

11 <0.0001 

11.5 <0.0001 

12 <0.0001 

12.5 <0.0001 

13 <0.0001 

13.5 <0.0001 

14 <0.0001 

14.5 <0.0001 

15 <0.0001 

15.5 <0.0001 

16 <0.0001 

 

 












