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1 Workflow

PhylOligo is a package of tools to analyse the heterogeneity of oligonucleotide composition of
genomic assembly fragments to explore and locate sequences from potential untargeted organisms.
The package contains several programs arranged in a workflow.

(optional) . Phylopreprocess:py.

Raw data

(opton®)

phyleligerpy

Distance
matrix

phyloselect:R

phyleselect:py,

Clade-
specific
fastas

t-SNE
plot

contalocaterR

Distance Clade-
matrix specific
plot trees

Untargeted
GFF

Figure 1: Workflow of PhylOligo. Blue frames: programs and scripts. Grey blobs: data files and
output files.

2 Installation

PhyloOligo software needs python 3.4 or newer and several R and python packages.

2.1 Quick Install

Basic dependencies

If python or R are not installed on your system, call your distribution’s package manager:

sudo apt-get install python3-dev python3-setuptools r-base git emboss samtools
#or
yum install python3-dev python3-setuptools r-base git emboss samtools

Clone/download the git repository

|git clone https://github.com/itsmeludo/PhylOligo.git



https://www.xkcd.com/1654/

or download it from https://github.com/itsmeludo/Phyl0ligo

Install python scripts and dependencies

If you have administrator rights or if you are working in a python virtual environment:

git clone https://github.com/itsmeludo/Phyl0ligo.git
cd PhylOligo
pip3 install

You can also install it locally using:

git clone https://github.com/itsmeludo/Phyl0ligo.git
cd PhylOligo
pip3 install . --user

Or to install it locally in a folder of your choice:

pip3 install . --prefix /my/local/folder

If locally installed, be sure to add the local directory with executable in your executable path.
On linux:

export PATH=$HOME/.local/bin:$PATH

phyloligo.py -h

2.2 Alternative install tricks

If the easy install procedure fails on your system, there are several options to install the depen-
dencies.

Python requirements

If you want to install the dependencies separately use:

cd PhylOligo
pip3 install -r requirements.txt

Install R scripts and dependencies

In R, as root or user

R
install.packages(c("ape","getopt","gplots"))

Rights and paths

Link the programs into a directory listed in your $PATH

#cd PhylOligo

export PATH=‘pwd ‘/src/:$PATH
chmod +x src/{*.py,*.R}

List of Dependencies:
e Python 3.x

— BioPython biopython.org

sklearn http://scikit-learn.org/stable/install.html

Numpy numpy.org

matplotlib http://matplotlib.org

hdbscan https://pypi.python.org/pypi/hdbscan
— Cython http://cython.org


https://github.com/itsmeludo/PhylOligo
biopython.org
http://scikit-learn.org/stable/install.html
numpy.org
http://matplotlib.org
https://pypi.python.org/pypi/hdbscan
http://cython.org

— hbpy http://wuw.hbpy.org
e R3x
— ape http://ape-package.ird.fr
— gplots https://cran.r-project.org/web/packages/gplots/index.html
— getopt https://cran.r-project.org/web/packages/getopt/getopt.pdf

EMBOSS http://emboss.sourceforge.net/download

Samtools http://www.htslib.org/

X11 onlyrequiredtorunphyloselect.R

3 Software manual and options

3.1 phylopreprocess.py

Pre-process the original contigs/scaffolds/long reads in order to filter out entries, reduce computa-
tional time and increase signal. Filter short sequences or highly conserved repeats. Sub-sampling
can be used in order to perform quick tests or to reduce the size of a dataset to allow for its
computation given the computational resources available. Note that this step is optional and that
phyloselect.R also contains sequence filters in order to test out different values without having
to recompute the frequencies and the distance matrix with phyloligo.py. Sequences shorter than
1kb should be considered as poorly informative or representative of their species compositional
profile. In order to grant a more refined selection of materials to establish an accurate composi-
tional profile prototype and the detection of potential untargeted sequences, sequences below about
5Kb could be filtered if it can be hypothesised that a possible contaminant would not have shorter
sequences or be completely filtered out.

e Reads an assembly or long sequencing reads multi-fasta file

e Output filtered dataset

phylopreprocess.py [-h] -i INPUTFASTA [-p PERCENTILE] [-m MIN_SEQSIZE] [-c
CUMULATED_SEQSIZE] [-s SAMPLING][-u SAMPLE_SIZE] [-r] [-o OUTPUTFASTA]

Parameters:

—h, —help show this help message and exit

—i INPUTFASTA

—p PERCENTILE remove sequences of size not in Xth percentile

—m MIN_SEQSIZE remove sequences shorter than the provided minimal

size
—c CUMULATEDSEQSIZE select sequences until their cumulated size reach this
parameter. if —r is used, sequences are picked

randomly .
—s SAMPLING percentage of reads to sample
—u SAMPLE_SIZE number of reads to sample
—r the order of the sequences are randomized

—o OUTPUTFASTA

3.2 phyloligo.py
Generate the all-by-all contig distance matrix
e Load and index the genome assembly sequences.
e Compute the kmer/spaced-pattern composition profile of each sequence in the assembly.

e Compute a pairwise distance matrix for all sequences.

thyloligo.py -d JSD -i genome.fasta -o genome.JSD.mat -u 64

Parameters:


http://www.h5py.org
http://ape-package.ird.fr
https://cran.r-project.org/web/packages/gplots/index.html
https://cran.r-project.org/web/packages/getopt/getopt.pdf
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http://www.htslib.org/
only required to run phyloselect.R

—h, —help show this help message and exit

—i GENOME, —assembly GENOME
multifasta of the genome assembly

—k PATTERN, —IgMot PATTERN
word lenght / kmer length / k [default:4]. This option
is an alias for —pattern (see —p). If the type of the
parameter is an integer , it will be interpreted as the
lenght of the kmer to use. If the type of the
parameter is a string, it will be interpreted as a
spaced—pattern.

—s {both,plus ,minus}, —strand {both, plus,minus}
strand used to compute microcomposition.
[default :both]

—d {Eucl,JSD}, —distance {Eucl,JSD}

how to compute distance between two signatures : Eucl
Euclidean [default : Eucl], JSD : Jensen—Shannon
divergence

—freq —chunk—size FREQCHUNKSIZE
the size of the chunk to use in scoop to compute
frequencies
—dist —chunk—size DISTCHUNKSIZE
the size of the chunk to use in scoop to compute
distances
—method {scoop,joblib}
don’t use scoop to compute distances use joblib
—Ilarge {None,memmap, h5py}
used in combination with joblib for large dataset
—c THREADSMAX, —cpu THREADS MAX
how many threads to use for windows microcomposition
computation [default :4]
—o OUTFILE, —out OUT_FILE
output file [default:phyloligo.out]
—w WORKDIR, —workdir WORKDIR
working directory
—p PATTERN, —pattern PATTERN
spaced—word pattern string , only containing 1s and Os,
i.e. ’100101001°, default="1111"’. See -k / —IlgMot.

3.3 phyloselect.R

Regroup contigs by compositional similarity on a tree and explore the topology.

e Load the distance matrix produced by PhylOligo.

Optionally create a hierarchically sorted distance matrix.

Build a cladogram from the distance matrix.

Interactively ask the user to explore the cladogram and select clads that might correspond
to untargeted sequences based on the interpretation of the topology.

Export clad-specific fasta files:

— To inspect their potential origin for example with blast or GOHTAM (
)

— To use as learning material in ContaLocate

phyloselect.R -d -m -c 0.95 -s 4000 -t BIONJ -f ¢ -w 20 -i genome.JSD.mat -a
genome .fasta -o genome_conta

Parameters:



—i|-—matrix

All-by—all contig distance matrix, tab separated (required)
—al——assembly

Multifasta file of the contigs (required)
—f|——tree_draw_method

Tree building type. [phylogram, cladogram

fan , unrooted, radial] by default cladogram.
—t|——tree_building_method

Tree drawing type [NJ, UPGMA, BIONJ, wardD,

wardD2, Hsingle, Hcomplete, WPGMA, WPGMC, UPGMC] by default NJ.
—m|——matrix_heatmap

Should a matrix heatmap should be produced
—c|——distance_clip_percentile

Threshold to exclude very distant contigs based on the distance

distribution. Use if the tree is squashed by repeats or

degenerated /uninformative contigs [0.97]
—s|——contig_-min_size

Min length in bp of contigs to use in the matrix and tree.

Use if the tree is squashed by repeats or

degenerated /uninformative contigs [4000]
—d|——dump_R_session

Should the R environment be saved for later exploration?

The filename will be generated from the outfile parameter

or its default value
—g|——max_perc

Max edge assembly length percentage displayed (%)
—1|——min_perc

Min edge assembly length percentage displayed (%)
—k|——keep_perc

Ratio of out—of-range percentages to display (%)
—o|——outfile

Outfile name, default:phyloligo.out
—b|——Dbranchlength

Display branch length
—w|]——branchwidth

Branch width factor [40]
—v|——verbose

Says what the program do.
—h|——help

This help.

note: PhyloSelect uses the library Ape and its interactive clade selection function on a tree
plot with the mouse. X11 is therefore required. If the program has to run on a server -typically
for memory reasons- please use the -X option of ssh to allow X11 forwarding.

3.4 phyloselect.py

Regroup contigs by compositional similarity: hierarchical DBSCAN or K-medoids clustering and
multidimensional scaling display with t-SNE.

e Load the distance matrix produced by PhylOligo.
e Cluster the sequences
e Export cluster-specific fasta files:

— To inspect their potential origin for example with blast or GOHTAM ( ,
)

— To use as learning material in ContaLocate

thyloselect.py -i genome.JSD.mat -t -m hdbscan --noX -o genome_conta

Parameters:



—h, —help show this help message and exit

—i DISTMAT The input matrix file
—t Perform tsne for visualization and pre—clustering
—p PERPLEXITY Change the perplexity value

—m {hdbscan , kmedoids}
Method to use to compute cluster on transformed
distance matrix

—minclustersize MIN_CLUSTER_SIZE

Set the minimal cluster size of an HDBSCAN cluster

—minsamples MIN_.SAMPLES
Set the minimal sample size of an HDBSCAN cluster

—k NBK Number of cluster

—f FASTAFILE Path of the original fasta file used for the
computation of the distance matrix

—interactive Allow the user to run the script in an interactive

mode and change clustering parameter on the fly

(require —t)
——large {memmap, h5py}

Used in combination with joblib for large dataset
—noX Instead of showing pictures, store them in png
—o OUTPUIDIR

3.5 contalocate.R

Extract DNA segments with homogeneous oligonucleotide composition from a genome assembly.
Once you have explored your assembly’s oligonucleotide composition, identified and selected -
potentially partial- untargeted genome material, use Contal.ocate to target species-specific DNA
according to a double parametrical threshold.

e Learn a compositional profile for the host and the untargeted organism, previously identified
with phyloligo.py / phyloselect.R.

Scan the assembly for regions similar in composition to the two aforementioned profiles.

Compute one threshold value for each scan based on the distribution of the metric.

Locate the untargeted regions according to the 2 thresholds, distant from the host and close
the the untargeted profile.

e Generate a GFF3 map of the untargeted region positions in the genome.

If both the host and untargeted learning material are avaialble:
“contalocate.R -i genome.fasta -r genome_host.fa -c genome_conta_1.fa
The training set for the host genome can be omitted if the amount of untargeted sequences is
negligible/very small. In this case, the profile of the host will be trained on the whole genome,

including the untargeted sequences which might create a bias proportional to the relative amount
of untargeted material.

“contalocate.R -i genome.fasta -c genome_conta_1.fa

The set up of the thresholds can be manually enforced. The user will interactively prompted
to set the thresholds given the distribution of windows divergence.

“contalocate.R -i genome.fasta -c genome_conta_1.fa -m

Parameters:
—i|——genome

Multifasta of the genome assembly (required)
—r|——host_learn

Host training set (optional)
—c|——conta_learn

Contaminant training set (optional) if missing and

sliding window parameters are given, the sliding
windows composition will be compared to the whole



genome composition to contrast potential HGTs

(prokaryotes and simple eukaryotes only)
—t|——win_step

Step of the sliding windows analysis to locate the

contaminant (optional) default: 500bp or 100bp
—w|——win_size

Length of the sliding window to locate the

contaminant (optional) default: 5000bp
-W——outputdir

path to outputdir directory
—d|——dist

Divergence metric used to compare profiles: (KL), JSD or Eucl
—m|——manual_threshold

You will be asked to manually set the thresholds
—h|——help

This help

4 Pipeline examples

4.1 Workstation

assembly=/path/to/assembly.fa
cpus=64

name="organism"

pattern=4

distance="JSD"

work_dir="‘pwd ‘

phyloligo.py -c¢ $cpus -o ${name}_${distance}_k${pattern}.mat -i $assembly -k
$pattern -d ${distance} --method joblib

phyloselect.R -i ${name}_${distance}_k${pattern}.mat -a $assembly -d -w 20 -c
0.90 -s 4000 -m -f c -o PhyloSelect_${name}

# filenames depends on the selection made by the user.
contalocate.R -i genome.fasta -r PhyloSelect_${name}_1.fa -c PhyloSelect_${namel}
_2.fa

4.2 SGE grid - SMP

#!/bin/bash

assembly=/path/to/assembly.fa
cpus=64

name="organism"
pattern="1111"

distance="JSD"

work_dir="‘pwd *

#% -S /bin/bash

#$ -cwd

#$ -V

#$ -pe parallel_smp $cpu

#$ -1 mem=1G

#$ -1 h_umem=1G

#$ -N PhylOligo_grid_test_$name

echo "phyloligo.py -c \$NSLOTS -o ${name}_${distancel}_k${pattern}.mat -i
$assembly --pattern $pattern -d ${distance} --method joblib --large hb5py" |
gsub -N PhylOligo_${name}_${distancel}_k${pattern} -1 mem=12G -1 h_vmem=64G




echo "phyloselect.py -i ${name}_${distance}_k${pattern}.mat -t -m hdbscan --
large hb5py --noX -o $work_dir"| gsub -N PhyloSelect_${name} -1 mem=10G -1
h_vmem=30G -hold_jid PhylOligo_${name}_${distance}_k${pattern}

4.3 SGE grid - Multi node

#!/bin/bash

assembly=/path/to/assembly.fa
cpus=64

name="organism"
pattern="1111"

distance="JSD"

work_dir="‘pwd ‘

#% -S /bin/bash

#$ -cwd

#$ -V

#$ -pe parallel_smp $cpu

#% -1 mem=1G

#% -1 h_vumem=1G

#$ -N PhylOligo_grid_test_$name

#SSH connexzion between nodes must be allowed for scoop to work properly

echo "phyloligo.py -c \$NSLOTS -o ${name}_${distance}_k${pattern}.mat -i
$assembly --pattern $pattern -d ${distance} --method scoop --freq-chunk-size
3000 --dist-chunk-size 500" | gsub -N PhylOligo_${name}_${distance}_k${
pattern} -1 mem=12G -1 h_vmem=64G

echo "phyloselect.py -i ${name}_${distance}_k${pattern}.mat -t -m hdbscan --noX
-o $work_dir"| gsub -N PhyloSelect_${name} -1 mem=10G -1 h_vmem=30G -
hold_jid PhylOligo_${name}_${distancel}_k${pattern}

4.4 SGE grid - Very large dataset

#!/bin/bash

assembly=/path/to/assembly.fa
cpus =240

name="organism"
pattern="1111"

distance="JSD"

work_dir="‘pwd ‘

#$ -S /bin/bash

#$ -cwd

#$ -V

#$ -pe parallel_smp $cpu

#% -1 mem=1G

#% -1 h_umem=1G

#$ -N PhylOligo_grid_test_$name

echo "phylopreprocess.py -i $assembly -m 4000 -o ${assemblyl}_filtered_m4000.fa"
| gsub -N PhylOligo_${name}_${distance}_k${pattern}_preprocess -1 mem=12G -1
h_vmem=64G

echo "phyloligo.py -c \$NSLOTS -o ${namel}_${distancel}_k${pattern}.mat -i ${
assembly}_filtered_m4000.fa --pattern $pattern -d ${distance} --method
joblib --large hb6py" | gsub -N PhylOligo_${name}_${distance}_k${pattern} -1
mem=48G -1 h_vmem=100G -hold_jid PhylOligo_${name}_${distancel}_k${pattern}
_preprocess

echo "phyloselect.py -i ${name}_${distance}_k${pattern}.mat -t -m hdbscan --
large hbpy --noX -o $work_dir"| qsub -N PhyloSelect_${name} -1 mem=800G -1
h_vmem=3000G -hold_jid PhylOligo_${name}_${distance}_k${pattern}




5 Examples

5.1 Magnaporthe oryzae

This example shows how bacterial regions were identified in assemblies of the phytopathogenic
fungus Magnaporthe oryzae. Nine isolates were sequenced ( , ) of which four
exhibited an unexpectedly larger genome size compared to other genomes of the same species.
This dataset can be directly downloaded at http://genome. jouy.inra.fr/gemo/data_publi/
genome/TH12-rn_prefix.fna

Investigations with PhylOligo and comparison of the different isolates (Figure 2) revealed the
presence of a subset of contigs with distinct oligonucleotide composition as seen on Figure 3 (Clade
B) and Figure 4. These regions were used to learn a prototype of this composition, determine
divergence thresholds (see Figure 5) and the whole genome was scanned with ContaLocate. A whole
bacterial genome was identified in 3 out of the 9 isolates, as well as several chimeric scaffolds, i.e.
containing DNA from 2 organisms. Using Blast ( , ) and GOHTAM (

, ), the bacterial genome was identified to be unsequenced at the time and compositionally

close to Burkholderia phytofirmans and Burkholderia xzenovorans.

The genome of Magnaporthe oryzae after filtering was not significantly altered as suggested by
analyses performed with BUSCO and DOGMA presented in Table 1 and Table 2 respectively.

Raw assembly || Filtered assembly

Complete BUSCOs (C) 1249  95.0% || 1248 94.9%
Complete and single-copy BUSCOs (S) | 1243  94.5% 1244  94.6%
Complete and duplicated BUSCOs (D) | 6 0.5% 4 0.3%

Fragmented BUSCOs (F) 61 4.6% 62 4.7%

Missing BUSCOs (M) 5 0.4% 5 0.4%

Total BUSCO groups searched 1315 1315

Table 1: Genome annotation statistics performed with BUSCO ( , ) before and

after filtering with PhylOligo on Magnaporthe oryzae. Reference set used: ascomycota_odb9.

Size of Conserved Domain Raw assembly Filtered assembly Filtered Bacteria
Arrangements

1 domain 97.26% 95.73% 98.11%
2 domains 93.87% 91.91% 94.77%
3 domains 90.91% 88.81% 90.24%
Total 95.77% (1470/1535) || 94.07% (1444/1535) || 96.63% (545/564)

Table 2: Statistics of the expected protein domain arrangements in the genome annotation per-
formed with DOGMA ( , ) before and after filtering with PhylOligo on Magna-
porthe oryzae and the extra materials from Burkholderia. Percentages denote the completeness
of expected domain arrangements present. The default expected set was used for Magnaporthe
oryzae. The Bacterial expected set was used for Burkholderia.
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Figure 2: Exploration of 2 isolates of Magnaporthe oryzae ( , ). A: Exploration

of Magnaporthe oryzae TH12. The topology and width pattern of the subtree identified in the
red triangle is very similar to the whole tree in Figure 2 B. The user suspects that this conserved
pattern accounts for the targeted organism, and that the extra clades might represent untargeted
sequences, as the clade banches very early on the cladogram and represent a small amount of
sequences in the assembly. B: Exploration of Magnaporthe oryzae TH16. This isolate was found
to contain no untargeted material.
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Figure 3: Sorted distance matrix of contigs of Magnaporthe oryzae THI12 assembly (Chiapello
et al., 2015). The following parameters in phyloselect.R were used: -¢ 0.97 -m
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Figure 4: Exploration of the Magnaporthe oryzae TH12 assembly ( , ). The
width of the branches is set proportional to the cumulative size of contigs in the sub tree. The
thicker path on the tree indicates a set of contigs with homgeneous oligonucleotide composition
cumulating the majority of the assembled sequences The selection in blue will be called “Clade
A” | the user suspect this correspond to the host sequences, Magnaporthe oryzae. The selection in
red will be called “Clade B”, the user suspect this is an untargeted set of sequences, as the clade
banches very early on the cladogram and represent a small amount of sequences in the assembly.
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Figure 5: A: Distribution of distances between the composition profile of clade A in Figure 4 and
the scanning windows over the whole assembly. The host threshold is the vertical red line. Each
coloured curve is a Magnaporthe oryzae isolate from (Chiapello et al., 2015). B: Distribution of
distances between the composition profile of clade B in Figure 4 and the scanning windows over

the whole assembly. The untargeted threshold is the vertical red line.
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5.2 Hypstbius dujardin:

The recent sequencing of the tardigrade ( , ) yielded a controversy about the com-
position of its genome sequence. Running PhylOligo on the genome assembly revealed the presence
of sets of contigs with an homogeneous oligonucleotide composition grouping in diverging clades
(Figure 6 A, clades not in red), which is in agreement with the previously proposed multiple con-
tamination of the sample ( ; , ). Unlike the example
of Magnaporthe oryzae, the cladogram dlsplays many branching clades each containing a substantial
fraction of the assembled data. these dataset can be retrived from https://www.ncbi.nlm.nih.

gov/Traces/wgs/7val=LMYFOl&display=contigs&page=1 and https://www.ncbi.nlm.nih.gov/
Traces/wgs/7val=LRSRO1#contigs.

We comparatively ran PhylOligo on the assembly proposed by ( , ) (Fig-
ure 6 B) which was filtered based on several criteria including the presence of known bacterial genes
and kmer composition. The kmer composition based tree obtained with the filtered assembly can
be identified as a rather conserved subtree in the original assembly composition tree (red triangle
in Figure 6 A). This observation supports the ability of PhylOligo to display atypically branching
groups of contigs on a compositional basis as an evidence for the presence of untargeted sequences.

2000

2000
Figure 6: A: Exploration of the Hypsibius dujardini original assembly ( , ). B:
Exploration of the Hypsibius dujardini curated assembly ( , ). A very similar

tree topology and branch width pattern can be identified in the original assembly (Figure 6 A) in
the red triangle.
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6 Benchmark and simulations

6.1 Methods

To assess the performance of PhylOligo on varying conditions and situations, we generated artificial
contaminations and quantified the specificity and sensitivity of contaminant sequences identifica-
tion and clustering to generate the learning material geared to set the thresholds.

6.1.1 Genomes and assembly simulation

32 genomes (Table 3) were manually selected and downloaded from RefSeq (Ref). From the
assembled sequenced, a draft quality was simulated by using GRINDER (Angly et al., 2012) using
short sequence simulation with a contig length following a normal distribution with parameters
1=10Kb and 0=10Kb. Contigs were sampled until the breadth of coverage of the initial genome
reached 0.98.

Binomial name Short name Domain URL

Archaeoglobus fulgidus Aful archaea Archaeoglobus_fulgidus
Desulfurococcus fermentans  Dfer archaea Desulfurococcus_fermentans
Ferroglobus placidus Fpla archaea Ferroglobus_placidus
Halococcus thailandensis Htha archaea Halococcus_thailandensis
Haloferax mediterranei Hmed archaea Haloferax_mediterranei
Pyrococcus furiosus Pfur archaea Pyrococcus_furiosus
Thermococcus eurythermalis  Teur archaea Thermococcus_eurythermalis
Escherichia coli Ecol bacteria Escherichia_coli
Staphylococcus aureus Saur bacteria Staphylococcus_aureus
Burkholderia mallei Bmal bacteria Burkholderia_mallei
Xanthomonas oryzae Xory bacteria Xanthomonas_oryzae
Salmonella enterica Sent bacteria Salmonella_enterica
Bacillus cereus Bcer bacteria Bacillus_cereus
Aspergillus fumigatus Afum fungi Aspergillus_fumigatus
Encephalitozoon cuniculi Ecun fungi Encephalitozoon_cuniculi
Podospora anserina Pans fungi Podospora_anserina
Saccharomyces cerevisiae Scer fungi Saccharomyces_cerevisiae
Schizosaccharomyces pombe Spom fungi Schizosaccharomyces_pombe
Yarrowia lipolytica Ylip fungi Yarrowia_lipolytica
Giardia intestinalis Glam protozoa Giardia_intestinalis
Leishmania magjor Lmaj protozoa Leishmania_major
Paramecium tetraurelia Ptet protozoa Paramecium_tetraurelia
Plasmodium falciparum Pfal protozoa Plasmodium_falciparum
Trichomonas vaginalis Tvag protozoa Trichomonas_vaginalis
Danio rerio Drer vertebrate other Danio_rerio

Xenopus tropicalis Xtro vertebrate other Xenopus_tropicalis
Apteryzr australis Aaus vertebrate other Apteryx_australis
Marmota marmota Mmar vertebrate mammalian ~Marmota_marmota
Panthera tigris Ptig vertebrate mammalian  Panthera_tigris

Castor canadensis Ccan vertebrate mammalian  Castor_canadensis

Felis catus Fcat vertebrate mammalian  Felis_catus

Homo sapiens Hsap vertebrate mammalian  Homo_sapiens

Table 3: Species used in the benchmark

6.1.2 Contamination simulation

An all-by-all contamination assay of the 32 genomes was undertaken mixing a declared contaminant
and host genome. The contaminant contigs were randomly sampled from the initial simulated draft
genome up until a count of 1000 or the all the contigs of the draft if lower. The Host genomes
was generated in the same manner with the exception of the maximum number of contigs raised
to 2000. For all species combination, a contaminated set was generated and tested.
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ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/archaea/Archaeoglobus_fulgidus/representative/GCF_000008665.1_ASM866v1/GCF_000008665.1_ASM866v1_genomic.fna.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/archaea/Desulfurococcus_fermentans/representative/GCF_000231015.2_ASM23101v3/GCF_000231015.2_ASM23101v3_genomic.fna.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/archaea/Ferroglobus_placidus/representative/GCF_000025505.1_ASM2550v1/GCF_000025505.1_ASM2550v1_genomic.fna.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/archaea/Halococcus_thailandensis/representative/GCF_000336715.1_ASM33671v1/GCF_000336715.1_ASM33671v1_genomic.fna.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/archaea/Haloferax_mediterranei/representative/GCF_000306765.2_ASM30676v2/GCF_000306765.2_ASM30676v2_genomic.fna.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/archaea/Pyrococcus_furiosus/representative/GCF_000007305.1_ASM730v1/GCF_000007305.1_ASM730v1_genomic.fna.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/archaea/Thermococcus_eurythermalis/representative/GCF_000769655.1_ASM76965v1/GCF_000769655.1_ASM76965v1_genomic.fna.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria/Escherichia_coli/reference/GCF_000005845.2_ASM584v2/GCF_000005845.2_ASM584v2_genomic.fna.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria/Staphylococcus_aureus/reference/GCF_000013425.1_ASM1342v1/GCF_000013425.1_ASM1342v1_genomic.fna.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria/Burkholderia_mallei/reference/GCF_000011705.1_ASM1170v1/GCF_000011705.1_ASM1170v1_genomic.fna.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria/Xanthomonas_oryzae/representative/GCF_000007385.1_ASM738v1/GCF_000007385.1_ASM738v1_genomic.fna.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria/Salmonella_enterica/reference/GCF_000195995.1_ASM19599v1/GCF_000195995.1_ASM19599v1_genomic.fna.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria/Bacillus_cereus/reference/GCF_000007825.1_ASM782v1/GCF_000007825.1_ASM782v1_genomic.fna.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/fungi/Aspergillus_fumigatus/representative/GCF_000002655.1_ASM265v1/GCF_000002655.1_ASM265v1_genomic.fna.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/fungi/Encephalitozoon_cuniculi/representative/GCF_000091225.1_ASM9122v1/GCF_000091225.1_ASM9122v1_genomic.fna.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/fungi/Podospora_anserina/representative/GCF_000226545.1_ASM22654v1/GCF_000226545.1_ASM22654v1_genomic.fna.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/fungi/Saccharomyces_cerevisiae/reference/GCF_000146045.2_R64/GCF_000146045.2_R64_genomic.fna.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/fungi/Schizosaccharomyces_pombe/representative/GCF_000002945.1_ASM294v2/GCF_000002945.1_ASM294v2_genomic.fna.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/fungi/Yarrowia_lipolytica/representative/GCF_000002525.2_ASM252v1/GCF_000002525.2_ASM252v1_genomic.fna.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/protozoa/Giardia_intestinalis/representative/GCF_000002435.1_GL2/GCF_000002435.1_GL2_genomic.fna.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/protozoa/Leishmania_major/representative/GCF_000002725.2_ASM272v2/GCF_000002725.2_ASM272v2_genomic.fna.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/protozoa/Paramecium_tetraurelia/representative/GCF_000165425.1_ASM16542v1/GCF_000165425.1_ASM16542v1_genomic.fna.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/protozoa/Plasmodium_falciparum/representative/GCF_000002765.3_ASM276v1/GCF_000002765.3_ASM276v1_genomic.fna.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/protozoa/Trichomonas_vaginalis/representative/GCF_000002825.2_ASM282v1/GCF_000002825.2_ASM282v1_genomic.fna.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/vertebrate_other/Danio_rerio/reference/GCF_000002035.5_GRCz10/GCF_000002035.5_GRCz10_genomic.fna.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/vertebrate_other/Xenopus_tropicalis/representative/GCF_000004195.3_Xenopus_tropicalis_v9.1/GCF_000004195.3_Xenopus_tropicalis_v9.1_genomic.fna.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/vertebrate_other/Apteryx_australis/representative/GCF_001039765.1_AptMant0/GCF_001039765.1_AptMant0_genomic.fna.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/vertebrate_mammalian/Marmota_marmota/representative/GCF_001458135.1_marMar2.1/GCF_001458135.1_marMar2.1_genomic.fna.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/vertebrate_mammalian/Panthera_tigris/representative/GCF_000464555.1_PanTig1.0/GCF_000464555.1_PanTig1.0_genomic.fna.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/vertebrate_mammalian/Castor_canadensis/representative/GCF_001984765.1_C.can_genome_v1.0/GCF_001984765.1_C.can_genome_v1.0_genomic.fna.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/vertebrate_mammalian/Felis_catus/representative/GCF_000181335.2_Felis_catus_8.0/GCF_000181335.2_Felis_catus_8.0_genomic.fna.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/vertebrate_mammalian/Homo_sapiens/reference/GCF_000001405.36_GRCh38.p10/GCF_000001405.36_GRCh38.p10_genomic.fna.gz

6.1.3 Automated PhylOligo pipeline

PhylOligo was tuned to run in automatic mode using phyloselect.py with the unsupervised
H-DBSCAN. We discarded contigs shorter than 4Kb and performed several runs for each contami-
nated set with varying parameters as described in the next subsection. After the clustering step, we
compute for each cluster the specificity for contaminant, i.e. the fraction of contaminant sequences
in this cluster, the sensitivity i.e. the fraction of the whole contaminant draft genome aggregated
in the cluster, and a hybrid score which is the product of sensitivity and specificity. In the context
of selecting qualitative material to perform the learning step, we target a high specificity with
the broader associated sensitivity, hence, the sensitivity matrix reports the value of the cluster
with the highest specificity (displayed in the specificity matrix). In other terms, the two matrixes,
specificity and sensitivity, display for each cell the relevant value for the same cluster. From all the
clusters, the one with the higher specificity is selected and reported, ties in specificity are resolved
by picking among the ties the cluster highest sensitivity. The Hybrid score matrix presents the
cluster with the best computed value (specificity - sensitivity) which represents a trade-off and the
advantage of minimising the weight of highly-specific-yet-very-small clusters.

6.2 Results
6.2.1 Kmers & patterns

We evaluated the discriminative power of several lengths and patterns for kmers on manually
selected simulated contaminations. Simulated data included a panel of distant and closely related
contaminations. The results are presented on Figure 7.

High specificity values (first graph) are to be interpreted as a result of the H-DBSCAN clus-
tering, favouring homogeneous clusters. For mixes containing very closely related species, (e.g.
Salmonella enterica in Escherichia coli), specificity varies with the kmers, the best values being
obtained with k=111001 and 11111. Values for 111111 are somewhat lower in several cases, which
is linked to the length of simulated contigs, the length of k and the subsequent lower esperance E
(see subsection 7.1)

The sensitivity of a cluster is informative regarding it’s ability to constitute a good learning
material to set up the thresholds. The better the sensitivity, the more intra-genomic variability
taken into account. The sensitivity displayed on Figure 7 (labelled "Fraction’, second graph) is
somewhat coherent for all tested kmers excepted for 111111 for the reasons mentioned above. The
best average values over all the sample contaminations are achieved for kmers 11001 to 11111.
Across all the sample contamination the most robust kmer -higher median- is the kmer 110101
which is able to work well both on close and distant contaminants. It is to be noted that the
historic 1111 is a working compromise, especially when having to deal with short fragments (see
subsection 7.1), but seems to be lagging for close contaminations. In this case, the kmer 11001
stood for a better alternative.

The hybrid score (Figure 7, third graph), being maxed by the lowest value among specificity
- sensitivity, is informative of the quality of the training material. A value one 1 means that the
whole contaminant was clustered into one single cluster, so that the learning step will be performed
on the whole contaminant. High values are achieved for the more distant contaminants. The most
robust kmers across all the simulated samples are 111001 (excepted for close contaminants) and
110101.
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Figure 7: From top to bottom: Best specificity in a cluster, sensitivity in the cluster with highest
specificity (Best sensitivity for ties on specificity), hybrid score.

6.2.2 Species spectrum

We selected 32 genomes across the domains of life with an emphasis on maximising diversity,
spanning varying degrees of complexity, genome content, length and composition to assess the
ability of PhylOligo and PhyloSelect to automatically identify clusters of contaminant sequences.
We computed the statistics presented in subsubsection 6.1.3 for the all-by-all organism matrix

111001

111111

Species_mix
—— Salmonella_enterica in Aspergillus_fumigatus

~— Salmonella_enterica in Escherichia_coli

~— Bacillus_cereus in Castor_canadensis

— Burkholderia_mallei in Homo_sapiens

—— Archaeoglobus_fulgidus in Paramecium_tetraurelia

—— Aspergillus_fumigatus in Panthera_tigris

~— Giardia_intestinalis in Xenopus_tropicalis

—— Salmonella_enterica in Trichomonas_vaginalis

~— Bacillus_cereus in Apteryx_australis

~— Saccharomyces_cerevisiae in Trichomonas_vaginalis
- _pombe in _vaginalis

Species_mix

~— Salmonella_enterica in Aspergillus_fumigatus

~— Salmonella_enterica in Escherichia_coli

~— Bacillus_cereus in Castor_canadensis

—— Burkholderia_mallei in Homo_sapiens

~— Archaeoglobus._fulgidus in Paramecium_tetraurelia
—— Aspergillus_fumigatus in Panthera_tigris

—— Giardia_intestinalis in Xenopus_tropicalis

—— Salmonella_enterica in Trichomonas_vaginalis

~— Bacillus_cereus in Apteryx_australis

~— Saccharomyces_cerevisiae in Trichomonas_vaginalis
— ;_pombe in _vaginalis

Species_mix

~— Salmonella_enterica in Aspergillus_fumigatus

~— Salmonella_enterica in Escherichia_coli

~— Bacillus_cereus in Castor_canadensis

—— Burkholderia_mallei in Homo_sapiens

~— Archaeoglobus_fulgidus in Paramecium_tetraurelia
—— Aspergillus_fumigatus in Panthera_tigris

~— Giardia_intestinalis in Xenopus_tropicalis

~— Salmonella_enterica in Trichomonas_vaginalis

~— Bacillus_cereus in Apteryx_australis

~— Saccharomyces_cerevisiae in Trichomonas_vaginalis

— ;_pombe in _vaginalis

contamination assay. Results are presented on Figure 8, Figure 9 and Figure 10.
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Figure 9: Sensitivity in the cluster with highest specificity (Best sensitivity for ties on specificity)
for pairwise contaminations.
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6.3 Discussion

Overall, the benchmark demonstrate a great ability to discriminate contaminant clusters with
very high specificity and good sensitivity, suited with the requirements for supervised learning and
partitioning. Most contaminant contigs are clustered in almost perfect groups, highly sensitive and
specific.

Some species mixes gave results where contaminant clusters would not contain the main part
of the contaminant sequences. However, in all the cases a very specific cluster was found and
gathered enough material to grant the learning step of ContalLocate.

To assess the boundaries of the method, we designed a conundrum case and selected a mix of
extremely close species: FEscherichia coli and Salmonella enterica. In this case we note that the
choice of the kmer pattern plays a major role in separating the species sequences and constituting
a contaminant-specific material large enough to train Contalocate, but it was however the case
for 2 kmers: 11111 and 111001.

The all-by-all mix of the 32 species simulated contigs revealed similar conclusions, with addi-
tional information regarding the ’vertebrate in vertebrate’ sets, where it appeared more difficult
to segregate species sequences with the automated pipleline and shorter kmers, which is consistent
with the literature (Deschavanne et al., 1999).

7 Discussion and strategies

7.1 Parameters

Several criteria should be taken into account in order to adapt the parameters of PhylOligo to
match a datasets singularity.

Let’s approximate the esperance E of occurrence of each oligonucleotide for a sequence of length
L and a oligonucleotide of length k as:

E=(L—k+1)/4"

with (L — k + 1) being the number of overlapping oligonucleotides of length %k observed in a
sequence of length L and 4* being the number of different oligonucleotides of length k defined from
{A,C,G,T}. See Reinert et al. (2000) for a better model.
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Empirically, values of E above 10 (20 and up is a safer choice) are able to perform efficiently,
to limit the noise from small counts and constrained discretisation of observed frequencies.

Because L and its distribution is a static data, it is recommended to adapt k accordingly.
While longer oligonucleotides allow for a better species-specific profile, sufficiently fine granularity
of the profile sampling must be achieved (sufficient F) therefore limited by L. With the current
expectation of contig length in assemblies, the parameter k in PhylOligo should typically range
between 3 and 5, 4 being a renowned trade-off and a common value in the literature (

9 )

Some empirical analysis of the parameters k and L can be found in ( )

and a thorough analysis of the probabilistic and statistical properties of words is developed in
(2000).

Overall true composition divergence between the targeted and untargeted organisms impacts
the ability to cluster them apart, as the closer these organisms are in term of composition, the
more difficult they are to distinguish. The metric used is also to be considered. More can be found
in this benchmark paper: ( ) where they assessed the impact of various parameters
and conditions including species proximity in the context of detecting horizontal transfers.

7.2 Limits and special cases
Organism proportions and assembly quality

Fragmentation and relative genome size and stoechiometry of dna at sequencing can impact how one
should look for untargeted materials in their data. In Phyloselect.R, we emphasise on two features
of the compositional structure within an assembly: the cumulative size of sequences in a clade, as
defined by the width of a branch on the composition tree and the number of sequences grouping in
a clade thus defining its breadth at the leaves. The respective proportion of contigs within a clade
is displayed by the branch width on the cladogram, naturally making the larger untargeted more
obvious. We designed this feature in order to cope with the possible differential fragmentation
of the organisms: a higher fragmentation of the untargeted genome can make the clade to look
more populated (broader at the leaf) but without impact on the branch width (cumulated contig
size). This way, spotting an untargeted materials is more based on its relative size to the targeted
genome and the distance between them than the fragmentation of their respective genome assembly.
Accordingly, the missed untargeted materials are expected to be the smaller genomes, leading to an
overall minimised error. Regardless of the proportion, in our experience the untargeted sequences
tend to branch out on the most basal part of the cladogram, which is the observed case when the
host genome and the untargeted organism are distant. In the case where a significant genomic part
of only one organism would be missing (i.e. from filtering short contigs), identifying the matching
clade can be less obvious. This should however have a limited impact on the overall filtering given
enough learning material can be sampled (see section 7.2 “Training materials requirements and
impact”).

Training materials requirements and impact

The design of our tool and the learning step of PhyloOligo allow us to keep consistent results
even when a small fraction of the untargeted data is interactively selected. This is possible be-
cause oligonucleotide signatures tends to be conserved along genomes ( ),
thus making untargeted organism sequences clustering in the same clade, even for lowly prevalent
contaminant in a huge dataset. We recommend for this reason that the user trains Contal.ocate
using sequences of cumulated length of minimum 50kb and up (100 kb and up is a safer choice),
the longer the better, even if the contaminant has a much larger whole genome. The first partition
should be quite exhaustive, but thanks to the double threshold system, if the targeted and untar-
geted organisms are far apart enough, most of the untargeted should be detected. It is moreover
possible to perform a second iteration of the partition using the result of the first (untargeted ma-
terial) as learning material. The second run should take into account the most of the intra-genomic
variability of the untargeted genome and improve the results.

Intragenomic compositional variability

Genomes composition exhibits different standards across the realms of life. Some organisms tend
to have a genome homogeneous all along, while some can contain compositional segments or iso-
chores ( , ; , ; , ) with variable degrees
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of divergence. Intra- and inter- chromosomal compositional divergence is observed in several or-
ganisms, especially in complex eukaryotes. In this case, the conditions for a user to be misled by
the representation of the compositional exploratory tree proposed in PhylOligo would require that
the compositional profile of the untargeted materials fall within the variation observed across the
chromosomes, which although possible, remains extraordinarily specific.

In the case of bacteria, compositionally divergent Islands are well known of which some are
thought to be horizontally transferred (see the reference of ( ) for an a web-service
to explore islands detected from tetranucleotide divergence). These Islands should be no problem
at all if they are assembled with the rest of the targeted genome. Otherwise, they might appear
not clustering well with the targeted contigs. Even in this case, one would nonetheless expect the
island to appear with a thin branch because of its relative size to the genome, and not necessarily
with a basal branching since the island’s composition might have started to converge towards
the composition of the host upon accumulation of mutations since its acquisition). Lastly, even
the isolated islands would likely not be detected as contaminant because of the double threshold
system, unless the user did specifically select this clade and assumed it might be a contaminant.

In general, training materials should be selected to best each represent the variability of ei-
ther the targeted and untargeted genomes. (see section 7.2 “Training materials requirements and
impact”)

Chimeric sequences

Assemblies performed with sequencing material mixing reads from both targeted and untargeted
organisms might contain chimeric scaffolds or even contigs. Chimeric sequences are expected to
branch on the compositional tree in-between the targeted and untargeted clades, as a function
of the proportion of material from each. These chimeric sequences should be split after a run of
contalocate.R given that a representative amount of each composition profile was sampled for the
training.

Chimeric sequences can become problematic when their proportion within the assembly and
the spectrum of species-proportion within contigs would constitute a continuum on the tree making
the visualisation and selection of species-specific clades for accurate composition learning difficult
to the user. This possibility can be evaluated a posteriori by asserting that the 2 modes on the
distribution of distances between genome windows and both the prototype profiles of the targeted
and untargeted organisms are well separated (each distribution do not overlap significantly) and
not too broad (see Figure 5). If these criteria are not met, the suggested procedure is to run (a few)
iterations of PhylOligo + Contalocate in order to perform the learning on a ever-enriched and more
species-specific material, by splitting the initial data at the positions suggested by Contalocate
(eff file). An alternative assembly strategy or further investigation on the quality of the sequencing
libraries might also be considered.

Repeated content and transposable elements

Transposable elements (TEs) can bloom in genomes over evolutionary time causing a wide range
of changes. In some species, embedded contraptions of TEs can be formed, easily reaching dozen
of Kb in length and hard to assemble even with the longer PacBio reads, especially for TE families
that underwent a recent expansion upon a so-called TE burst, usually assorted with low to medium
diversity. These long repeated structures often accumulate repetitive sequences, often inactivated
and/or partial copies from one or few TEs families, of which a large part appear to be species-
specific and which can exhibit a oligonucleotide composition different from that of its host genome.
TE content can be dominant in some organisms and become the most fragmented part, yet the
most represented in contigs or scaffold in the assembly, depending on the evolutionary time of the
burst, the presence of passive or active (RIP, etc.) TE ageing, the sequencing material and the
performance of the assembler software. Such repeated contigs, by the multi factorial conditions
and the impact on the assembly structure can easily imped the discovery of untargeted material
for the following reasons:

e The proportion of TE-filled contigs is significant and disrupt the reading of the targeted
sequences along the compositional tree, as the branch width splits into big groups, potentially
not close from the the targeted genome clade (for some TE families). Especially if these contig
tetranucleotide composition is different from the rest of the genome.

e Compositional clades can be over-representing TEs making relevant targeted and untargeted
barely visible in interactive exploration.
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e If an active TE inactivation system is in place, such as RIP, which can impact tetranucleotide
composition.

e For tools using the depth of coverage (PhylOligo doesn’t), if the assembler over-merged the
numerous copies into a very few in the final assembly, the information of coverage is skewed
and can lead to a false identification of untargeted materials.

The suggested approach to this is to comprehend the TE content, by identifying the known
and species specific families in at least the targeted organism and see on which clade(s) of the tree
these would match best using blast for example. Alternatively, we implemented a set of filters in
phyloselect.R (-c float[0-1]) and phylopreprocess.py (-p PERCENTILE) allowing the user to
exclude very close (low-distance) sequences based on the distribution of the distances in the distance
matrix. A percentile of distances can be specified and the contigs exhibiting a mean distance to all
other contigs within under this percentile will be excluded, effectively removing the most repeated
sequences from the dataset. As mentioned in the manual of phylopreprocess.py (subsection 3.1),
it should be considered best practice to remove contigs from the dataset by phylopreprocess.py
best in last resort to achieve computation of the distance matrix and then experiment with various
filter values in phyloselect.R to visualise their impact on the exploration.

Sliding window genome scan

The accuracy of the boundaries defined by Contalocate are limited by the step of the sliding window
system, by default 500bp. This can be adjusted by using a shorter step, dramatically increasing
computational time and rising the possibility to create very short positive regions in an on-then-
off pattern around the true position that we describe as Dentelle- or lacework-like. The size of
the window matters, as contigs shorter than the windows size will be considered homogeneous in
composition by Contalocate as the overlapping scan can’t be informative. Such contigs will hence
not be split if they were chimeric. The length of the sliding window should be chosen according to
the oligonucleotide length as stated in subsection 7.1. As a rule of thumb, recommended window
size for k=3,4,5,6 ranges, respectively, between 1000-1500bp, 4000-5000bp, 15000-20000bp and
50000-100000bp.
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