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1 An Overview of Tn-Seq

This manual is not meant to describe Tn-Seq in full, only how to analyze data generated by Tn-Seq. If you are unclear
on how Tn-Seq itself works, several scientific papers have been published with detailed explanations:

1. Van Opijnen, T., Bodi, K. L., & Camilli, A. (2009). Tn-seq; high-throughput parallel sequencing for fitness and
genetic interaction studies in microorganisms. Nature Methods, 6(10), 767–772. (Pubmed)

2. Van Opijnen, T., & Camilli, A. (2013). Transposon insertion sequencing: a new tool for systems-level analysis
of microorganisms. Nature Reviews. Microbiology, 11(7). (Pubmed)

3. Van Opijnen, T., & Camilli, A. (2012). A fine scale phenotype–genotype virulence map of a bacterial pathogen.
Genome Research, 22(12), 2541–2551. (Pubmed)

4. Van Opijnen, T., Dedrick, S., & Bento, J. (2016). Strain Dependent Genetic Networks for Antibiotic-Sensitivity
in a Bacterial Pathogen with a Large Pan-Genome. PLoS Pathogens, 12(9), e1005869. (Pubmed)

Below in Figure 1. we illustrate an overview of the different types of approaches, the different types of sequencing
products and reads these produce and how this translates into different processing requirements. This manual will help
you to process data from either of these methods and with a little imagination probably any other variation you may
use.

To begin, the tools and steps you must use on your data depend on how your sequencing samples were prepared. We
review sample preparation in Figure 1.

Figure 1. An overview of some of the main steps in the Tn-Seq sample preparation procedure that results in products
that can be sequenced on an Illumina sequencer, the sequencing reads that come of the instrument and the way these can
be processed. A.) Shows the different steps in the Tn-Seq procedure that uses ”the MmeI approach” (see this article).
Important here is that a PCR product is generated that has a length of approximately 150bp (step 3.). This product has
two flanking Illumina sequences (which are essential to enable sequencing; in green), a small piece of the transposon
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sequence (in blue), approximately 20nts of bacterial genomic DNA (gDNA; in red), and the adapter sequence (in
yellow), which also contains a 6nt barcode to enable multiplexing (in pink). Note that in this approach sequencing
starts from the side of the adapter (sequencing primer), reads into the barcode, the gDNA and finally the transposon.
For mapping purposes only the gDNA is needed and thus to enable this we need to trim off the transposon sequence,
the adapter sequence, sort samples by their barcode and finally trim off the barcode. B.) In alternative approaches the
product that gets sequenced has a variable length for instance because the gDNA gets randomly sheared. This means
it is not exactly clear how large the gDNA fragment is that is flanked by the Illumina sequences (step 8.). Therefore
sequencing often starts from the transposon side, reads into the gDNA and depending on the size of the gDNA may
read into the adapter or C-tail (depending on the method used). For mapping purposes only the gDNA is needed and
thus to enable this you often only need to trim off the adapter/C-tail sequence. However, if any more trimming or
sorting is required it will be easy to implement with the tools described here.

After the reads described in Figure 1 are sequenced, they must be computationally analyzed, which is what we describe
in detail in this manual. For clarity the analysis is roughly split into the following four parts (Figure 2):

Part A: Data Preparation

Tn-Seq data typically starts out as a huge file of reads, where each read contains genomic data and some non-genomic
data. Potential non-genomic data includes parts of the transposon, barcodes, adaptors, etc. – anything that isn’t a part
of the original organism’s genome. The data may also include reads from many different libraries and experimental
times and conditions, with each unique combination specified by a barcode.

The Tn-Seq analysis tools calculate fitness by comparing mapped genomic data from a specific library at time 1 (T1)
to mapped genomic data from that same library under an experimental condition at time 2 (T2). This means before
fitness can be calculated, data must be separated by its barcodes, trimmed of all non-genomic portions, and mapped to
the genome. Thus any Tn-Seq analysis has two main parts – prepping the data to be analyzed and analyzing it. The
following data preps have premade workflows:

1. ”MmeI” Data Prep: for preparing data produced by the van Opijnen lab’s standard Tn-Seq protocol (”MmeI ap-
proach”), as originally described here.

2. ”Randomly Sheared” Data Prep: for preparing data produced by a random shearing method, as described in papers
like this one.

And if your data doesn’t fit either of the above parameters, you can use a combination of our custom tools and the
myriad of in-built Galaxy tools to create your own prep work flow. Details on this are further explained both in the
Galaxy section and the Command Line / R section, depending on which approach you take.

Part B: Fitness Analysis

In this part fitness is calculated by making use of the change in number of reads from T1 to T2 and the growth achieved
during the experiment (expansion factor). Each individual fitness for each insertion can finally be aggregated (e.g. by
gene or genetic region) to obtain a single fitness value (e.g. per gene) and standard deviation, enabling further statistical
analyses.

Part C: Exploring Fitness Values

An optional set of analyses and tools that let you compare your fitness data in various useful ways and prepare it for
part D.

Part D: Data Visualization

An optional part which lets you visualize your data.
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Figure 2. An overview of the various steps of Tn-Seq Data Analysis. Data is trimmed of its non-genomic segments
and mapped (A), has its genomic fitness calculated (B), can have fitness compared (C), and is visualized (D) by an
array of useful tools.
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2 The Files You’ll Need

For the data analysis you will need the following (N.B. if you don’t know what the different file formats that are
mentioned below should look like, there are screenshots of different file-types sprinkled throughout the manual and
examples can be found at our GitHub account):

• Sequencing reads in fastq format. These files should end in .fastq and look like this:

• Expansion factors, which are determined experimentally. For in vitro experiments you determine the number of
bacteria you start the experiment with for instance by plating appropriate dilutions of your starting culture (T1)
and counting the number of Colony Forming Units (CFUs). Next, you repeat this for the end of your experiment
(T2) and divide the number of CFUs at T2 over those at T1.

For instance if you end with 100million CFUs/ml at T2 and started with 1million CFUs/ml at T1, your expansion
factor would be 100. For in vivo experiments it may be a bit more complicated, but a reasonable estimation often
works as well, but see here how you can experimentally determine in vivo growth rates and expansion factors.
You should know that the expansion factor is used to normalize the data for each library. So if one library
has grown longer then another your expansion factor will be larger for the latter one. Without normalization
you would have a very difficult time aggregate libraries or compare experiments, however by using expansion
factors and our ”fitness formula” this does become possible. Importantly, by using this approach you calculate
the growth rate for each insertion, thereby making your data independent of the time it was sampled. See for a
more detailed explanation the following papers (1, 2, 3, 4).

• Barcode files, if you used any barcodes to differentiate between e.g. different conditions. You can make this file
in any plain text editor; give each barcode a line which consists of whatever you’d like to name it, a tab, and its
sequence. We strongly recommend making barcode names descriptive so that they include the sample’s library
number, and experimental condition, for easy identification. These files should end in .txt and look like this:
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• Four variable-MmeI-ending files, however, this is only necessary if you’re working with reads created by
cutting your transposon with MmeI, which is the wet lab method used by the van Opijnen lab (for instance see
1) and Figure 1. These are formatted the same way as the barcode files, but instead of containing barcodes they
describe the exact sequence of the end of your transposon. These files are required for using the barcode_splitter
tool ”off label” to split reads by their length of remaining transposon DNA. These files can be found on our
github but you can also easily make them yourself; they should end in .txt, have one line each, and are exactly
as follows:

• Genbank files / fasta genome sequences for each strain you’re analyzing, which can be found on NCBI by
searching for each strain under the Genome section. These files should respectively end in .gbk and .fasta, and
look like these examples:

• Normalization files for each strain, which are .txt files containing all ”normalization genes”, one per line. Nor-
malization genes are those that should have no effect on fitness when disrupted, and you can generate normaliza-
tion files yourself by looking through a strain’s genbank file and recording all transposon genes, pseudogenes,
and degenerate genes - or generally include any gene that you know does not have an effect on fitness. However,
this file is not essential and if it is not available or you don’t want to compile it, it is often OK to run the analysis
without it. These files should end in .txt.
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Finally, if you’d rather run our tools manually on your own computer rather than automatically through Galaxy, you
can skip down to command line / R instructions here. Otherwise, continue on for the Galaxy instructions.
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3 Analysis via Galaxy

If you have never used Galaxy or our tools before, an easy tutorial on how to set Galaxy up can be found here, how to
upload files is described here, and our custom tools for data pre-processing and the traditional Tn-Seq fitness analysis
(caluclate fitness and aggregate fitness) can all be found and installed through the Galaxy toolshed. You can find them
by searching for their names in the toolshed. Tool IDs and the repositories in which they are located are also listed.

• Enhanced Bowtie Mapper (id: bowtie_mapper, repository: enhanced_bowtie_mapper)

• FASTQ Collapser (id: fastq collapser, repository: fastq_collapser)

• Calculate Fitness (id: calc_fitness, repository: calculate_fitness)

• Aggregate (id: aggregate, repository: aggregate_fitness)

• Region Fitness (id: regionFitness, repository: regionfitness)

• Single Fitness (id: singleFitness, repository: singlefitness)

• Data Overview (id: dataOverview, repository: dataoverview)

• Compare Regions (id: compRegions, repository: compregions)

• Compare Genes (id: compGenes, repository: compgenes)

As described in Figure 2, there are four main parts to the analysis. The first, the Data Prep, varies depending on your
type of data. If you prepared your samples with the MmeI Tn-Seq method, you’ll use the MmeI Tn-Seq Prep. If you
prepared your samples with a random shearing method, you’ll use the Randomly Sheared Tn-Seq Prep. If you prepared
your samples some other way, you can follow this generalized data prep protocol for making your own workflow via
Galaxy’s workflow editor:

• Split data by experimental condition barcodes, if any, using the fastx barcode splitter.

• Remove all non-genomic DNA using a tool like the fastq trimmer.

• Filter reads by quality using the fastq quality splitter, if you like.

• Map reads with Bowtie1. We recommend using most standard flags, with the following modifications: use best,
try hard, discard reads mapping to multiple locations, and have the output be in map format (as the calc_fit tool
only takes inputs in this format). The number of allowedmismatches can be fiddled with, but should be relatively
low to prevent false mapping.

After the data prep, everything else is done in the same way. The fitness analysis is done with the Calculate / Aggregate
Fitness Workflow, and our set of optional Comparative Analyses & Other Tools can then be used to sort through your
fitness data. There are also two optional visualization tools, but these are not available in Galaxy because Galaxy
doesn’t support R studio at the moment; if you want to use these you can follow their instructions under the Command
Line / R section after running everything else in Galaxy.
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3.A Data Prep

3.A.i MmeI Tn-Seq Prep

Download links: Pt 1, Pt 2, and Pt 3

This prep assumes a 50nt read, as described in Fig. 1 A), with the first 9 nucleotides from the adapter, the next six from
its barcode, the next 15 to 18 from genomic DNA, and the last 20 to 23 from its transposon. The length of the genomic
DNA turns out to be slightly variable because we found, to our surprise, that MmeI doesn’t always cut exactly 20 bases
downstream of its recognition site; it varies slightly so that the number of transposon nucleotides vary between 20 and
23. This in turn means that the bacterial gDNA sandwiched between the transposon and the adapter sequences also
varies in length, making it impossible to automatically trim each read. Instead we split by the length and sequence of
the trailing transposon sequences that a read can have (TAA, TAAC, TAACA, or TAACAG) and place them in four
different files named according to the length the ending will be trimmed by later (e.g. Trim1, Trim2, Trim3. Trim4).

More specifically: in Part 1 this prep trims the first 9 and last 17 nucleotides, then splits by the potential segments of
transposon DNA (TAA, TAAC, TAACA, or TAACAG) left on its end using the barcode splitter. In part 2 it trims that
remaining transposon DNA, concatenates the files back into one, and splits by experimental barcode with the barcode
splitter. In Part 3 it trims the barcodes from the reads and puts the barcode names in the file names so that they’re
labeled by experimental condition, filters the reads, collapses them, and maps them to the provided genome.

Part 1: trim & split by trailing transposon sequence

• Navigate to the workflow tab, click on the “Standard Tn-Seq Prep Pt.1” workflow, and select “Run”. You should
see a workflow with these steps:

• Select your FASTQ file under “this dataset” in “Step 1: Trim”. The default settings will trim off the first 9 and
the last 17nts.

• Select your four variable-MmeI-ending files in Steps 2 through 5, one per step. Note that these transposon-
endings are entered as ”barcodes” in the workflow even though they’re not real barcodes, because we are using
the barcode splitter tool off label to identify trailing transposon DNA sequences. They can go in whichever order
you wish, except that the ”trim1” barcode (finds sequences ending in TAA) should go under Step 5, which allows
for 0 mismatches, because it is only 3 bp long so even a single mismatch is too loose a constraint.

• Press “Run workflow”, and wait for the workflow to finish running.
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Part 2: trim trailing transposon sequence, concatenate files together, and split by barcode

• Navigate to the workflow tab, click on the “Standard Tn-Seq Prep Pt.2” workflow, and select “Run”. You should
see a workflow with these steps:

• In this workflow each of four output files from the last workflow is entered separately, in order to trim off the
right number of nucleotides. It is thus essential you select the correct file for each ”Trim” step as follows:

• Select your trim4 variable-MmeI-ending split file under “this dataset” for “Step 1: Trim” (the step with “-4”
under “Remove everything from this position to the end”).

• Select your trim3 variable-MmeI-ending split file under “this dataset” for “Step 2: Trim” (the step with “-3”
under “Remove everything from this position to the end”).

• Select your trim2 variable-MmeI-ending split file under “this dataset” for “Step 3: Trim” (the step with “-1”
under “Remove everything from this position to the end”).

• Select your trim1 variable-MmeI-ending split file under “this dataset” for “Step 4: Trim” (the step with “-2”
under “Remove everything from this position to the end”).

• Next, select your barcode file under “Barcodes to use” in “Step 6: Barcode Splitter”. These should be the
barcodes identifying which experimental condition each read is from.

• Then press “Run workflow”, and wait for the workflow to finish running.

• Finally, refresh your history and make a list out of the resulting files to send into the next workflow, via the
“operations on multiple datasets” button. The button looks like this and is in Galaxy’s history sidebar:
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Part 3: trim barcode, filter reads by quality, collapse reads, and map them

• Navigate to the workflow tab, click on the “Standard Tn-Seq Prep Pt.3” workflow, and select “Run”. You should
see a workflow with these steps:

• Under Step 1, input the dataset you made out of the last workflow’s output.

• Under Step 2, reads are trimmed by our standard barcode length, which is 6 nucleotides. If your barcode length
is different, change the amount trimmed to that under ”Trim from the beginning up to this position”.

• Under Step 3, reads are filtered by quality with a relatively low quality filter of 8, which is fine here because the
mapping step below is very stringent. However, you can raise this if you like, under ”Minimum quality score”.

• Under step 4, identical reads are first collapsed into a ’virtual’ single read. This collapsing of reads speeds up
the mapping (i.e. it doesn’t have to map the same read over and over), however, it is important to note that the
quantitative information of each collapsed read is maintained. This means we still know how many reads are
collapsed into one, which is essential information in order to maintain the ability to later obtain a quantitative
read-out in the shape of fitness or if your prefer a simple ratio. You don’t need to change anything here, we just
provide this short explanation so you understand what’s happening here.

• Under “Step 5: Map with Bowtie for Illumina”, select your fasta genome under “Select the reference genome”.
Make sure this file is in ”.fa” format, and do not use the ”.gbk” file here.

• Under ”Bowtie settings to use”, the rest of the options are currently set to how the van Opijnen Lab normally
runs this mapping step. But if you have good reason to change mapping settings, do that here. Right now it will
allow for one mismatch, only map a read if it can be uniquely placed at one location in the genome, and will ”try
hard” to find the best mapping locations. Especially the number of allowed mismatches can be fiddled with, but
should be relatively low to prevent false-positives with respect to mapping.

• Press “Run workflow”, and wait for the workflow to finish running.
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3.A.ii Randomly Sheared Tn-Seq Prep

Download link

As described in Fig. 1 B, another method to prepare your Tn-Seq sample involves DNA shearing or fragmentation,
followed by C-tailing or A-tailing and ligating on an adapter. This prep is designed for that method, and assumes a
50nt read of genomic DNA followed by an adapter of repeating C tail of variable length due to the randomness of
the shearing. With Cutadapt the specific sequence can be removed, followed by read grooming, filtering for quality,
collapsing, and mapping. If your reads also have barcodes, you should use the barcode splitter tool to separate them
by barcode first.

• First make a list out of all the sequence files you want to analyze, via the “operations on multiple datasets” button.
The button looks like this and is in Galaxy’s history sidebar:

• Next navigate to the workflow tab, click on the “Randomly Sheared Data Prep” workflow, and select “Run”.
You should see a workflow with these steps:

• Enter the list of your files under “Step 1: Input dataset collection”

• If you used an A-tail method, click ”Step2: Cutadapt” to expand it and replace the string of ”C”s with the adapter
sequence. Otherwise if you used a C-tail, leave it as it is.

• Click “Step 6: Map with Bowtie for Illumina” to expand it, and select your fasta genome at “Select the reference
genome”. Make sure this file is in ”.fa” format, and do not use the ”.gbk” file here.
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• Under ”Bowtie settings to use”, the options are currently set to how the van Opijnen Lab normally runs this
mapping step. But if you have good reason to change mapping settings, do that here. Right now it will allow for
one mismatch, only map a read if it can be uniquely placed at one location in the genome, and ”try hard” to find
the best mapping locations. The number of allowed mismatches particularly can be fiddled with, but should be
relatively low to prevent false positives.

• Press “Run workflow”, and wait for the workflow to finish running.
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3.B Fitness Analysis

3.B.i Calculate_Fitness and Aggregate_Fitness

Download link

This workflow first calculates fitness for each insertion in the genome, then aggregates them by gene (or specified
genetic region). If you have different libraries or replicates youwill want to do this for each library. You can then use the
aggregate tool on multiple Calculate Fitness output files from the same condition (but different libraries or replicates) to
make ’super’ aggregate files. In a super aggregate file fitness is calculated for each gene by averaging over all insertions
across multiple libraries. This latter option thus not only captures variation that arises from multiple insertions in a
specific region but also captures the variation that may arise from performing multiple replicate experiments.

Note that this workflow cannot be run in batch, because each run requires a unique ”expansion factor”, so you have to
repeat the below steps for each time 2 (T2) measurement you performed.

• Navigate to the workflow tab, click on the “Calculate / Aggregate Fitness” workflow, and select “Run”. You
should see a workflow with these steps:

• In “Step 1: Calculate Fitness” select your map file from T1 and map file from T2 (these are bowtie mapfiles
containing the mapped reads from T1 and T2 respectively), the GenBank reference genome (.gbk file), and
potentially the gene normalization file.

• If you expect to have reads from both sides flanking your transposon choose ”both”.

• Click the edit symbol under “Expansion Factor” and edit the value to match the expansion factor.

• Cutoff 1. This cutoff works on all insertions and ignores insertions with a read count less then the number set.
Importantly, insertions with a low number of reads can skew the data.

• Cutoff 2. This cutoff only works on the normalization genes when calculating a normalization factor, and ignores
insertions with a read count less then the number set. This is also to avoid skewing your data.

• Exclude first %, will exclude insertions that are located in the 5’ part of a genetic region (e.g. gene). For instance
the value ”0.1” will ignore any insertion located in the first 10% of a gene.

• Exclude last %, will exclude insertions that are located in the 3’ part of a genetic region (e.g. gene). For instance
the value ”0.1” will ignore any insertion located in the last 10% of a gene.

• Maximum weight of a gene in normalization calculations. Insertions with a low number of reads can skew the
data (i.e. small changes from T1 to T2 can have disproportionate effects), therefore we give insertions with more
reads a higher weight, however we can set a limit to what we consider a number of reads above which we find
anything trustworthy. The default level is set to 75, which means that any insertion with more then 75 reads is as
trustworthy as an insertion can get, lower then 75 the trustworthiness slowly declines. If your data contains many
reads this value will have little effect on the outcome, however if you have a low number of reads this number
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can become more important and have a higher impact. Note that this weight only affects the trustworthiness of
the normalization genes, below we’ll set the weight for all the other insertions.

• Multiply fitness scores by a certain value. This enables you to multiply each fitness value with a specific value.
This could be useful if you are building a Genetic Interaction Map, and your query gene has a fitness lower then
1. For more info about this for instance see the following papers (1, 2, 3, 4).

• Set reads manually. We don’t recommend using this function. It’s more a remnant then anything else.

This step in the workflow will create three output files: 1. A .csv file containing the fitness values calculated
for each insertion (position). 2. A .txt file containing the bottleneck value. 3. A .wig file that can be used for
visualization of each insertion and its corresponding fitness (see the visualization section below).

The bottleneck value is very important under certain circumstances, because it can estimate the bottleneck
(random loss of insertions) your experiment may have gone through and correct your fitness calculations by
removing its influence. In in vitro experiments a bottleneck may not, and probably should not, occur. However,
in in vivo experiments a bottleneck does often occur. This means that you may start with a certain amount of
insertion mutants but randomly lose a certain percentage due to reasons that have nothing to do with low fitness.

To calculate the bottleneck we simply add up the number of insertions we started with (T1), and the number
of insertions we end with (i.e. insertions that we have reads for at T2). Normally we can assume that most
insertions will have no effect on fitness and therefore by dividing the number of insertions at T2 over T1 tells
us the percentage of insertions we are left with, and thus also how much we lost (also see next paragraph for
explanation of the assumption). For instance if we start with 10,000 insertions and we end up with 5,000, we lost
50% of our insertions during the experiment. To correct for this we remove 50% of the insertions with fitness
0 (those insertions that disappeared at T2) from each specific genetic region (e.g. gene). For instance if a gene
had 10 insertions at T1, and at T2 five insertions have reads and thus a fitness >0, and 5 have no reads and thus
have a fitness of 0, we remove 50% of the insertions but only if their fitness is 0, which means in this case we
remove the five insertions with a fitness of 0. Another example, if a gene had 10 insertions at T1, and at T2
three insertions have reads and thus a fitness >0, and seven have no insertions and thus have a fitness of 0, we
remove 50% of the insertions but only if they are 0, which means in this case we still remove five insertions with
a fitness of 0. Therefore the average fitness is made up of five fitness values, of which three have a fitness >0
and 2 have a fitness of 0. For more on this read these papers (2, 3,).

N.B.We often calculate the bottleneck in two ways. The first way takes into account all insertions in the popula-
tion (as described above), however if you have listed a set of normalization genes the bottleneck is also calculated
by only considering the insertions in these genes. As described, the normalization genes are considered to never
have an effect on fitness. Insertions in these genes should thus be neutral. And thus if these insertions disappear
from your experiment it is indicative of a bottleneck. By dividing the insertions in the normalization genes from
T2 over T1 will therefore also tell you the size of the bottleneck. It turns out that in a vast majority of the exper-
iments the van Opijnen Lab has performed that the same bottleneck size is obtained when it is calculated over
the complete population of insertions or only over the insertions in the normalization genes, which is because in
general most insertions will not have an effect on fitness.

• In “Step 2: Aggregate”, Select your GenBank reference genome under the corresponding header.

• If you’d like to mark certain genes (like say, normalization genes, for reference) choose “Yes” under “Mark
certain genes?”. Then choose your normalization genes file or a similarly formatted file as input. The only thing
that this will do is create a column in your output file and list an ”M” if a gene was used for normalization. If
you don’t know what we mean with normalization see page 2 for an explanation.

• If you’d like to use a weighted algorithm, which we recommend, leave that option on ”yes”. The weighted fitness
algorithm gives slightly more importance to insertions composed of many reads. The number is specified below
by the ”Weight ceiling”.
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• If you’d like to change the weight ceiling, you can; the default is a value that generally works well. Insertions
with a low number of reads can skew the data (i.e. small changes fromT1 to T2 can have disproportionate effects),
therefore we give insertions with more reads a higher weight, however we can set a limit to what we consider
a number of reads above which we find anything trustworthy. The default level is set to 50, which means that
any insertion with more then 50 reads is as trustworthy as an insertion can get, lower then 50 the trustworthiness
slowly declines. If your data contains many reads this value will have little effect on the outcome, however if
you have a low number of reads this number can become more important and have a higher impact. Note that
the weight above affects the trustworthiness of the normalization genes, while here we set the weight for all the
other insertions.

• If you’d like to change cutoff 3, you can; it is 10 by default and ignores any insertion that has less then the
specified number of reads.

• Press “Run workflow”, and wait for the workflow to finish running.

• Once this is done and if you have data from different libraries or replicates under the same condition, you can
aggregate that data all together (recommended). Do this by navigating to the ”Aggregate” tool and using the
option to ”Insert additional CSV fitness files”. By selecting ”Yes” under ”Enter custom blank count?” you can
engage the bottleneck correction factor, and enter a custom bottleneck value, which you can simply determine
by averaging the bottleneck values of each fitness file you’re using, which can be found in their corresponding
calc fitness txt file output. The calculated bottleneck correction factor can then be entered under ”blank count”.
Then enter all the fitness files from the same condition, and press “Execute”!
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OPTIONAL ANALYSES: FITNESS AND COMPARATIVE

The following fitness analyses (singleFitness and regionFitness) as well as all of the comparative analyses in the fol-
lowing sections are considered optional analyses, beyond the traditional Tn-Seq analysis pipeline, which includes
pre-processing steps, calculating fitness for mutants in libraries, and calculating aggregate fitness for genes across
multiple libraries.

Optional fitness analysis tools begin here. They require several Perl modules, all of which are available in the
public Galaxy toolshed and should automatically install whenmagenta tools are installed from the public Galaxy
toolshed.

3.B.ii SingleFitness: single fitness per insertion

The SingleFitness tool aggregates fitness information across multiple libraries for one weighted fitness value per inser-
tion. The method for calculating the weighted fitness score associated with a single insertion is similar to the weighted
fitness score calculated for a gene in aggregate_fitness. In the end, a single fitness value is associated with a single
mutation in the genome of the organism. This single value could represent multiple single insertion mutants with a
library and across libraries.

Required input files:

• CSV Fitness Files outputted by Calc_fitness

Click here for the command-line implementation of SingleFitness and for more information on option inputs and
outputs.

Galaxy Interface for SingleFitness tool:

3.B.iii RegionFitness: non-gene-centric aggregate fitness

Specifically for transposons that insert at TA dinucleotide sites

The RegionFitness tool is a non-gene-centric method for discovering regions important for organismal fitness. The
method for calculating the aggregate fitness value of a gene relies on the genomic start and end coordinates of the region,
which is retrievable from the organism’s Genbank record. However, not all official genome records are complete or
well annotated beyond genes. Therefore, to enable discovery of regions that may contain non-coding RNA’s or other
genetic elements that have a significant effect on fitness; this tool uses a sliding window approach to mine Tn-Seq data
in a non-gene-centric manner.

Determining window size and step The entire genome and ordered Tn-Seq data is scanned by performing assessments
of regions at a set size (base pair length of window) and step (base pairs between the start of each window). Based on
the genome used, typically a window size between 250 bp and 500 bp is small enough to pick up intergenic regions
or gene domains but large enough to contain enough TA sites and insertions. However, this can vary depending on
organism and insertion density. The DataOverview tool described below can help determine these factors.

18



Method In each regional profile, aggregate fitness for insertions and the insertion representation in that region is
calculated. To assess insertion representation, we follow the method used by Zhang et. al. For a given region, with x
insertions and n TA sites, 10,000 random sets of n TA sites are selected and the average of insertions over TA sites is
calculated for each. The 10,000 resulting means create a null distribution. The p-value can be derived for the original
region of interest by ranking it on the distribution for x/n. A statistically underrepresented number of insertions for
a region will be significant if the p-value is below the critical value. Gene annotations are also recorded if they are
contained in the region.

Galaxy Usage The Region Fitness tool requires the same inputs as AggregateFitness, with additional options for
specifying the window size and step for the sliding window approach, or simply a tab-delimited file with start and end
coordinates for custom regions. The input csv files will come from the output of CalculateFitness. All of these options
and inputs are described in the Galaxy tool interface and in the command-line usage instructions.

Required input files:

• CSV Fitness File(s) output from Calc_fitness

• Fasta file of the organism’s genome sequence

• Genbank file for the organism’s annotated genome

For more information on required and optional inputs for this tool, see the documentation for the RegionFitness
command-line implementation or view the help section in the RegionFitness Galaxy tool.

Galaxy Interface for RegionFitness tool:
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3.C Data Mining and Comparative Analyses

Table 1. A summary of data mining and comparative analysis tools in MAGenTA.

Tool Function Research Questions Addressed

Data Overview Produces a summary file of information about
TA sites and insertions in the genome,
libraries, and gene/intergenic regions.
Requires calc_fitness output files as inputs.

What is the TA and insertion distribution in
the genome for genes and non-gene regions?

Compare
Genes

Creates a gene comparison file with a
significance test for the difference in fitness
for each gene for two Tn-Seq experiments of
the same ref genome. Requires
aggregate_fitness output

How can we compare genes for a given
strain in two different conditions? Which
genes are conditionally important?

Compare
Strains

Creates a gene comparison file with significant
stats for two Tn-Seq experiments of different
strains (genomes). Requires a file of
homologous genes aggregate_fitness output
files as inputs.

How can we compare homologous genes for
two strains? Which genes have a
strain-dependent importance?

Compare
Regions

Creates a comparison file with significance
statistics for two Tn-Seq experiments of
different strains (genomes). Requires
RegionFitness output files as input.

How can we compare intergenic or gene
domain regions for the same strain in two
conditions?

3.C.i DataOverview: dataset and genome summary

Specifically for transposons that insert at TA dinucleotide sites

Prior to Tn-seq data analysis it is important to understand the genome-wide scale and context of the data. Large differ-
ences in sequencing coverage, insertion representation, and GC content between genomes can affect the robustness of
the comparative analyses performed by MAGenTA. Tn-Seq is also generally performed with replicate libraries, where
differences (if they exist) would be important to know. The DataOverview tool produces a summary of genome-wide
insertion representation and inherent genome characteristics shown in Table 2. The input data are queried for TA sites
and insertions with respect to the genome, annotated genes from the Genbank record, and intergenic regions.

Required input files:

• CSV Fitness File(s) output from Calc_fitness

• Fasta file of the organism’s genome sequence

• Genbank file for the organism’s annotated genome

For more information on required and optional inputs for this tool, see the documentation for the DataOverview
command-line implementation or view the help section in the DataOverview Galaxy tool.

Galaxy Interface for DataOverview tool:
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Table 2. The DataOverview tool outputs genome and Tn-Seq related summary information. The summary in-
cludes genome and gene-wide insertion representation for each library, including howmany insertions would be filtered
out given a cutoff requirement for the number of reads representing each insertion.

Strain1 Strain2

Genbank Record NC_003028 NC_0012469
Genome Size (bp) 2160842 2112148
GC content 39.70% 39.77%
Number of Genes 2390 2204
Total number of TA sites 141459 137693
Genome coverage by TA sites 6.55% 6.52%
Largest gap between TA sites (bp) 252 206
Genome coverage by insertions 1.33% 3.68%
TA site coverage by insertions 32.80% 73.12%
TA site coverage by filtered insertions* 20.28% 56.45%
Largest gap between insertions (bp) 14996 6708
Average gene length 803 834
Minimum gene length 30 65
Max gene length 14330 6701
Average insertions in a gene 9.84 28.4
Minimum insertions in a gene 0 0
Maximum insertions in a gene 237 420
Genes with insertions 65% 77%
Number of genes without insertions 564 257
Insertions outside of annotated genes 15773 43266
Insertions in intergenic regions** 54.98% 55.66%

*Filtered insertions are ones that have and average of normalized reads at both time points amounting to more than 15.
**Regions that are not annotated genes in the Genbank record for the genome

3.C.ii CompareGenes: compare genes for identical strains

Comparative gene analysis for two experiments of the same organism (i.e. One strain tested in Glucose and in Glu-
cose+Antibiotic) involves merging two output files from the fitness script, then performing a t-test and calculating
average fitness difference for each gene. This process can be performed in a spreadsheet application, such as Excel.
However, CompareGenes can perform it in less than three seconds for 2000 genes.

Required input files:
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• Two (2) CSV Aggregate (Gene) Fitness files outputted by Aggregate_fitness

Labels for each file can be specified to be appended to the respective columns in the merged output file and to name
the resulting output file. Click here for the command-line implementation of CompareGenes.

Galaxy Interface for CompareGenes tool:

3.C.iii CompareStrain: compare genes for different strains

The CompareStrain tool, a variation of CompareGenes, is specifically for gene comparisons across two experiments
from different organisms/strains. Since gene identification numbers will be different at the organism/strain level, a file
containing the homologous genes is required. The same output as CompareGenes will be produced.

Required input files:

• Two (2) Aggregate (Gene) Fitness files (CSV) output from Aggregate_fitness

• A tab-delimited text (.txt) file containing the corresponding gene homologs for the two strains. One homology
set per line, each gene ID separated by a tab. So that one column of the file will have all of the gene IDs for one
strain and the second column will contain the corresponding homologs for those genes for the other strain.

Click here for the command-line implementation of CompareStrains.

Galaxy Interface for CompareStrains tool:

3.C.iv CompareRegions: compare any region for identical strains

CompareRegions takes results from the RegionFitness tool and performs a similar comparative analysis as done on
genes by CompareGenes and CompareStrains. Since genomic start and end coordinates define windows (or regions),
only comparisons between datasets from the same organism (same genome) make sense.
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Required input files:

• Two (2) files output from RegionFitness

Labels for each file can be specified to be appended to the respective columns in the merged output file and to name
the resulting output file. Click here for the command-line implementation of CompareRegions.

Galaxy Interface for CompareRegions tool:
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4 Analysis via Command Line / R

If you know a bit of coding, and would rather run our tools through the command line, you can do so as follows:

4.A Data Prep

• Download and install the fastx_toolkit and bowtie1. For more on the usage of the fastx_toolkit see its manual,
and for more on Bowtie see its manual (Note that we recommend using Bowtie 1).

• Split data by experimental condition (i.e. barcodes) with fastx barcode splitter and remove all non-genomic DNA
(e.g. barcodes) with fastx trimmer. These steps may be done in whatever order best suits your data.

• Filter reads by quality (e.g. a minimum quality of 8) using fastq quality filter.

• Collapse reads using fastq collapser.

• Map reads usingBowtie 1. We recommend using the following flags: -n 1 (maximum1mismatch) –best (whether
or not to make Bowtie guarantee that reported singleton alignments are ’best’ in terms of stratum and quality) -y
(try hard) and -m 1 (supress all alignments if more than one can be found)

4.B Fitness Analysis

4.B.i Downloading command-line tools

Command-line tools for MAGenTA are open source and available through GitHub

git clone https://github.com/vanOpijnenLab/magenta.git

Or download the MAGenTA project repository

4.B.ii Calc_Fitness

Usage

python calc_fitness.py <options> -t1 <t1.map> -t2 <t2.map> -out <outfile.csv>

For every pair of T1/T2 reads, calculate fitness for each insertion location using calc_fitness.py. Fitness is calculated
as described in the 2009 Tn-Seq paper under the ”Fitness Calculations” section.

Required Inputs

Flag Description

ref The name of the reference genome file, in GenBank format
t1 The name of the bowtie mapfile from time point 1
t2 The name of the bowtie mapfile from time point 2
out Name of a file to enter the .csv output

Optional Inputs

Flag Description

expansion Expansion factor (default: 250)
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Flag Description

reads1 The number of reads to be used to calculate the correction factor for time 0 (default counted from
bowtie output)

reads2 The number of reads to be used to calculate the correction factor for time 1 (default counted from
bowtie output)

cutoff1 Discard any positions where the average of counted transcripts at time 0 and time 1 is below this
number (default 0)

cutoff2 Discard any positions within the normalization genes where the average of counted transcripts at
time 0 and time 1 is below this number (default 10)

strand Use only the specified strand ( + or -) when counting transcripts (default: both)
normalize A file that contains a list of genes that should have a fitness of 1 - used for normalization and

bottleneck calculations.
b Calculate bottleneck value (the percentage of insertions randomly lost) from all genes (rather than

only normalization genes). Bottleneck values are used for normalization of the data in
Aggregate_Fitness. If you don’t input a file of normalization genes make sure to chose this flag.

maxweight The maximum weight a gene can have in normalization calculations
multiply Multiply all fitness scores by a certain value (e.g., the fitness of a knockout).
ef Exclude insertions that occur in the first N amount (%) of gene.
el Exclude insertions in the last N amount (%) of the gene.
wig Create a wiggle file for viewing in a genome browser. Provide a filename.
uncol Use if reads were uncollapsed when mapped.

4.B.iii Aggregate_Fitness

Usage

This takes in csv file(s) outputted by Calculate_Fitness and containing individual insertion fitnesses, and aggregates the
fitness by gene. As described in the aggregate.py usage, you can input multiple insertion location fitness files, which
will generate a ”super aggregate” file that incorporates the data from all your libraries and or replicates. This is highly
recommended.

python aggregate.py -out <output.csv> <options> <fitness1.csv fitness2.csv fitness3.csv ...>

Required Inputs

Flag Description

out Name of a file to enter the .csv output
calcfitness csv output files without a flag

Optional Inputs

Flag Description

c Check for missing genes in the data set - provide a reference genome in Genbank format. Missing
genes will be sent to stdout

m Place a mark in an extra column for this set of genes. Provide a file with a list of genes seperated by
newlines

x Cutoff: Don’t include fitness scores with average counts (c1+c2)/2 < x (default: 10)
b Bottleneck value: The percentage of insertions randomly lost, calculated upstream by

Calculate_Fitness, which will be discounted for all genes (for example, 20% would be entered as 0.20.
If you are inputting multiple fitness files then average their bottleneck values and input that. Default
0.0)
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Flag Description

f An in-between file carrying information on the blank count found from calc_fitness, one of two ways
to pass a blank count to this script

w Use weighted algorithm in calculations
l Weight ceiling: maximum value to use as a weight (default: 999,999)

OPTIONAL ANALYSES: FITNESS AND COMPARATIVE

The following fitness analyses (singleFitness and regionFitness) as well as all of the comparative analyses in the fol-
lowing sections are considered optional analyses, beyond the traditional Tn-Seq analysis pipeline, which includes
pre-processing steps, calculating fitness for mutants in libraries, and calculating aggregate fitness for genes across
multiple libraries. The following tools require the following Perl modules to be installed:

• Bio::SeqIO

• Getopt::Long

• Data::Dumper

• Statistics::Distributions

• Data::Random

• List::BinarySearch

To install the above modules, follow the instructions discussed in detail here and summarized below :

1. Enter the computer’s Terminal emulator

2. Install cpanm by typing in this command: cpan App::cpanminus

3. Install each module above by typing in this command cpanm Module::Name, substituting Module::Name for
the module listed above (i.e. Bio::SeqIO)

4.B.iv SingleFitness

The SingleFitness tool aggregates fitness information across multiple libraries for one weighted fitness value per inser-
tion. The method for calculating the weighted fitness score associated with a single insertion is similar to the weighted
fitness score calculated for a gene in aggregate_fitness. This single fitness value represents a single insertion location
based on fitness values at that location from multiple libraries or replicates.

Usage

perl singleFitness.pl <options> <inputs or -d directory>

Required Inputs

Flag Description

d Directory containing all input files OR individual input filenames(s) in the command line (without a
flag) from Calc_fitness output

Optional Inputs

Flag Description

h Print usage and exits program
o Filename for output. Default: compFile1File2.csv
l Labels for input files. Two strings, comma separated (i.e. -l expt1,expt2). Order should match file

order. Default: input filenames.
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Flag Description

v String value for output: ‘fit’ for fitness OR ‘count’ for count print. Default: “fit” for fitness
n Name of the reference genome, to be included in the wig header. Default: genome
o Output file for comparison data. Default: singleVal.csv

4.B.v RegionFitness

Specifically for transposons that insert at TA dinucleotide sites

Usage

perl regionFitness.pl <options> <inputs or -d directory>

The RegionFitness tool is a non-gene-centric method for discovering regions important for organismal fitness. The
method for calculating the aggregate fitness value of a gene relies on the genomic start and end coordinates of the region,
which is retrievable from the organism’s Genbank record. However, not all official genome records are complete or
well annotated beyond genes. Therefore, to enable discovery of regions that may contain non-coding RNA’s or other
genetic elements that have a significant effect on fitness; this tool uses a sliding window approach to mine Tn-Seq data
in a non-gene-centric manner.

Determining window size and step The entire genome and ordered Tn-Seq data is scanned by performing assessments
of regions at a set size (base pair length of window) and step (base pairs between the start of each window). Based on
the genome used, typically a window size between 250 bp and 500 bp is small enough to pick up intergenic regions
or gene domains but large enough to contain enough TA sites and insertions. However, this can vary depending on
organism and insertion density. The DataOverview tool described below can help determine these factors.

Method In each regional profile, aggregate fitness for insertions and the insertion representation in that region is
calculated. To assess insertion representation, we follow the method used by Zhang et. al. For a given region, with x
insertions and n TA sites, 10,000 random sets of n TA sites are selected and the average of insertions over TA sites is
calculated for each. The 10,000 resulting means create a null distribution. The p-value can be derived for the original
region of interest by ranking it on the distribution for x/n. A statistically underrepresented number of insertions for
a region will be significant if the p-value is below the critical value. Gene annotations are also recorded if they are
contained in the region.

Required Inputs

Flag Description

d Directory containing all input files OR in the command line without a flag input filename(s) (output files
from Calc_fitness)

f Filename for genome sequence in Fasta format
r Filename for genome annotation in Genbank format

Optional Inputs

Flag Description

h Print usage
size The size of the sliding window. Default=50
step The window spacing. Default=10
x Exclude values with avg. counts less than x where (c1+c2)/2<x. Default=15
log Send all output to a log file instead of the terminal
max Expected max number of TA sites in a window. Used for creating null distribution library. Default=100
o Specify name of new directory for all output files
w Do weighted average for fitness per insertion
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Flag Description

wc Integer value for weight ceiling. Default=50

4.C Data Mining and Comparative Analyses

4.C.i DataOverview

Specifically for transposons that insert at TA dinucleotide sites

Usage

perl dataOverview.pl <otpions> <inputs or -d directory>

Prior to Tn-seq data analysis it is important to understand the genome-wide scale and context of the data. Large differ-
ences in sequencing coverage, insertion representation, and GC content between genomes can affect the robustness of
the comparative analyses performed by MAGenTA. Tn-Seq is also generally performed with replicate libraries, where
differences (if they exist) would be important to know. The DataOverview tool produces a summary of genome-wide
insertion representation and inherent genome characteristics shown in Table 2. The input data are queried for TA sites
and insertions with respect to the genome, open reading frames denoted by start and stop codons, annotated genes from
the Genbank record, and intergenic regions

Strain1 Strain2

Genbank Record NC_003028 NC_0012469
Genome Size (bp) 2160842 2112148
GC content 39.70% 39.77%
Number of Genes 2390 2204
Total number of TA sites 141459 137693
Genome coverage by TA sites 6.55% 6.52%
Largest gap between TA sites (bp) 252 206
Genome coverage by insertions 1.33% 3.68%
TA site coverage by insertions 32.80% 73.12%
TA site coverage by filtered insertions* 20.28% 56.45%
Largest gap between insertions (bp) 14996 6708
Average gene length 803 834
Minimum gene length 30 65
Max gene length 14330 6701
Average insertions in a gene 9.84 28.4
Minimum insertions in a gene 0 0
Maximum insertions in a gene 237 420
Genes with insertions 65% 77%
Number of genes without insertions 564 257
Insertions outside of annotated genes 15773 43266
Insertions in intergenic regions** 54.98% 55.66%

*Filtered insertions are ones that have and average of normalized reads at both time points amounting to more than 15.
**Regions that are not annotated genes in the Genbank record for the genome

Required Inputs

Flag Description

d Directory containing all input files (output files from calcFitness tool) OR In the command line (without
a flag) input filename(s)
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Flag Description

f Filename for genome sequence in fasta format
r Filename for genome annotation in GenBank format

Optional Inputs

Flag Description

h Print usage
o Filename for output. Default: standard output
c Cutoff average(c1+c2)>c. Default: 15

4.C.ii CompareGenes

Comparative gene analysis for two experiments of the same organism (i.e. One strain tested in Glucose and in Glu-
cose+Antibiotic) involves merging two output files from the fitness script, then performing a t-test and calculating the
average fitness difference for each gene. This process can be performed in a spreadsheet application, such as Excel.
However, GeneCompare can perform it in less than three seconds for 2000 genes.

Usage

perl compGenes.pl <options> <inputs or -d directory>

Required Inputs

Flag Description

d Directory containing all input files (output files from calcFitness tool) OR In the command line (without
a flag) input filename(s)

c Tab delimited file with homologous genes, one gene homolog pair per line

Optional Inputs

Flag Description

h Print usage
o Filename for output. Default: compFile1File2.csv
l Labels for input files. Two strings, comma separated (i.e. -l expt1,expt2). Order should match file

order. Default: input filenames.

4.C.iii CompareStrains

The StrainCompare tool, a variation of GeneCompare, is specifically for gene comparisons across two experiments
from different organisms/strains. Since gene identification numbers will be different at the organism/strain level, a
file containing the homologous genes is required. The same output as GeneCompare will be produced and can be
used in downstream analysis tools. An automated method for extracting homologous genes will be a useful future
improvement to this tool.

Usage

perl compStrains.pl <options> <inputs or -d directory>

Required Inputs
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Flag Description

d Directory containing all input files (output files from calcFitness tool) OR In the command line (without
a flag) input filename(s)

c Tab delimited file with homologous genes, one gene homolog pair per line

Optional Inputs

Flag Description

h Print usage
o Filename for output. Default: compFile1File2.csv
l Labels for input files. Two strings, comma separated (i.e. -l expt1,expt2). Order should match file

order. Default: input filenames.

4.C.iv CompareRegions

CompareRegions takes results from the RegionFitness tool and performs a similar comparative analysis as done on
genes by CompareGenes and CompareStrains. Since genomic start and end coordinates define windows (or regions),
only comparisons between datasets from the same organism (same genome) make sense.

Usage

perl compRegions.pl <options> <inputs or -d directory>

Required Inputs

Flag Description

d Directory containing all input files (output files from calcFitness tool) OR In the command line (without
a flag) input filename(s)

Optional Inputs

Flag Description

h Print usage
l Labels for input files. Two strings, comma separated (i.e. -l expt1,expt2). Order should match file

order. Default: input filenames.
o Filename for output. Default: label1label2.csv

4.D Data Visualization in R

Fitness information is a central piece of data in Tn-Seq analysis. This data makes most sense in the context of genome-
wide information including annotations (i.e. genes and non-coding RNAs), base information to identify possible TA
insertion sites, and genome coordinates. Therefore, multi-track visualization methods are preferred for Tn-Seq data.
MAGenTA output files can be formatted for multi-track visualization in GViz, an R package available through Biocon-
ductor. A simpler option, single-track visualization is also possible in R. Both are demonstrated below.

Required input files for multi-track visualization in Gviz:

• 1-2 Output files from SingleFitness ( galaxy or command-line)

• Fasta file of the organism’s genome sequence
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• Genbank file for the organism’s annotated genome

Required input files for single track visualization in R:

• 1 Output files from SingleFitness ( galaxy or command-line)

4.D.i Multi-track Visualization of Tn-Seq data with Gviz

Installing Gviz and dependency packages
# During installation step, allow updates or installing of
# dependency packages if prompted

# Run these two lines to check if necessary packages are
# installed If not, they will be installed.
packages <- c("Biostrings", "seqinr", "Gviz")
if (length(setdiff(packages, rownames(installed.packages()))) >

0) {
install.packages(setdiff(packages, rownames(installed.packages())))

}
# Load libraries for installed packages
library(seqinr)
library(Biostrings)
library(Gviz)

Input Files

# Set working directory
# setwd('~/Documents/lab/tvolab/magenta/')

# Specify file paths in the beginning of a session

# Fasta file for the reference genome, available on NCBI genomes
genomeFile = "19F_012469.fasta"

# Gene Features formatted for Gviz track from a Genbank file using the
# GetGeneFeatures tool
# Format: tab-delimited text file with gene_id, gene_name, start, end , strand,
# and function fields
geneFile = "19F_012469_genes.txt"

# Single fitness files are created by the SingleFitness tool (Galaxy or command-line)
# using input library csv files from the CalculateFitness tool
# Here, a control (glucose) file and experimental (glucose + daptomycin) are used
ctrlSingleFitFile = "19fglucSingleFit.csv"
exptSingleFitFile = "19fdaptoSingleFit.csv"

# so Gviz doesn't look for NC_003028 in the UCSC site
options(ucscChromosomeNames = FALSE)

Genome Axis Track
# MAGenTA input: None Number coordinates for genome
gTrack <- GenomeAxisTrack(littleTicks = TRUE)

Sequence Track

31



# MAGenTA input: FASTA file (genomeFile). Track for sequence (ATGC) in color
fcol <- c(A = "darkorange", C = "yellow", T = "darkred", G = "darkgreen")
sTrack <- SequenceTrack(genomeFile, name = "Sequence", fontcolor = fcol)

Genome Annotation Track
# MAGenTA input: A formatted file containing gene id, start, end coordinates, etc.
# from Genbank file using script getCoordsGBK.py (geneFile) adds gene ids

# Make sure coordinate columns 2 and 3 are numeric. If not then reassign as numeric:
# column is.numeric(genes[,2])

geneDF <- as.data.frame(read.table(file = geneFile,
header = TRUE))

anTrack <- AnnotationTrack(start = geneDF$start, end = geneDF$end,
chromosome = "genome", strand = geneDF$strand,
id = geneDF$id, showFeatureId = TRUE, name = "Taiwan-19F\nGenes",
fill = "gray", fontcolor.item = "black")

Data Track
# MAGenTA input: single aggregate fitness per insertion site, from SingleFitness tool
makeJointAggData <- function(file1, file2) {

# Adjust file format
insertFit <- read.csv(file1)
insertFit$seqnames = "genome"
insertFit$start = insertFit$pos
insertFit$end = insertFit$pos + 1
keepCols <- c("seqnames", "start", "end", "fitness")
insertFit <- insertFit[keepCols]
colnames(insertFit) <- c("seqnames", "start", "end", "control")
insertFit2 <- read.csv(file2)
insertFit2$seqnames = "genome"
insertFit2$start = insertFit2$pos
insertFit2$end = insertFit2$pos + 1
keepCols <- c("seqnames", "start", "end", "fitness")
insertFit2 <- insertFit2[keepCols]
merged <- merge(insertFit, insertFit2, by = c("seqnames",

"start", "end"), all = TRUE)
colnames(merged) <- c("seqnames", "start", "end", "glucose",

"glucose.daptomycin")
insertData <- makeGRangesFromDataFrame(merged, keep.extra.columns = TRUE,

ignore.strand = TRUE, seqinfo = NULL, seqnames.field = "seqnames",
start.field = "start", starts.in.df.are.0based = FALSE)

return(insertData)
}
jointInsertData <- makeJointAggData(ctrlSingleFitFile, exptSingleFitFile)
count = length(jointInsertData)
trackTitle = "Insertion Fitness Cost\nfor Taiwan-19F mutants"
# Make track of insertion fitness. Histogram is used here, but other options are available.
# See Gviz documentation.
colors = c("royalblue4", "firebrick1")
aggTrack <- DataTrack(jointInsertData, chromosome = "genome",

groups = c("glucose", "glucose.daptomycin"), ylim = c(0,
2), type = c("p"), col.baseline = "gray", baseline = c(0,
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0.5, 1, 1.5, 2), col = c("royalblue4", "firebrick1"),
legend = TRUE, name = trackTitle, fontcolor.legend = "black",
fontsize.legend = 12, box.legend = TRUE)

Plot Tracks
# Specify viewing window start and end coordinates
fromCoord = 1370000
toCoord = 1371700
# Change surrounding flanking region
x = 1000
y = 1000

# Highlight Track
ht <- HighlightTrack(trackList = list(aggTrack), fill = "lightyellow",

col = "transparent", start = fromCoord, end = toCoord, chromosome = "genome")

# Plot all Tracks
plotTracks(list(gTrack, anTrack, ht), chromosome = "genome",

background.title = "lightgray", fontcolor = "black",
fontsize = 10, from = fromCoord - x, to = toCoord +

y, type = c("p", "smooth"), fontcol = "black",
col.title = "black", axis.col = "black", fontface.main = 0.8, fontfamily = "sans")
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4.D.ii Single Track Visualization of Tn-Seq Data

mainTitle = "Taiwan-19F Mutant Fitness in Glucose & Daptomycin"

visSingleFit <- function(ctrlFile, exptFile, x1, x2, h1, h2) {
ctrl <- read.csv(ctrlFile)
expt <- read.csv(exptFile)
plot(ctrl$pos, ctrl$fitness, xlab = "Genomic Coordinate",

ylab = "Insertion Fitness Cost", main = mainTitle, type = "h",
xlim = c(x1, x2), col = "darkblue")

legend("topright", 1.35, c("Glucose", "Glucose + Daptomycin"),
lty = c(1, 1), lwd = c(1.5, 2.5), col = c("darkblue",

"red"), bty = "n", cex = 0.6)
abline(h = 1, col = "black")
lines(expt$pos, expt$fitness, col = "red", type = "h")
rect(h1, 0, h2, 1.3, col = "#F4FA5840", border = NA)

}
visSingleFit(ctrlSingleFitFile, exptSingleFitFile, 1370000, 1372514,

1370347, 1371514)
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4.D.iii Other Examples of Tn-Seq Data

Region with underrepresented number of insertions
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