Supplementary Text for

SCODE: An efficient regulatory network inference

1

algorithm from single-cell RNA-Seq during
differentiation

Hirotaka Matsumoto, Hisanori Kiryu, Chikara Furusawa,
Minoru S.H. Ko, Shigeru B.H. Ko, Norio Gouda,
Tetsutaro Hayashi, and Itoshi Nikaido

January 26, 2017

Optimization algorithm of SCODE

The detailed procedure of parameter optimization in SCODE is as follows.

1.
2.

2

Initialize a diagonal matrix B randomly, and set B to B.

Generate Z(©) from the ODE of z determined from B. (The initial value of
z; (i € [1, D]) is set to 1. We add uniform random values e € [—0.001, 0.001]
to each element of Z(®) to avoid overfitting.)

. Optimize W based on linear regression, and calculate RSS(B, W).

. If RSS(B, W) < RSS(E,W), we update B with B and W with W.
. Set B to B.

. Sample ¢ € [1, D] uniformly, and sample B;; € [bmin, bmax] uniformly.

. Return to step 2 unless the number of iterations reaches the limit. (In

this study, we used 100 as the maximum number of iterations.)

. After iterative optimization, A is inferred from A = WBWH .

Reconstruction of expression dynamics

In the main text, we validated that SCODE can successfully reconstruct ob-
served expression dynamics for some TFs in Datal. In this section, we present
our investigation of the global differences between reconstructed dynamics and
observed data for all TFs and datasets. To evaluate the differences between



reconstructed dynamics and observed data, we defined the absolute residual as
the absolute value of the difference between the observed expression and the
value of the reconstructed dynamics at the corresponding time point.

Fig 1(a) shows the histogram of expression data (X()) for each dataset.
The scales of expression values differ among datasets owing to differences such
as standardization methods. Fig 1(b) is the histogram of mean absolute resid-
uals of 100 TFs. For every dataset, the histograms of mean absolute residuals
exhibit unimodal distributions, and there are no significant outlier TFs. The
means of expression are about 0.49, 2.9, and 2.7 for Datal, Data2, and Data3,
respectively, and the means of mean absolute residuals are about 0.16, 1.7, and
1.2, respectively. The ratios of the mean of mean absolute residuals to the that
of expression values are about 0.32, 0.59, and 0.44, and therefore we concluded
that the residuals are small compared with the scale of the expression values
and the dynamics of all TFs can be reconstructed accurately.

This ratio is largest for Data2. The histogram of expression in Data2 shows
that there are many zero expression data points, and some of them must be
due to dropout events, which results in zero-inflated data. Therefore, the ratio
for Data2 is largest because the zero-inflated data produced a large absolute
residual. Although such zero-inflated expression data have a negative influence
on parameter estimation, our algorithm was still able to estimate the appropri-
ate dynamics. This is because W can estimated appropriately based on other
observed data in linear regression. Thus, our algorithm might be robust to such
zero-inflated data that often occur in single-cell sequencing data.

Next, we investigated the influence of variance in expression on the absolute
residuals. We compared the variance with the mean absolute residuals (see
Fig 2). In general, the mean absolute residuals become large in accordance with
the variance, and there are no TF's for which the mean absolute residual is large
compared with the variance. Therefore, the variance in expression is the main
cause of the large absolute residuals, and there are no TFs whose reconstructed
dynamics significantly stray from the observed data.

On the other hand, there are some TFs whose mean absolute residuals are
small in spite of large variance. In these cases, the large variance is caused
by significant expression changes throughout differentiation, and the recon-
structed dynamics fit such significant expression changes. Interestingly, Gata4
and Gata6, which significantly influence differentiation [1], and Soz2 and Nanog,
which are pluripotency TFs, are among such TFs in Datal and Data3. In ad-
dition, Ascll, which is overexpressed to transform MEFs to myocytes, is also
among such TFs in Data2 [2]. These results suggest that such TFs might be
strongly related to the differentiation process, and we might be able to infer the
drivers of differentiation through this analysis.



3 Validation with small-scale experimental stud-
ies

We compared the estimated network of SCODE of Data3 with TRRUST, which
is a human transcriptional regulatory network database based on small-scale
experimental studies [3]. Firstly, we extracted the regulatory relationships from
TRRUST so that both of regulator and target are contained in 100 TFs. We
removed relationships whose annotation of regulatory type contain unknown or
both of activation and repression. In consequence, 13 relationships among 16
TFs were obtained (Fig 3(a)). Next, we extracted the network of the 16 TFs
from estimated network of SCODE (optimized A) (Fig 3(b)). To obtain reliable
network, we removed the edges which satisfy —0.5 < A;; < 0.5. As a result,
the experimentally validated positive regulation from GATA3 to ZEB1 [4] was
detected by SCODE. Because GATAS3 is a known marker for the differentiation
of Data3, this regulatory relationship will be effectual in the differentiation. On
the other hand, the network of SCODE did not contain any regulation from
POUS5F1 regardless of many regulation in TRRUST. This is because the regu-
lation from POUSF1 are mainly investigated by the study of pluripotency and
self-renewal of ES cells [5], and such regulation will not work in differentiating
cells.

In summary, SCODE succeeded to detect one validated and convincing regu-
latory relationship. The regulatory relationships which are validated with small-
scale experimental study are limited, and bioinformatics approaches including
our method are necessary to reveal comprehensive transcriptional regulatory
network.

4 Network analysis

As in the main text, we defined the threshold as the value of the 1000-th largest
absolute A value and counted the number of positive and negative edges of each
TF for each dataset. Fig 4 shows the number of edges for each TF in decreasing
order. About 39, 45, and 51% of edges are included in the top 10 TF's for each
dataset, and this result suggests that a small number of factors mainly regulate
differentiation.

Interestingly, TFs tend to have either positive or negative edges in Datal
and Data3. In contrast, the ratio of the number of positive edges to that of
negative edges is balanced in Data2. Datal and Data3 represent differentiation
from ES cells, and Data2 is scRNA-Seq data representing direct reprogramming
from MEFs; this difference might reflect the dissimilarity between the cellular
state transition systems.
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Figure 1: (a) Histogram of expression data for each dataset. (b) Histogram of
the mean absolute residual of 100 TFs.
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Figure 2: Comparison of variance and mean absolute residual for each TF.



(a)  TRRUST (b)  SCODE

Figure 3: The regulatory network of TRRUST (a) and SCODE (b). The green
and red arrows represent activation and repression, respectively.
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Figure 4: (a) Bar graph of the positive and negative edges of each TF in de-
creasing order. (b) Bar graph only for the top 10 TFs.



