
SUPPLEMENTARY INFORMATION

GPU-powered model analysis with PySB/cupSODA

Leonard A. Harris1,2,∗, Marco S. Nobile3,4,∗, James C. Pino2,5,∗, Alexander L. R. Lubbock1,2,
Daniela Besozzi3,4, Giancarlo Mauri3,4, Paolo Cazzaniga4,6,†, and Carlos F. Lopez1,2,†

∗These authors contributed equally.
†To whom correspondence should be addressed: c.lopez@vanderbilt.edu, paolo.cazzaniga@unibg.it

1Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
2Quantitative Systems Biology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
3Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milan, Italy
4SYSBIO.IT Centre of Systems Biology, Milan, Italy
5Chemical and Physical Biology Graduate Program, Vanderbilt University, Nashville, TN, USA
6Department of Human and Social Sciences, University of Bergamo, Bergamo, Italy

Contents

1 Installation instructions 2
1.1 PySB . 2
1.2 cupSODA . 2

2 Example usage 2

3 Models 3
3.1 Cell cycle . 3
3.2 Ras/cAMP/PKA . 3
3.3 EARM . 4

4 Performance analysis 4
4.1 Computational overhead . 4
4.2 Memory usage modes . 5
4.3 GPU architecture . 6

5 Sensitivity analysis 7
5.1 Cell cycle . 10
5.2 Ras/cAMP/PKA . 10
5.3 EARM . 10

6 Bibliography 11

7 Supplementary Tables 14

8 Supplementary Figures 18

1

mailto:c.lopez@vanderbilt.edu
mailto:paolo.cazzaniga@unibg.it

1 Installation instructions

1.1 PySB

The PySB/cupSODA interface and sensitivity analysis tool used here are available as of PySB version 1.4.0.
PySB can be downloaded from the Python Package Index (PyPI) using the Python package manager pip

with the command pip install pysb. PySB requires BioNetGen (bionetgen.org/index.php/Download)
and the Python packages numpy, scipy, and sympy. Complete installation instructions are available at
pysb.readthedocs.io/en/latest/installation.html.

1.2 cupSODA

Precompiled binaries for Linux, OS/X, and Windows are available at github.com/aresio/cupSODA/releases.
On Linux and OS/X, create a new directory /usr/local/share/cupSODA; on Windows, create the directory
C:\Program Files\cupSODA. Place within the new directory the cupSODA binary or a symbolic link to it
(note that the binary or link must be named cupSODA). Alternatively, the path to the binary or link can be
manually set using the set cupsoda path function from pysb/simulator/cupsoda.py, e.g.,

set cupsoda path('/path/to/directory/')

Note that since cupSODA is written in CUDA, it runs exclusively on Nvidia GPUs (developer.nvidia.com/cuda-
gpus).

2 Example usage

In Supplementary Figure S1, we show the control flow schematic of the PySB/cupSODA interface. The
“User” column represents user-defined code elements/blocks that perform specific tasks. The remaining
columns illustrate operations performed by PySB, external tools (such as cupSODA), and the resulting
code/data structures, respectively. After the user constructs the model and calls run cupsoda, PySB outputs
the model to BioNetGen (BNG) language (BNGL) [1, 2] and then calls BNG to construct the reaction network
(i.e., the full set of reactions and species generated by applying the model rule set to the seed species) [3].
PySB then reads in the network produced by BNG, constructs the set of cupSODA input files [4, 5], and
passes them to cupSODA for simulation. The output trajectories from cupSODA are read in by PySB into
a 3D matrix that can be processed and plotted to show the range of outputs.

Use of the PySB/cupSODA interface is exemplified in Supplementary Figure S2, where we present source
code for running and plotting simulations of the Michaelis-Menten (MM) reaction set with a variety of initial
conditions. The MM reaction set is comprised of three reactions,

E + S
kf−−−⇀↽−−−
kr

ES
kcat−−−→ E + P,

where E is the enzyme, S is the substrate, ES is the enzyme-substrate complex, and P is the product. The
rate constants kf , kr, and kcat control the rates of enzyme-substrate formation, dissociation, and conversion
to product, respectively. Since all initial substrate is eventually converted to product (product formation
is modeled as an irreversible step), the final concentration of product obviously depends on the initial
concentration of substrate. Furthermore, assuming fixed values of the rate constants, the rate at which
substrate is converted to product strongly depends on the initial amount of enzyme. Therefore, we vary the
initial concentrations of enzyme and substrate and plot the range of time courses for the product.

The code in Supplementary Figure S2 is divided into three parts: (1) PySB declarations (model con-
struction; line 1); (2) model simulation (lines 7–25); and (3) plotting of the results (lines 26–35). These
code blocks correspond to the numbered tasks shown in the “User” column of Supplementary Figure S1.
Note that in (1) the model is constructed in a separate file (pysb/examples/michment.py; available at
github.com/LoLab-VU/PySB cupSODA Bioinfo2017) and imported. Also, in (2), performing the simula-
tions requires defining the initial concentrations for all “seed” species (the species initially present in the
system [1]) for all simulation runs and passing these to the run cupsoda function as a dictionary. In this

2

http://bionetgen.org/index.php/Download
https://pysb.readthedocs.io/en/latest/installation.html
https://github.com/aresio/cupSODA/releases
https://developer.nvidia.com/cuda-gpus
https://developer.nvidia.com/cuda-gpus
https://github.com/LoLab-VU/PySB_cupSODA_Bioinfo2017

case, we have two seed species (enzyme and substrate) and 11 initial concentrations for each (lines 8 and 10).
Taking all possible combinations (i.e., the Cartesian product; line 12) gives 121 sets of initial concentrations.
The mean, minimum, and maximum product concentrations produced by running the code in Supplementary
Figure S2 are shown in the lower-right panel of Supplementary Figure S1.

3 Models

3.1 Cell cycle

The Tyson cell cycle model [6] is a simplified description of the regulatory network that controls formation
of the maturation-promoting factor (MPF), an enzyme necessary for entry into mitosis in eukaryotic cells.
MPF is a complex comprised of two protein subunits, cdc2 (cell division cycle protein 2, also known as
cyclin-dependent kinase 1, CDK1 [7]) and cyclin B1. Transcription of cyclin B1 begins at the end of the
S (synthesis) phase of the cell cycle and continues throughout the G2 (Gap 2) phase [8]. The model assumes
that synthesis of cyclin B1 (referred to simply as “cyclin” in [6]) occurs at a constant rate, that newly
synthesized cyclin B1 is stable (degradation rate ≈ 0), and that it binds to cdc2 to form an inactive complex,
known as “preMPF”. wee1, a nuclear kinase, is known to inhibit MPF activity by phosphorylating cdc2
[9]. The phosphatase cdc25 activates MPF by removing the phosphate group from cdc2 [10]. Active MPF,
in turn, activates cdc25 and inhibits wee1, thus amplifying its own activation through positive feedback
[11]. In [6], wee1 and cdc25 are not explicitly modeled: phosphorylation of cdc2 and activation of MPF
are modeled as mass-action processes with rate constants assumed to be proportional to the (implicit)
concentrations of wee1 and cdc25, respectively. Autocatalytic activation of MPF is modeled as a third-order
mass-action process (i.e., quadratic in active MPF) with a rate constant inversely proportional to the square
of the total cdc2 concentration. Active MPF, together with polo-like kinase 1 (PLK-1), also phosphorylates
and induces activation of the anaphase-promoting complex/cyclosome (APC/C), which polyubiquitinates
cyclin B1, marking it for degradation and leading to disassembly of the MPF [12]. This negative feedback
loop, whereby active MPF drives its own breakdown, completes the cycle and allows the cell to exit mitosis.
In [6], MPF breakdown is modeled as a two-step process of cdc2/cyclin B1 dissociation followed by rapid
cyclin B1 degradation (both first-order mass-action processes, i.e., APC/C and PLK-1 are not explicitly
modeled). This requires distinguishing newly synthesized cyclin B1 (assumed to be stable; see above) from
cyclin B1 released during MPF disassembly, which is done by assuming that the former is unphosphorylated
and the latter is phosphorylated.

In this work, we have simplified the model slightly by combining MPF disassembly and cyclin B1 degra-
dation into a single, first-order mass-action step, i.e., assuming that cyclin B1 is degraded in situ. This was
suggested in [6] as an alternative mechanism that does not change the fundamental characteristics of the
model. The cell cycle model was constructed in PySB [3] and is comprised of five species (two with initial
populations > 0, i.e., cdc2-P(0)=1 a.u., cyclin(0) = 0.25 a.u. [6]; a.u., arbitrary units) and seven reactions.
Values of all rate constants were taken from [6] and correspond to the region of parameter space where
spontaneous limit cycle oscillations are observed. The model (tyson oscillator in situ.py) is available
at github.com/LoLab-VU/PySB cupSODA Bioinfo2017.

3.2 Ras/cAMP/PKA

The Ras/cAMP/PKA signaling pathway in yeast plays a major role in regulating cell growth and proliferation
in response to nutritional sensing [13] and stress conditions [14]. In Saccharomyces cerevisiae, normal activity
of the protein kinase A (PKA) is necessary for cellular growth and cell cycle progression. Reduction of PKA
activity, which is related to a decrease in intracellular cyclic adenosine monophosphate (cAMP), leads to
the accumulation of storage carbohydrates (glycogen and trehalose), high stress tolerance, and growth and
cell cycle arrest [13]. The Ras/cAMP/PKA pathway is a complex signaling cascade in which cAMP is
synthesized by the adenylate cyclase Cyr1 and induces the activation of the cAMP-dependent PKA protein.
The adenylate cyclase activity is controlled by Ras (Ras1 and Ras2) and Gpa2 proteins [15]. Ras proteins
cycle between an inactive state (bound to guanosine diphosphate (GDP)) and an active state (bound to
guanosine triphosphate (GTP)) and are positively regulated by Cdc25, a Guanine Nucleotide Exchange
Factor (GEF), that stimulates the GDP–GTP exchange [16], and negatively regulated by Ira1 and Ira2, two

3

https://github.com/LoLab-VU/PySB_cupSODA_Bioinfo2017

GTPase-Activating Proteins (GAPs), that stimulate the GTPase activity of Ras. Deactivation of cAMP is
governed by two phosphodiesterases, Pde1 and Pde2, which constitutes a major feedback mechanism in the
pathway [17]. In general, the complex interplay between the components of the Ras/cAMP/PKA pathway
poses a challenge to both computational and experimental investigations.

The Ras/cAMP/PKA model [18] was downloaded from the BioModels Database [19] in Systems Biology
Markup Language (SBML) format [20] (BIOMD0000000478.xml). It was converted to BNGL [1] using the
SBML-to-BNGL translator (“flat” translation) in BioNetGen 2.2.6 [2] and then into PySB format [3] using
an in-house script. The model is comprised of 33 species (11 with initial populations > 0; Supplementary
Table S3) and 39 reactions with mass-action rate laws (one rate constant per reaction). The PySB-encoded
version of the model (ras camp pka.py) is available at github.com/LoLab-VU/PySB cupSODA Bioinfo2017.

3.3 EARM

The extrinsic apoptosis reaction model (EARM) [3, 21] describes the biochemical events that lead from
binding of an external ligand to induction of apoptosis in mammalian cells. Tumor necrosis factor (TNF)-
related apoptosis-inducing ligand (TRAIL) binds to a death receptor on the cell membrane, leading to
the formation of death-inducing signaling complex (DISC), which if not inhibited by FLIP can cleave and
activate caspase-8. Active caspase-8 truncates Bid (into tBid), targeting it to the mitochondrial outer
membrane. When at the membrane, tBid recruits cytoplasmic Bax to be inserted into the membrane, where
tBid can further activate Bax and the closely related membrane-bound protein Bak. Active Bax/Bak then
homo-oligomerize, causing pore formation in the mitochondria. This process, known as mitochondrial outer
membrane permeabilization (MOMP), is the “point of no return” in apoptosis [22, 23]. MOMP releases
mitochondrial proteins, in particular cytochrome c and Smac. Cytochrome-c binds to the cytosolic protein
Apaf-1 and to caspase-9, forming the “apoptosome,” which activates caspase-3. Smac binds to XIAP,
preventing XIAP from binding and inhibiting active capsase-3. Caspase-3 activation marks the beginning of
the end: DNA and structural proteins degrade and the cell eventually collapses in a controlled manner [24].

The version of EARM used in this study is a slightly updated version of the “embedded” model reported
in Lopez et al. [3], which itself is an expanded version of the model reported in Albeck et al. [21].1 The
model is encoded in PySB [3] and is comprised of 77 species (21 with initial populations > 0; Supple-
mentary Table S4) and 105 reactions with mass-action rate laws. Values of the kinetic parameters were
obtained by calibrating the model to the average time courses for three proteins (initiator caspase, mito-
chondrial intermembrane space reporter protein (IMS-RP), and effector caspase) in HeLa cells following
TRAIL exposure [3] using a particle swarm optimization (PSO) algorithm [27, 28]. The PSO calibra-
tion was performed twice and the best fit parameter set from each run was saved for further analysis.
The model (earm lopez embedded flat.py), and the two accompanying parameter sets, are available at
github.com/LoLab-VU/PySB cupSODA Bioinfo2017.

4 Performance analysis

4.1 Computational overhead

In Fig. 1A–C of the main text, we compare CPU run times for PySB/cupSODA vs. SciPy/LSODA on a
GeForce GTX 980 Ti GPU (Diablo; Supplementary Table S1). The PySB/cupSODA run times include
computational overhead associated with construction of the cupSODA input files in the PySB frontend,
reading of the input files by cupSODA, post-simulation output of the species time courses to file by cupSODA,
and reading of the results from the output files back into PySB. To quantify this overhead, in Supplementary
Fig. S3 we include raw cupSODA run times alongside the PySB/cupSODA and SciPy/LSODA run times.
These results show that, for large numbers of simulations, the overhead can constitute as much as 44%
of the total run time for large models (EARM) and as much as 94% for small models (cell cycle). While

1The primary difference between the Lopez et al. [3] and Albeck et al. [21] versions of EARM is in the detail used to describe
the BCL-2 family of proteins. In [3], the pro-apoptotic proteins Bax and Bak, the anti-apoptotic proteins Bcl-XL, Bcl-2, and
MCL1, and two sensitizer proteins Bad and Noxa are all included. The model in [21] only includes a single effector BCL-2
family protein (Bax), a single anti-apoptotic protein (Bcl-2), and omits the sensitizer proteins. The inclusion of additional
detail in [3] was used to better decipher the complex interplay that is the root of much controversy in the field [25, 26].

4

https://github.com/LoLab-VU/PySB_cupSODA_Bioinfo2017
https://github.com/LoLab-VU/PySB_cupSODA_Bioinfo2017

not insignificant, we see in Supplementary Fig. S3D that for large numbers of simulations (&1000) this
additional time cost is small compared to the computational savings achieved relative to SciPy/LSODA.
Streamlining the implementation of the PySB/cupSODA interface to minimize this overhead is an area of
active investigation.

4.2 Memory usage modes

CUDA threads can access a variety of different memory spaces during their execution, each differing in terms
of visibility, efficiency, and data persistence [29, 30]. All threads can read and write from registers (i.e., local
variables) and global memory . The latter is persistent across multiple kernel launches and represents the
main communication interface with the CPU. Threads can also communicate by means of a very limited
amount of shared memory (a few KBs, even on recent GPU architectures), which is visible to all threads
belonging to the same block and persists for the lifetime of the block. Importantly, although shared memory
was designed for intra-block communication, threads can exploit it as a high-performance memory thanks
to the extremely low latency to data (about two orders of magnitude smaller than global memory). Threads
also have access to a cached, read-only high-performance constant memory . This special type of memory
persists for the lifetime of the application, is loaded from the CPU, and is very scarce (a few KBs). Additional
memory spaces available on CUDA devices include texture and pinned memories. Since cupSODA does not
leverage either of these advanced memories they will not be discussed further; we refer the interested reader
to [30] for additional information.

cupSODA 1.0.0 (github.com/aresio/cupSODA/releases/tag/v1.0.0) is equipped with three memory usage
modes that exploit global, shared, and constant memory spaces on CUDA devices differently. These modes
can be invoked in PySB using the following keywords:

• global: All data structures required by cupSODA are stored in global memory. These include:
(i) the stoichiometric matrices defining the reactions (2 ∗ n species × n reactions, i.e., both
reactant and product sides); (ii) the compressed representation of the ordinary differential equa-
tions (ODEs) [5] and the corresponding Jacobian matrix [31]; (iii) the 2D array of initial species
amounts (n species × n sims); (iv) the 2D array of kinetic parameters (n reactions × n sims);
(v) the array of sampling times (n samples); (vi) the array of species to be sampled (n species′ ≤
n species); (vii) the array of current simulation times (n sims); (viii) all LSODA working data
structures and settings (e.g., tolerances, max steps) [32]; (ix) the 3D array of species time courses
(n species′ × n samples × n sims).

• shared: Same as global except that the current species concentrations and current simulation
times are stored in shared memory. This improves the performance of the simulator because these
data are frequently accessed during the course of a simulation to evaluate the right-hand sides of
the ODEs, calculate elements of the Jacobian matrix, and update the species concentrations and
simulation times.

• sharedconstant (default): Same as shared except that the compressed representation of the ODEs
[5] and the Jacobian matrix are stored in constant memory. These non-mutable arrays are frequently
accessed by the LSODA integrator within cupSODA during the course of performing the numerical
integration of the ODEs. In particular, if the system is detected as “stiff,” LSODA switches to an
implicit integration algorithm that relies on the Jacobian matrix [32].

In principle, the sharedconstant mode is the best option since it leverages both of the low-latency memory
spaces (shared and constant) to store the most frequently accessed data during the course of a simulation.
We have thus made sharedconstant the default memory usage mode in PySB/cupSODA. However, as
mentioned above, both shared and constant memory spaces are very limited resources. Thus, they may not
be able to accommodate the data structures for models with very large numbers of reactions and species
(which is common in rule-based modeling frameworks such as PySB [1, 3]). It is for this reason that we have
provided users with the ability to change the memory usage mode using the keywords listed above.

All results presented in Fig. 1 of the main text and in Supplementary Fig. S3 were obtained on a
GeForce GTX 980 Ti GPU (Diablo; Supplementary Table S1) using the sharedconstant memory mode,
which we found to be most efficient in almost all cases. To quantify the performance gains of this mode,

5

https://github.com/aresio/cupSODA/releases/tag/v1.0.0

in Supplementary Fig. S4 we compare raw cupSODA run times on this GPU for each model using each
memory mode. In all cases, the shared and constant memories are sufficiently large to store the associated
data structures. We see that for small models (cell cycle) there is a significant advantage to using the
shared memory when running large numbers of simulations (∼19% run time reduction for shared relative
to global for 100 000 simulations). Using the constant memory has minimal impact on run times in this
case (run time reductions .5% for sharedconstant relative to shared in all cases). However, for large
models (Ras/cAMP/PKA and EARM), both shared and constant memory usages provide significant run
time reductions in all cases (shared decreases run times relative to global by ∼10–20% and sharedconstant

further decreases run times relative to shared by an additional ∼5–15%). These results verify that as long
as the capacities of the shared and constant memory spaces are not exceeded, the sharedconstant memory
mode is the most efficient option in most cases.

4.3 GPU architecture

To investigate the effects of GPU architecture on run times, in Supplementary Fig. S5 we compare raw
cupSODA run times (sharedconstant memory mode) for each model on the GeForce GTX 980 Ti (Diablo)
and on three additional GPUs (Supplementary Table S1). For all models, we see that for ≤1000 simulations
the GeForce GTX 980 Ti and GeForce GTX 970 (Mule) are the fastest and perform essentially equally.
However, for larger numbers of simulations the GeForce GTX 980 Ti outperforms the GeForce GTX 970.
These observations can be explained in terms of the number of CUDA cores and streaming multiprocessors on
each GPU. Both the GeForce GTX 980 Ti and GeForce GTX 970 have >1000 CUDA cores (Supplementary
Table S1). Therefore, for ≤1000 simulations, both are able to perform all of the simulations in parallel
(one simulation per core). And since they have comparable clock rates, they perform essentially identically.
However, once the number of simulations exceeds the number of available cores, the simulations can no longer
be run entirely in parallel. Briefly, GPUs are comprised of a set of “streaming multiprocessors” (SMs), each of
which can accommodate at least one “block”2 of multiple “threads” [33, 34] (one simulation per thread; here
we use 16 threads/block). SMs run in parallel and blocks are scheduled over the available SMs. When the
number of SMs is less than the number of blocks, the blocks are queued. Therefore, devices with more SMs
run faster than devices with fewer SMs because they can run more simulations in parallel. In this case, the
GeForce GTX 980 Ti has 22 SMs and the GeForce GTX 970 has 13 SMs. Therefore, for ≥10 000 simulations,
assuming one block per SM, we would expect the GeForce GTX 980 Ti to outperform the GeForce GTX 970
by a factor of 22/13 ≈ 1.7. This ratio corresponds very closely to the ratios of run times for ≥10 000
simulations for all models (Supplementary Fig. S5D). For example, for 100 000 simulations of the cell cycle
model, the ratio of run times for the GeForce GTX 970 to the GeForce GTX 980 Ti is 6.22/3.87 ≈ 1.61.
Similar ratios are seen for 10 000 simulations of the cell cycle, Ras/cAMP/PKA, and EARM models.

Interestingly, the GeForce GTX 760 (Lolab-760) also has >1000 CUDA cores and has a clock rate com-
parable to those of the GeForce GTX 980 Ti and GeForce GTX 970 (Supplementary Table S1). Therefore,
for ≤1000 simulations it should also be capable of running all simulations in parallel. Yet, we see in Sup-
plementary Fig. S5D that it is significantly slower than both, in most cases by a factor of ∼2–3. We can
explain this difference in terms of the maximum number of registers per thread on each GPU. Registers
are high-performance memory locations used to store basic variable types, such as characters, integers, and
floats. When the number of basic variables in a CUDA program exceeds the maximum number of registers
in a thread, the compiler will resort to using global memory to store these variables, a phenomenon known as
“register spilling” [34]. Since access to global memory is much slower than to registers, performance is signif-
icantly reduced. In this case, the GeForce GTX 760 has only 63 maximum registers/thread, while the other
GeForce GPUs have 255 (Supplementary Table S1). We believe that this difference explains most of the
reduction in performance seen for the GeForce GTX 760, i.e., cupSODA uses more than 63 registers/thread,
causing register spilling on the GeForce GTX 760. However, a notable exception is the run time for 1000
simulations of EARM, the largest model that we consider (Sec. 3.3 and Table 1 of the main text), where
the GeForce GTX 760 is ∼6× slower than the other GeForce GPUs (Supplementary Fig. S5D), a factor
larger than we would expect based on register spilling alone. We cannot pinpoint the exact cause of this
additional performance reduction, but we believe it to be due to a variety of additional factors that become

2SMs can sometimes accommodate more than one block, depending on available resources, e.g., shared memory.

6

important for models of this size, including the lower number of SMs and the reduced memory bandwidth
on the GeForce GTX 760 (Supplementary Table S1).

Finally, we see in Supplementary Fig. S5 that for all models the Tesla K20c is significantly slower than
the GeForce GTX 980 Ti and GeForce GTX 970, but performs comparably to the GeForce GTX 760 for
≤1000 simulations and outperforms it by a factor of ∼2× for ≥10 000 simulations. The fact that the Tesla
K20c does not outperform the GeForce GTX 760 for ≤1000 simulations is somewhat surprising given that,
like the other GeForce GPUs, the Tesla K20c has 255 maximum registers/thread (Supplementary Table S1).
It also has a slightly larger memory bandwidth relative to the GeForce GTX 760. However, some of this
advantage is offset by its slower maximum clock rate (0.71 GHz). Furthermore, Tesla GPUs are equipped
with error-correcting code (ECC) memory [34], a feature introduced to protect against rare random memory
errors due to electrical or magnetic interference [35]. ECC improves the reliability of data stored in memory
but comes at a cost: it reduces the amount of available memory (including shared memory) and introduces
significant performance overheads [33, 35]. We believe that the combined effects of reduced maximum clock
rate and costs associated with the ECC memory explain why the Tesla K20c does not outperform the GeForce
GTX 760 for ≤1000 simulations. However, for ≥10 000 simulations, the larger number of CUDA cores, SMs,
maximum registers/thread, and memory bandwidth (Supplementary Table S1) all together outweigh these
costs, leading to the observed performance gains of the Tesla K20c (Supplementary Fig. S5).

5 Sensitivity analysis

In order to demonstrate the utility of PySB/cupSODA as a tool for model analysis, we performed sensitivity
analyses with respect to initial species populations3 for all three models (Sec. 3). Let Θ = [θ0. . .θN−1]T ∈
RN
≥0 be a vector of N initial populations of chemical species, such that θk 6= 0 for at least one value of

k ∈ {0, . . . , N − 1}. Let also F : Θ → R be a model output given Θ (e.g., the population of a species at a
given time point, the time required for a species population to reach a predefined threshold). We denote by
Θ0 = [θ00. . .θ

0
N−1]T a vector of reference initial population values obtained, e.g., by calibrating a model to

experimental data. The model sensitivity to changes in the initial species populations is then defined as

S : Θ→ R

Θ 7→ F (Θ)− F (Θ0)

F (Θ0)
· 100. (S1)

Let J = [0 . . . N−1]T ∈ NN be a vector of N species indices and ∆ = [δ0 . . . δM−1]T ∈ RM
≥0, M ≥ 1, be a

vector of M multiplicative factors representing perturbations to each initial species population. We generate
an NM -length vector of 2-tuples A ≡ vec(∆ × J), where × denotes the Cartesian product and vec is the
matrix vectorization. We then generate the NM×NM matrix B ≡ A×A by taking the Cartesian product
of A with itself. Element Bij of this matrix is a 2-tuple of 2-tuples, where the first element of each inner
2-tuple is a perturbation (an element of ∆) and the second element is a species index (an element of J).
The perturbations and species indices relate to the row and column indices of B via

Bij =
(
(δi%M , Jbi/Mc), (δj%M , Jbj/Mc)

)
, i, j ∈ {0, . . ., NM−1}, (S2)

where % is the modulo operator and b·c is the floor operator. For convenience, we also define the vector
A′ ≡ vec(1M × J), where 1M = [1. . .1]T is an all-ones vector of length M . This allows us to define the
matrix B′ ≡ A′ ×A, the ij-th element of which is

B′ij =
(
(1, Jbi/Mc), (δj%M , Jbj/Mc)

)
, i, j ∈ {0, . . ., NM−1}, (S3)

i.e., the initial population of species Jbi/Mc is unperturbed.

3The approach described here is similar to that used by Gaudet et al. [36].

7

We define the function

G : Bij → RN
≥0

if Jbi/Mc 6= Jbj/Mc :

θ0Jbi/Mc
7→ δi%M · θ0Jbi/Mc

θ0Jbj/Mc
7→ δj%M · θ0Jbj/Mc

θ0k 7→ θ0k, k ∈ J \ {Jbi/Mc, Jbj/Mc}

else :

θ0k 7→ θ0k, k ∈ J

, (S4)

which takes an element Bij and returns a vector of initial species populations that differs from the reference
vector Θ0 at indices Jbi/Mc and Jbj/Mc if and only if Jbi/Mc 6= Jbj/Mc. We then define the function

H : B→ RNM×NM
≥0

Bij 7→ S(G(Bij)), ∀ i, j ∈ {0, . . ., NM−1}, (S5)

which sequentially applies Eqs. S4 and S1 to each element of B to produce an NM×NM matrix of sensitivity
values. Let P ≡ H(B) be the pairwise sensitivity matrix . Note that P is symmetric and that the elements
of the block diagonal are all zero. Therefore, N ·(N−1)·M2/2 < (NM)2 evaluations of F (i.e., simulations)
are needed to construct it. Further, let P′ ≡ H(B)−H(B′) be the normalized pairwise sensitivity matrix ,
i.e., each sensitivity value is normalized by subtracting the corresponding sensitivity value in which the
initial population of species Jbi/Mc is unperturbed (see Eq. S3). In principle, to construct P′ an additional
N ·(N−1)·M evaluations of F are required.4 However, these can be avoided if 1 is contained within ∆.

Finally, we define the single-parameter sensitivity multiset5

Qk =
⋃

kM≤ i <(k+1)M
kM>j≥(k+1)M

P ′ij , k ∈ J, (S6)

which can be plotted as a boxplot to visualize the range of model outputs due to changes in the initial
population of species k.

Example: Two species, three perturbations (N = 2, M = 3)

Θ0 =
[
100 100

]T
J =

[
0 1

]T
∆ =

[
0.8 1.0 1.2

]T
A = vec

(0.8, 0) (0.8, 1)
(1.0, 0) (1.0, 1)
(1.2, 0) (1.2, 1)


=
[
(0.8, 0) (1.0, 0) (1.2, 0) (0.8, 1) (1.0, 1) (1.2, 1)

]T

B =



((0.8, 0), (0.8, 0)) ((0.8, 0), (1.0, 0)) ((0.8, 0), (1.2, 0)) | ((0.8, 0), (0.8, 1)) ((0.8, 0), (1.0, 1)) ((0.8, 0), (1.2, 1))

((1.0, 0), (0.8, 0)) ((1.0, 0), (1.0, 0)) ((1.0, 0), (1.2, 0)) | ((1.0, 0), (0.8, 1)) ((1.0, 0), (1.0, 1)) ((1.0, 0), (1.2, 1))

((1.2, 0), (0.8, 0)) ((1.2, 0), (1.0, 0)) ((1.2, 0), (1.2, 0)) | ((1.2, 0), (0.8, 1)) ((1.2, 0), (1.0, 1)) ((1.2, 0), (1.2, 1))

−−−−−−−− −−−−−−−− −−−−−−−− | − −−−−−−− −−−−−−−− −−−−−−−−
((0.8, 1), (0.8, 0)) ((0.8, 1), (1.0, 0)) ((0.8, 1), (1.2, 0)) | ((0.8, 1), (0.8, 1)) ((0.8, 1), (1.0, 1)) ((0.8, 1), (1.2, 1))

((1.0, 1), (0.8, 0)) ((1.0, 1), (1.0, 0)) ((1.0, 1), (1.2, 0)) | ((1.0, 1), (0.8, 1)) ((1.0, 1), (1.0, 1)) ((1.0, 1), (1.2, 1))

((1.2, 1), (0.8, 0)) ((1.2, 1), (1.0, 0)) ((1.2, 1), (1.2, 0)) | ((1.2, 1), (0.8, 1)) ((1.2, 1), (1.0, 1)) ((1.2, 1), (1.2, 1))


4Note that P′ is not symmetric, hence no factor of 1/2. Further, the vector A′ has N , not NM unique elements. Therefore,

the matrix B′ has N ·NM unique elements. Eliminating the NM block diagonal elements in P′ (which are all zero), gives
N2M−NM = N ·(N−1)·M evaluations of F .

5A multiset is a generalization of a set that allows for duplicate elements [37]. It is formally defined as a 2-tuple (A,m),
where A is a set and m : A→ N≥1 is the multiplicity, i.e., m(a) is the number of occurrences of a ∈ A.

8

B′=



((1.0, 0), (0.8, 0)) ((1.0, 0), (1.0, 0)) ((1.0, 0), (1.2, 0)) | ((1.0, 0), (0.8, 1)) ((1.0, 0), (1.0, 1)) ((1.0, 0), (1.2, 1))

((1.0, 0), (0.8, 0)) ((1.0, 0), (1.0, 0)) ((1.0, 0), (1.2, 0)) | ((1.0, 0), (0.8, 1)) ((1.0, 0), (1.0, 1)) ((1.0, 0), (1.2, 1))

((1.0, 0), (0.8, 0)) ((1.0, 0), (1.0, 0)) ((1.0, 0), (1.2, 0)) | ((1.0, 0), (0.8, 1)) ((1.0, 0), (1.0, 1)) ((1.0, 0), (1.2, 1))

−−−−−−−− −−−−−−−− −−−−−−−− | − −−−−−−− −−−−−−−− −−−−−−−−
((1.0, 1), (0.8, 0)) ((1.0, 1), (1.0, 0)) ((1.0, 1), (1.2, 0)) | ((1.0, 1), (0.8, 1)) ((1.0, 1), (1.0, 1)) ((1.0, 1), (1.2, 1))

((1.0, 1), (0.8, 0)) ((1.0, 1), (1.0, 0)) ((1.0, 1), (1.2, 0)) | ((1.0, 1), (0.8, 1)) ((1.0, 1), (1.0, 1)) ((1.0, 1), (1.2, 1))

((1.0, 1), (0.8, 0)) ((1.0, 1), (1.0, 0)) ((1.0, 1), (1.2, 0)) | ((1.0, 1), (0.8, 1)) ((1.0, 1), (1.0, 1)) ((1.0, 1), (1.2, 1))


G(B00) = G(((0.8, 0), (0.8, 0))) =

[
100 100

]T
= Θ0

G(B05) = G(((0.8, 0), (1.2, 1))) =
[
80 120

]T
G(B50) = G(((1.2, 1), (0.8, 0))) =

[
80 120

]T
= G(B05)

G(B55) = G(((1.2, 1), (1.2, 1))) =
[
100 100

]T
= Θ0

S(G(B00)) = S(Θ0) =
F (Θ0)− F (Θ0)

F (Θ0)
· 100 = 0

S(G(B05)) = S([80 120]T) =
F
(
[80 120]T

)
− F (Θ0)

F (Θ0)
· 100

S(G(B50)) = S(G(B05))

S(G(B55)) = S(Θ0) = 0

P ≡ H(B)

=



0 0 0 | S([80 80]T) S([80 100]T) S([80 120]T)

0 0 0 | S([100 80]T) 0 S([100 120]T)

0 0 0 | S([120 80]T) S([120 100]T) S([120 120]T)

−−−−−−− −−−−−−− −−−−−−− | − −−−−−− −−−−−−− −−−−−−−
S([80 80]T) S([100 80]T) S([120 80]T) | 0 0 0

S([80 100]T) 0 S([120 100]T) | 0 0 0

S([80 120]T) S([100 120]T) S([120 120]T) | 0 0 0


P′≡H(B)−H(B′)

=



0 0 0
| S([80 80]T)−

S([80 100]T)
S([80 120]T)−

| S([100 80]T) S([100 120]T)

0 0 0 | 0 0 0

0 0 0
| S([120 80]T)−

S([120 100]T)
S([120 120]T)−

| S([100 80]T) S([100 120]T)

−−−−−−− −−−−−−− −−−−−−− | − −−−−−− −−−−−−− −−−−−−−
S([80 80]T)−

S([100 80]T)
S([120 80]T)− |

0 0 0
S([80 100]T) S([120 100]T) |

0 0 0 | 0 0 0

S([80 120]T)−
S([100 120]T)

S([120 120]T)− |
0 0 0

S([80 100]T) S([120 100]T) |



Q0 =
{

0, 0, 0, S([80 100]T), S([120 100]T),

S([80 80]T)− S([100 80]T), S([80 120]T)− S([100 120]T),

S([120 80]T)− S([100 80]T), S([120 120]T)− S([100 120]T)
}

9

Q1 =
{

0, 0, 0, S([100 80]T), S([100 120]T),

S([80 80]T)− S([80 100]T), S([120 80]T)− S([120 100]T),

S([80 120]T)− S([80 100]T), S([120 120]T)− S([120 100]T)
}

5.1 Cell cycle

The sensitivity of the cell cycle model [6] was assessed in terms of the period of oscillation of active MPF
(plotted as a ratio with respect to total cdc2; Supplementary Fig. S6). The model has two species that have
non-zero initial populations, cyclin and cdc2 (Supplementary Table S2). We considered 21 perturbations
in the range ±20% around the reference initial populations.6 This amounts to 2·(2−1)·212/2 = 441 total
simulations. The simulations (all run on Diablo; Supplementary Table S1) took∼4.2 s using PySB/cupSODA
(sharedconstant memory mode; 16 threads/block) and ∼9.4 s using SciPy/LSODA. In Supplementary
Fig. S7A, we plot the pairwise sensitivity matrix P (Eq. S5). In Supplementary Fig. S7B, we plot as
boxplots the single-parameter sensitivity multisets Qk for both species (Eq. S6). This plot shows that the
period of oscillation of active MPF is completely insensitive to changes in the initial population of cdc2.
The period varies, however, by as much as ±5% with changes in the initial population of cyclin.

5.2 Ras/cAMP/PKA

For the Ras/cAMP/PKA model [18], we use as the sensitivity metric the amplitude of the first peak in the os-
cillatory time course of cAMP protein (Supplementary Fig. S8). The model has 11 species that have non-zero
initial populations (Supplementary Table S3) and we consider 21 perturbations in the range ±20% around
the reference initial populations,7 amounting to a total of 11·(11−1)·212/2 = 24 255 simulations (all run
on Diablo; Supplementary Table S1). These took ∼8 min to run using PySB/cupSODA (sharedconstant
memory mode; 16 threads/block) and ∼65 min using SciPy/LSODA. In Supplementary Fig. S9, we plot the
pairwise sensitivity matrix P (Eq. S5) and the single-parameter sensitivity multisets Qk for all 11 species
(Eq. S6). The latter plot shows that the cAMP first-peak amplitude is most sensitive to changes in the initial
populations of ATP, CYR1, and Pde2. Intuitively, these results make sense since ATP is directly involved
in cAMP production via the reaction

Ras2 GTP CYR1 + ATP −→ Ras2 GTP CYR1 + ATP + cAMP,

CYR1 acts one step upstream

Ras2 GTP + CYR1 −→ Ras2 GTP CYR1,

and Pde2 acts downstream to promote cAMP degradation

cAMP + Pde2 ←→ cAMP Pde2 −→ AMP + Pde2.

Smaller contributions from Cdc25 and Ira2 (Supplementary Fig. S9B) also make intuitive sense since both
inhibit cAMP production by acting either upstream of CYR1 or on the Ras2 GTP CYR1 and/or Ras2 GTP
complexes (see ras camp pka.py at github.com/LoLab-VU/PySB cupSODA Bioinfo2017). It is interesting
to note that the reference initial population values for these species (Supplementary Table S3) range from
a few hundred (Cdc25, CYR1, Ira2) to a few thousand (Pde2) to tens of millions (ATP).

5.3 EARM

EARM sensitivity was quantified in terms of the “time-to-death,” defined as the time at which Smac cleav-
age reaches 50% (Supplementary Fig. S10). The model has 21 species with non-zero initial populations
(Supplementary Table S4) and we consider 11 perturbations in the range ±20% around the reference initial

6∆ = [0.80, 0.82, 0.84, 0.86, 0.88, 0.90, 0.92, 0.94, 0.96, 0.98, 1.00, 1.02, 1.04, 1.06, 1.08, 1.10, 1.12, 1.14, 1.16, 1.18, 1.20]T
7See footnote 6.

10

https://github.com/LoLab-VU/PySB_cupSODA_Bioinfo2017

populations,8 amounting to a total of 21·(21−1)·112/2 = 25 410 simulations (all run on Diablo; Supplemen-
tary Table S1). We considered two different sets of rate parameters, obtained by calibrating the model to
experimental data using PSO (see Sec. 3.3), that have comparable goodness-of-fit values. In both cases, the
simulations took ∼11 min to run using PySB/cupSODA (sharedconstant memory mode; 16 threads/block)
and ∼35 min using SciPy/LSODA. Results of the sensitivity analyses for both parameter sets are shown in
Supplementary Figs. S11 and S12. We see in both cases large variations in time-to-death with changes in
the initial numbers of receptors (R), caspase 8 (C8), Bid, and BAR. However, in Supplementary Fig. S11 we
also see sensitivities to Bak and MCL1. Interestingly, in Supplementary Fig. S12 we see little sensitivity to
Bak and MCL1. Instead, we see sensitivities to Bax, BCLxl, caspase 3 (C3), caspase 6 (C6), ligand (L), and
XIAP. These results suggest, therefore, that the model harbors two parallel modes of apoptosis induction,
one that is Bax-independent and mediated by Bak, and the other that is Bak-independent and mediated by
Bax. This demonstrates the importance of performing sensitivity analyses for different parameter sets when
analyzing complex kinetic models such as EARM. Typical calibrations can require millions of simulations
and can produce tens- to hundreds-of-thousands of unique parameter sets [38, 39]. Large-scale analyses such
as this will clearly require highly-optimized simulation tools that can run on high-performance computing
platforms, such as PySB/cupSODA.

6 Bibliography

[1] J. R. Faeder, M. L. Blinov, and W. S. Hlavacek, “Rule-based modeling of biochemical systems with
BioNetGen,” Methods Mol. Biol., vol. 500, pp. 113–167, 2009.

[2] L. A. Harris, J. S. Hogg, J.-J. Tapia, J. A. P. Sekar, S. Gupta, I. Korsunsky, A. Arora, D. Barua, R. P.
Sheehan, and J. R. Faeder, “BioNetGen 2.2: advances in rule-based modeling,” Bioinformatics, vol. 32,
pp. 3366–3368, 2016.

[3] C. F. Lopez, J. L. Muhlich, J. A. Bachman, and P. K. Sorger, “Programming biological models in
Python using PySB,” Mol. Syst. Biol., vol. 9, p. 646, 2013.

[4] M. S. Nobile, D. Besozzi, P. Cazzaniga, G. Mauri, and D. Pescini, “cupSODA: a CUDA-powered
simulator of mass-action kinetics,” Lect. Notes Comput. Sci., vol. 7979, pp. 344–357, 2013.

[5] M. S. Nobile, P. Cazzaniga, D. Besozzi, and G. Mauri, “GPU-accelerated simulations of mass-action
kinetics models with cupSODA,” J. Supercomput., vol. 69, pp. 17–24, 2014.

[6] J. J. Tyson, “Modeling the cell division cycle: cdc2 and cyclin interactions,” Proc. Natl. Acad. Sci.
U.S.A., vol. 88, pp. 7328–7332, 1991.

[7] M. Dorée and T. Hunt, “From Cdc2 to Cdk1: when did the cell cycle kinase join its cyclin partner?,”
J. Cell Sci., vol. 115, pp. 2461–2464, 2002.

[8] L. A. Porter and D. J. Donoghue, “Cyclin B1 and CDK1: nuclear localization and upstream regulators,”
Prog. Cell Cycle Res., vol. 5, pp. 335–347, 2003.

[9] G. J. Den Haese, N. Walworth, A. M. Carr, and K. L. Gould, “The Wee1 protein kinase regulates T14
phosphorylation of fission yeast Cdc2,” Mol. Biol. Cell, vol. 6, pp. 371–385, 1995.

[10] U. Strausfeld, J. C. Labbé, D. Fesquet, J. C. Cavadore, A. Picard, K. Sadhu, P. Russell, and M. Dorée,
“Dephosphorylation and activation of a p34cdc2/cyclin B complex in vitro by human CDC25 protein,”
Nature, vol. 351, pp. 242–245, 1991.

[11] A. L. Jeong and Y. Yang, “PP2A function toward mitotic kinases and substrates during the cell cycle,”
BMB Rep., vol. 46, pp. 289–294, 2013.

[12] A. Castro, C. Bernis, S. Vigneron, J.-C. Labbé, and T. Lorca, “The anaphase-promoting complex: a
key factor in the regulation of cell cycle,” Oncogene, vol. 24, pp. 314–325, 2005.

8∆ = [0.80, 0.84, 0.88, 0.92, 0.96, 1.00, 1.04, 1.08, 1.12, 1.16, 1.20]T

11

[13] J. M. Thevelein and J. H. de Winde, “Novel sensing mechanisms and targets for the cAMP-protein
kinase A pathway in the yeast Saccharomyces cerevisiae,” Mol. Microbiol., vol. 33, pp. 904–918, 1999.

[14] L. Wang, G. Renault, H. Garreau, and M. Jacquet, “Stress induces depletion of Cdc25p and decreases
the cAMP producing capability in Saccharomyces cerevisiae,” Microbiology, vol. 150, pp. 3383–3391,
2004.

[15] S. Colombo, P. Ma, L. Cauwenberg, J. Winderickx, M. Crauwels, A. Teunissen, D. Nauwelaers, J. H.
de Winde, M.-F. Gorwa, D. Colavizza, and J. M. Thevelein, “Involvement of distinct G-proteins, Gpa2
and Ras, in glucose- and intracellular acidification-induced cAMP signalling in the yeast Saccharomyces
cerevisiae,” EMBO J., vol. 17, pp. 3326–3341, 1998.

[16] S. A. Haney and J. R. Broach, “Cdc25p, the guanine nucleotide exchange factor for the Ras proteins
of Saccharomyces cerevisiae, promotes exchange by stabilizing Ras in a nucleotide-free state,” J. Biol.
Chem., vol. 269, pp. 16541–16548, 1994.

[17] J. Nikawa, S. Cameron, T. Toda, K. M. Ferguson, and M. Wigler, “Rigorous feedback control of cAMP
levels in Saccharomyces cerevisiae,” Gene Dev., vol. 1, pp. 931–937, 1987.

[18] D. Besozzi, P. Cazzaniga, D. Pescini, G. Mauri, S. Colombo, and E. Martegani, “The role of feedback
control mechanisms on the establishment of oscillatory regimes in the Ras/cAMP/PKA pathway in S.
cerevisiae,” EURASIP J. Bioinform. Syst. Biol., vol. 2012, p. 10, 2012.

[19] V. Chelliah, C. Laibe, and N. Le Novère, “BioModels Database: a repository of mathematical models
of biological processes,” Methods Mol. Biol., vol. 1021, pp. 189–199, 2013.

[20] M. Hucka, A. Finney, H. M. Sauro, H. Bolouri, J. C. Doyle, H. Kitano, A. P. Arkin, B. J. Bornstein,
D. Bray, A. Cornish-Bowden, A. A. Cuellar, S. Dronov, E. D. Gilles, M. Ginkel, V. Gor, I. I. Goryanin,
W. J. Hedley, T. C. Hodgman, J.-H. Hofmeyr, P. J. Hunter, N. S. Juty, J. L. Kasberger, A. Kremling,
U. Kummer, N. Le Novère, L. M. Loew, D. Lucio, P. Mendes, E. Minch, E. D. Mjolsness, Y. Nakayama,
M. R. Nelson, P. F. Nielsen, T. Sakurada, J. C. Schaff, B. E. Shapiro, T. S. Shimizu, H. D. Spence,
J. Stelling, K. Takahashi, M. Tomita, J. Wagner, and J. Wang, “The systems biology markup language
(SBML): a medium for representation and exchange of biochemical network models,” Bioinformatics,
vol. 19, pp. 524–531, 2003.

[21] J. G. Albeck, J. M. Burke, S. L. Spencer, D. A. Lauffenburger, and P. K. Sorger, “Modeling a snap-
action, variable-delay switch controlling extrinsic cell death,” PLoS Biol., vol. 6, p. e299, 2008.

[22] T. Kuwana, M. R. Mackey, G. Perkins, M. H. Ellisman, M. Latterich, R. Schneiter, D. R. Green,
and D. D. Newmeyer, “Bid, Bax, and lipids cooperate to form supramolecular openings in the outer
mitochondrial membrane,” Cell, vol. 111, pp. 331–342, 2002.

[23] M. Certo, V. Del Gaizo Moore, M. Nishino, G. Wei, S. Korsmeyer, S. A. Armstrong, and A. Letai,
“Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family
members,” Cancer Cell, vol. 9, pp. 351–365, 2006.

[24] R. C. Taylor, S. P. Cullen, and S. J. Martin, “Apoptosis: controlled demolition at the cellular level,”
Nat. Rev. Mol. Cell Biol., vol. 9, pp. 231–241, 2008.

[25] C. Borner and D. Andrews, “The apoptotic pore on mitochondria: are we breaking through or still
stuck?,” Cell Death Differ., vol. 21, pp. 187–191, 2014.

[26] A. Shamas-Din, D. Satsoura, O. Khan, W. Zhu, B. Leber, C. Fradin, and D. Andrews, “Multiple
partners can kiss-and-run: Bax transfers between multiple membranes and permeabilizes those primed
by tBid,” Cell Death Dis., vol. 5, p. e1277, 2014.

[27] J. Kennedy, “Particle swarm optimization,” in Encyclopedia of Machine Learning (C. Sammut and G. I.
Webb, eds.), pp. 760–766, Boston, MA: Springer US, 2010.

12

[28] F.-A. Fortin, F.-M. D. Rainville, M.-A. Gardner, M. Parizeau, and C. Gagné, “DEAP: Evolutionary
algorithms made easy,” J. Mach. Learn. Res., vol. 13, pp. 2171–2175, 2012.

[29] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel programming with CUDA,” ACM
Queue, vol. 6, pp. 40–53, 2008.

[30] M. S. Nobile, P. Cazzaniga, A. Tangherloni, and D. Besozzi, “Graphics processing units in bioin-
formatics, computational biology and systems biology,” Brief. Bioinform. (advance access), 2016.
doi:10.1093/bib/bbw058.

[31] J. C. Butcher, Numerical Methods for Ordinary Differential Equations. John Wiley & Sons, 2003.

[32] L. Petzold, “Automatic selection of methods for solving stiff and nonstiff systems of ordinary differential
equations,” SIAM J. Sci. Stat. Comput., vol. 4, pp. 136–148, 1983.

[33] N. Wilt, The CUDA handbook: A comprehensive guide to GPU programming. Pearson Education, 2013.

[34] CUDA C Programming Guide. v7.5 (Sec. 5.3.2); http://docs.nvidia.com/cuda/cuda-c-programming-
guide/#axzz4H4I33oqo.

[35] S. Mittal and J. S. Vetter, “A survey of techniques for modeling and improving reliability of computing
systems,” IEEE T. Parall. Distr., vol. 27, pp. 1226–1238, 2016.

[36] S. Gaudet, S. L. Spencer, W. W. Chen, and P. K. Sorger, “Exploring the contextual sensitivity of
factors that determine cell-to-cell variability in receptor-mediated apoptosis,” PLoS Comput. Biol.,
vol. 8, p. e1002482, 2012.

[37] D. E. Knuth, The Art of Computer Programming, Volume 2 (3rd Ed.): Seminumerical Algorithms.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1997.

[38] R. N. Gutenkunst, J. J. Waterfall, F. P. Casey, K. S. Brown, C. R. Myers, and J. P. Sethna, “Universally
sloppy parameter sensitivities in systems biology models,” PLoS Comput. Biol., vol. 3, p. e189, 2007.

[39] H. Eydgahi, W. W. Chen, J. L. Muhlich, D. Vitkup, J. N. Tsitsiklis, and P. K. Sorger, “Properties of
cell death models calibrated and compared using Bayesian approaches,” Mol. Syst. Biol., vol. 9, p. 644,
2013.

13

http://docs.nvidia.com/cuda/cuda-c-programming-guide/#axzz4H4I33oqo
http://docs.nvidia.com/cuda/cuda-c-programming-guide/#axzz4H4I33oqo

7 Supplementary Tables

Supplementary Table S1: Machines used in this study.

Machine name Diablo∗ Mule† Lolab-760† Puma†

CPU
Intel Xeon Intel Core Intel Core Intel Xeon
E5-2667 v3 i7-5930K i7-4820K E5-2687W v2

Processor speed
3.20 3.50 3.70 3.40

(GHz)

GPU GeForce GTX 980 Ti GeForce GTX 970 GeForce GTX 760 Tesla K20c

CUDA cores 2816 1664 1152 2496

Streaming
22 13 6 13

multiprocessors

Global memory (MB) 6143 4095 2047 5120

Max clock rate
1.08 1.18 1.07 0.71

(GHz)

Max registers
255 255 63 255

per thread

Memory bandwidth
336 224 192 208

(GB/s)

∗Used for all results in Fig. 1 of the main text and Supplementary Figs. S3 and S4.
†Compared against Diablo in Supplementary Fig. S5.

14

Supplementary Table S2: Reference initial species populations for the cell cycle model [6].
The PySB version of the model, tyson oscillator in situ.py, is available at github.com/LoLab-
VU/PySB cupSODA Bioinfo2017. cdc0: initial population of cdc2; cyc0: initial population of cyclin.

Parameter Reference value

cdc0 6022
cyc0 1505

15

https://github.com/LoLab-VU/PySB_cupSODA_Bioinfo2017
https://github.com/LoLab-VU/PySB_cupSODA_Bioinfo2017

Supplementary Table S3: Reference initial species populations for the Ras/cAMP/PKA model
[18]. The PySB version of the model, ras camp pka.py, is available at github.com/LoLab-
VU/PySB cupSODA Bioinfo2017.

Parameter Reference value

ATP 0 24 000 000
Cdc25 0 300
CYR1 0 200
GDP 0 1 500 000
GTP 0 5 000 000
Ira2 0 200
Pde1 0 1400
Pde2 0 6500
PKA 0 2500
PPA2 0 4000

Ras2 GDP 0 20 000

16

https://github.com/LoLab-VU/PySB_cupSODA_Bioinfo2017
https://github.com/LoLab-VU/PySB_cupSODA_Bioinfo2017

Supplementary Table S4: Reference initial species populations for EARM [3]. The PySB version of the
model, earm lopez embedded flat.py, is available at github.com/LoLab-VU/PySB cupSODA Bioinfo2017.

Parameter Reference value

Apaf 0 100 000
Bad 0 1000
Bak 0 20 000
BAR 0 1000
Bax 0 80 000
Bcl2 0 20 000
BclxL 0 20 000
Bid 0 40 000
C3 0 10 000
C6 0 10 000
C8 0 20 000
C9 0 100 000

CytoC 0 500 000
flip 0 100
L 0 3000

Mcl1 0 20 000
Noxa 0 1000
PARP 0 1 000 000
R 0 200

Smac 0 100 000
XIAP 0 100 000

17

https://github.com/LoLab-VU/PySB_cupSODA_Bioinfo2017

8 Supplementary Figures

n1
n2

n3

Supplementary Fig. S1: Basic workflow of the PySB/cupSODA interface. The user constructs a model
and calls the run cupsoda function with appropriate arguments. PySB translates the model into BNGL and
passes the file to BNG to generate the network of reactions and species. PySB reads these in and generates the
11 input files that cupSODA requires. After running the simulations, cupSODA outputs species trajectories
into a series of files that PySB reads in and processes into a three-dimensional NumPy record array of
“observables” (user-defined model outputs) [1]. Mean, minimum, and maximum concentrations at each time
point can then be plotted using the Matplotlib plot function. Circled numbers correspond to the associated
code blocks in Supplementary Figure S2.

18

1 from pysb.examples.michment import model

2 from pysb.simulator.cupsoda import run_cupsoda

3 import numpy as np

4 import matplotlib.pyplot as plt

5 import itertools

6
7 # factors to multiply the values of the initial conditions

8 multipliers = np.linspace(0.8, 1.2, 11)

9 # 2D array of initial concentrations

10 initial_concentrations = [multipliers*ic[1].value for ic in model.initial_conditions]

11 # Cartesian product of initial concentrations

12 cartesian_product = itertools.product(*initial_concentrations)

13 # the Cartesian product object must be cast to a list, then to a numpy array

14 # and transposed to give a (n_species x n_vals) matrix of initial concentrations

15 initials_matrix = np.array(list(cartesian_product)).T

16 # we can now construct the initials dictionary

17 initials = { ic[0] : initials_matrix[i] for i,ic in enumerate(model.initial_conditions) }

18 # simulation time span and output points

19 tspan = np.linspace(0, 50, 501)

20 # run_cupsoda returns a 3D array of species and observables trajectories

21 trajectories = run_cupsoda(model, tspan, initials=initials,

22 atol=1e-10, rtol=1e-4, verbose=True)

23 # extract the trajectories for the ’Product’ into a numpy array and

24 # transpose to aid in plotting

25 x = np.array([tr[’Product’] for tr in trajectories]).T

26 # plot the mean, minimum, and maximum concentrations at each time point

27 plt.plot(tspan, x.mean(axis=1), ’b’, lw=3, label="Product")

28 plt.plot(tspan, x.max(axis=1), ’b--’, lw=2, label="min/max")

29 plt.plot(tspan, x.min(axis=1), ’b--’, lw=2)

30 # define the axis labels and legend

31 plt.xlabel(’time’)

32 plt.ylabel(’concentration’)

33 plt.legend(loc=’upper left’)

34 # show the plot

35 plt.show()

� n1



n2


n3

Supplementary Fig. S2: The source code for run michment cupsoda.py (available at github.com/LoLab-
VU/PySB cupSODA Bioinfo2017) is composed of three main parts: (1) the model, constructed in
pysb/examples/michment.py, is imported; (2) a set of initial concentrations is constructed and passed
to the run cupsoda function for simulation; (3) mean, minimum, and maximum concentrations at each time
point are plotted. Circled numbers correspond to the associated control points in Supplementary Figure S1.

19

https://github.com/LoLab-VU/PySB_cupSODA_Bioinfo2017
https://github.com/LoLab-VU/PySB_cupSODA_Bioinfo2017

102

104A
Cell cycle

SciPy/LSODA
PySB/cupSODA
cupSODA

101
102
103
104

Ti
m
e
(s
)

B Ras/cAMP/PKA

101 102 103 104
Number of simulations

100

101

102

103C EARM

D
sims

SciPy/
LSODA (s)

PySB/
cupSODA (s)

cupSODA (s)

C
e
ll

c
y
c
le 10 0.07 0.38 (0.19×) 0.10 (74.2%)

100 0.70 0.60 (1.2×) 0.10 (82.9%)

1000 6.61 1.18 (5.6×) 0.10 (91.2%)

10 000 65.64 7.52 (8.7×) 0.42 (94.2%)

100 000 671.78 71.79 (9.4×) 3.87 (94.2%)

R
a
s/

c
A

M
P

/
P

K
A

10 0.81 3.35 (0.2×) 2.92 (12.9%)

100 7.96 3.78 (2.1×) 2.98 (21.2%)

1000 78.71 6.65 (11.8×) 3.34 (49.9%)

10 000 786.10 47.32 (16.6×) 17.98 (62.0%)

100 000 7804.03 459.75 (17.0×) 169.11 (63.2%)

E
A

R
M

10 0.83 3.85 (0.2×) 3.54 (8.1%)

100 9.06 4.40 (2.0×) 3.70 (15.9%)

1000 81.15 6.61 (12.3×) 4.25 (35.7%)

10 000 811.16 43.98 (18.4×) 24.82 (43.6%)

Supplementary Fig. S3: Run time comparisons between LSODA (as implemented in the SciPy scientific
computing package; www.scipy.org), PySB/cupSODA, and cupSODA alone (absent the computational over-
head associated with the PySB frontend): (A–C) plots for Tyson’s cell cycle model [6], the Ras/cAMP/PKA
signaling model [18], and EARM [3]; (D) run time values plotted in (A–C). In column 3 of (D), speedups
with respect to LSODA are given in parentheses; in column 4, overheads as a percentage of the associated
PySB/cupSODA run time are given in parentheses. All simulations were performed on a GeForce GTX
980 Ti GPU with 16 threads/block or on an Intel Xeon E5-2667 v3 CPU (Diablo; Supplementary Table S1).
Note that the “cupSODA” curve is the same as “sharedconstant” in Supplementary Fig. S4 and “gtx980-TI”
in Supplementary Fig. S5. The “SciPy” and “PySB/cupSODA” curves are the same as those in Fig. 1 of
the main text.

20

http://www.scipy.org/

10-2

10-1

100

101

A
Cell Cycle global

shared

sharedconstant

101

102

T
im

e
 (
s)

B
Ras/cAMP/PKA

101 102 103 104

Number of simulations

101

102
C

EARM

D
sims global (s) shared (s) sharedconstant (s)

C
e
ll

c
y
c
le 10 0.111 0.106 (−4.4%) 0.099 (−6.7%)

100 0.098 0.101 (−2.2%) 0.103 (2.9%)

1000 0.100 0.102 (2.6%) 0.096 (−6.7%)

10 000 0.48 0.45 (−5.8%) 0.42 (−7.2%)

100 000 4.4 4.023 (−8.6%) 3.87 (−3.9%)

R
a
s/

c
A

M
P

/
P

K
A

10 4.08 3.30 (−19.1%) 2.92 (−11.6%)

100 4.21 3.39 (−19.4%) 2.98 (−12.2%)

1000 4.62 3.77 (−18.5%) 3.34 (−11.5%)

10 000 23.70 19.78 (−16.5%) 18.0 (−9.1%)

100 000 225.23 184.07 (−18.3%) 169.11 (−8.1%)

E
A

R
M

10 5.11 4.07 (−20.4.7%) 3.54 (−12.9%)

100 5.43 4.28 (−21.1%) 3.70 (−13.6%)

1000 6.09 4.86 (−20.3%) 4.25 (−12.4%)

10 000 33.71 26.97 (−20.0%) 24.82 (−8.0%)

Supplementary Fig. S4: Run time comparisons (raw cupSODA times) between different cupSODA mem-
ory schemes: (A–C) plots for Tyson’s cell cycle model [6], the Ras/cAMP/PKA signaling model [18], and
EARM [3]; (D) run time values plotted in (A–C). In column 3 of (D), run time decreases (as a percentage)
relative to the global configuration are given in parentheses; in column 4, run time decreases relative to the
shared configuration are given in parentheses. All simulations were performed on a GeForce GTX 980 Ti
GPU (Diablo; Supplementary Table S1) with 16 threads/block. Note that the “sharedconstant” curve is
the same as “cupSODA” in Supplementary Fig. S3 and “gtx980-TI” in Supplementary Fig. S5. Results
reported in Fig. 1 of the main text were obtained using the sharedconstant configuration.

21

10-2

10-1

100

101

102
A

Cell Cycle K20C

gtx760

gtx970

gtx980-TI

100

101

102

T
im

e
 (

s)

B
Ras/cAMP/PKA

101 102 103 104

Number of simulations

100

101

102

C
EARM

D
sims gtx980-TI (s) gtx970 (s) gtx760 (s) K20C (s)

C
e
ll

c
y
c
le 10 0.10 0.09 0.17 0.17

100 0.10 0.08 0.20 0.21

1000 0.10 0.09 0.24 0.24

10 000 0.42 0.70 2.05 1.31

100 000 3.87 6.22 19.38 11.19

R
a
s/

c
A

M
P

/
P

K
A

10 2.92 3.08 6.17 6.86

100 2.98 3.13 7.83 8.32

1000 3.34 3.88 9.51 9.41

10 000 17.98 32.19 92.37 53.17

100 000 169.11 N/A N/A 481.18

E
A

R
M

10 3.54 3.20 6.65 7.27

100 3.70 3.38 8.51 8.95

1000 4.25 4.49 26.95 18.32

10 000 24.82 37.62 242.06 120.02

Supplementary Fig. S5: Run time comparisons (raw cupSODA times) between different GPUs (Supple-
mentary Table S1): (A–C) plots for Tyson’s cell cycle model [6], the Ras/cAMP/PKA signaling model
[18], and EARM [3]; (D) run time values plotted in (A–C). All simulations were performed with the
sharedconstant memory configuration and 16 threads/block. Note that the “gtx980-TI” curve is the
same as “cupSODA” in Supplementary Fig. S3 and “sharedconstant” in Supplementary Fig. S4. Note that
100 000 simulations of the Ras/cAMP/PKA model could not be performed on the GeForce GTX 970 or on
the GeForce GTX 760 because of global memory limitations.

22

0 10 20 30 40 50 60

Time (min)

0.0

0.2

0.4

0.6

0.8

1.0

a
ct

iv
e
 M

P
F

/
to

ta
l
cd

c2

Supplementary Fig. S6: Time course for active maturation-promoting factor (MPF), as a ratio with
respect to total cdc2, for the Tyson cell cycle model [6]. Model sensitivity to changes in the initial populations
of cyclin and cdc2 was assessed with respect to the period of oscillation of active MPF (double arrow and
black dashed lines).

23

-2 -1 0 1 2

% change

cd
c0

cy
c0

cyc0

cdc0

A

−3 −2 −1 0 1 2 3
Percent change in period

cyc0

cdc0

B

Supplementary Fig. S7: Sensitivity analysis for the Tyson cell cycle model [6]: (A) pairwise sensitivity
matrix P (Eq. S5); (B) single-parameter sensitivity multisets Qk (Eq. S6), plotted as boxplots (red lines
are medians; boxes range from the first to third quartile; whiskers extend to the minimum and maximum
values). cdc0: initial population of cdc2; cyc0: initial population of cyclin.

24

0 200 400 600 800 1000

Time (s)

0.0e+00

2.0e+04

4.0e+04

6.0e+04

8.0e+04

1.0e+05

1.2e+05
cA

M
P
 (

co
u
n
t)

Supplementary Fig. S8: Time course for cAMP in the Ras/cAMP/PKA model [18]. Model sensitivity
to changes in initial species populations was assessed with respect to the amplitude of the initial peak (the
maximum value achieved; black circle and dashed black line).

25

-114 -57 0 57 114

% change

A
T
P
_0

C
Y
R

1
_0

C
d
c2

5
_0

G
D

P
_0

G
T
P
_0

Ir
a
2
_0

P
K

A
_0

P
P
A

2
_0

P
d
e
1
_0

P
d
e
2
_0

R
a
s2

_G
D

P
_0

Ras2_GDP_0

Pde2_0

Pde1_0

PPA2_0

PKA_0

Ira2_0

GTP_0

GDP_0

Cdc25_0

CYR1_0

ATP_0

A

80 60 40 20 0 20 40 60 80 100
Percent change in amplitude

Ras2_GDP_0

Pde2_0

Pde1_0

PPA2_0

PKA_0

Ira2_0

GTP_0

GDP_0

Cdc25_0

CYR1_0

ATP_0

B

Supplementary Fig. S9: Sensitivity analysis for the Ras/cAMP/PKA model [18]: (A) pairwise sensitivity
matrix P (Eq. S5); (B) single-parameter sensitivity multisets Qk (Eq. S6), plotted as boxplots (red lines
are medians; boxes range from the first to third quartile; whiskers extend to the minimum and maximum
values).

26

0 1 2 3 4 5 6
Time (hr)

0.0

0.2

0.4

0.6

0.8

1.0
a
S
m

a
c

/
S
M

A
C

_0

Supplementary Fig. S10: Time course for active Smac (aSmac), as a ratio with respect to total Smac
(SMAC 0), in EARM [3]. Model sensitivity to changes in the initial species populations was assessed with re-
spect to the “time-to-death,” defined as the time point at which Smac reaches 50% cleavage (aSmac/SMAC 0
= 0.5; black circle and black dashed line).

27

-17 -8 0 8 17

% change

A
p

a
f_

0
B

A
R

_0
B

a
d

_0
B

a
k_

0
B

a
x

_0
B

cl
2

_0
B

cl
x

L_
0

B
 d

_0
C

3
_0

C
6

_0
C

8
_0

C
9

_0
C

y
t%

C
_0

Fl
 p

0 L
0

M
cl

1
_0

N
%

x
a

_0
P

A
R

P
_0

R
_0

S
m

a
c_

0
X

IA
P

_0

XIAP_0
Smac_0

R_0
PARP_0
N%xa_0
Mcl1_0

L_0
Fl p_0

Cyt%C_0
C9_0
C8_0
C6_0
C3_0
B d_0

BclxL_0
Bcl2_0
Bax_0
Bak_0
Bad_0
BAR_0
Apaf_0

A

−10 −5 0 5 10
Percent change n t me-t%-death

XIAP_0
Smac_0

R_0
PARP_0
N%xa_0
Mcl1_0

L_0
Fl p_0

Cyt%C_0
C9_0
C8_0
C6_0
C3_0
B d_0

BclxL_0
Bcl2_0
Bax_0
Bak_0
Bad_0
BAR_0
Apaf_0

B

Supplementary Fig. S11: Sensitivity analysis for parameter set 1 of EARM [3]: (A) pairwise sensitivity
matrix P (Eq. S5); (B) single-parameter sensitivity multisets Qk (Eq. S6), plotted as boxplots (red lines
are medians; boxes range from the first to third quartile; whiskers extend to the minimum and maximum
values). Note that (B) is the same as Fig. 1D in the main text.

28

-12 -6 0 6 12

% change

A
%
a
f_
0

B
A
R
_0

B
a
d
_0

B
a
 _
0

B
a
x
_0

B
cl
2
_0

B
cl
x
L_
0

B
id
_0

C
3
_0

C
6
_0

C
8
_0

C
9
_0

C
y
to
C
_0

Fl
i%
0 L
0

M
cl
1
_0

N
o
x
a
_0

P
A
R
P
_0

R
_0

S
m
a
c_
0

X
IA
P
_0

XIAP_0
Smac_0

R_0
PARP_0
Noxa_0
Mcl1_0

L_0
Fli%_0

CytoC_0
C9_0
C8_0
C6_0
C3_0
Bid_0

BclxL_0
Bcl2_0
Bax_0
Ba _0
Bad_0
BAR_0
A%af_0

A

−10 −5 0 5 10
Percent change in time-to-death

XIAP_0
Smac_0

R_0
PARP_0
Noxa_0
Mcl1_0

L_0
Fli%_0

CytoC_0
C9_0
C8_0
C6_0
C3_0
Bid_0

BclxL_0
Bcl2_0
Bax_0
Ba _0
Bad_0
BAR_0
A%af_0

B

Supplementary Fig. S12: Sensitivity analysis for parameter set 2 of EARM [3]: (A) pairwise sensitivity
matrix P (Eq. S5); (B) single-parameter sensitivity multisets Qk (Eq. S6), plotted as boxplots (red lines
are medians; boxes range from the first to third quartile; whiskers extend to the minimum and maximum
values). Note that this parameter set fits the experimental data comparably to that used in Supplementary
Fig. S11, yet shows sensitivity to a significantly different set of initial species populations (see Sec. 5.3 for
further discussion).

29

	Installation instructions
	PySB
	cupSODA

	Example usage
	Models
	Cell cycle
	Ras/cAMP/PKA
	EARM

	Performance analysis
	Computational overhead
	Memory usage modes
	GPU architecture

	Sensitivity analysis
	Cell cycle
	Ras/cAMP/PKA
	EARM

	Bibliography
	Supplementary Tables
	Supplementary Figures

