
Supplementary Materials

S1 Application features

TITINdb enables users to:

• access pre-computed predictions of the
impact of gnomAD, 1000 genomes and
disease associated nsSNVs calculated using
Duet (Pires et al., 2014b) and Condel
(González-Pérez and López-Bigas, 2011)

• access pre-computed predictions of the
impact of any possible single amino acid
variants (SAVs) which localise to titin
domain structures, calculated using mCSM
(Pires et al., 2014a), and the impact of any
possible nsSNVs calculated using Condel
(González-Pérez and López-Bigas, 2011)

• access pre-computed predictions of the impact
of any possible SAVs on protein-protein
binding affinity calculated using mCSM (Pires
et al., 2014a) (where experimental structures
for titin domains in complex with interaction
partners exist)

• visualise nsSNVs on structure and save images
as PNG files

• visualise 3D nsSNV distributions on structure
from the 1000 genomes project, gnomAD and
disease associated nsSNVs

• download all nsSNV information for nsSNVs
which localise to a titin Ig, Fn3 or kinase
domains as a CSV file

• explore disease hotspots through the facility to
”search by disease”

• access structural analysis, i.e. the Q(SASA)
for each residue (computed using POPS
(Cavallo et al., 2003)) and predictions of
which residues take part in protein-protein
interactions (computed using SPPIDER
(Porollo et al., 2007))

• access Uniprot (The UniProt Consortium,
2017) functional site annotations, including
residue modifications.

• download structures and models of titin Ig,
Fn3 and kinase domains as PDB files

• assess model quality by using zDOPE
score, per residue DOPE score plots and
query-template alignments

• upload structures/models for nsSNV
visualisation

• translate between isoform amino acid positions
for all seven titin isoforms with RefSeq
sequences (IC, N2AB, N2A, N2B, novex-1,
novex-2, novex-3)

S2 Case studies

Mutations which result in amino acid changes can
be broadly divided into two classes: those which
are present in the population and which are either
not phenotypically deleterious, or those which are
causative of disease. Certain mutations may also be
unclassified, and of uncertain effect. For titin this
is frequently the case when nsSNVs are observed
in disease cohorts but a causative link with the
condition has not been established. In TITINdb
we present analyses of nsSNVs which fall into
the ”classified” classes, to enable users to better
understand the properties of such nsSNVs, and
in order to facilitate the classification of currently
unclassified nsSNVs; a graphical summary of this
can be seen in Fig. S1. The two classes are,
however, not mutually exclusive. Some disease
associated nsSNVs may demonstrate incomplete
penetrance or may be recessive (e.g. in compound
heterozygosity (Evilä et al., 2014; Chauveau et al.,
2014a)), or play a modifier role in disease.
Conversely, it is possible that certain nsSNVs
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may be misclassified due to nominally healthy
individuals harbouring undiagnosed disease, or
linkage disequilibrium existing between variants
which are actually disease causing and those which
are not. Indeed, it must be remembered that
the gnomAD database, although not expected
to be enriched in disease associated nsSNVs,
does contain genetic information from disease
cohorts, although individuals with severe paediatric
disease have been filtered out (Lek et al., 2016).
Nevertheless the gnomAD database is expected
to contain rare recessive disease-causing TTN
mutations similar to any gene, e.g. recessive
autosomal CFTR mutations causing cystic fibrosis
(frequency of heterozygous carriers between 1% and
3.5% depending on population (Strom et al., 2011))
or recessive X-linked DMD mutations causing
Duchenne muscular dystrophy (carrier frequency
0.18% Mundy et al. (2016)). The main difference
is that such recessive mutations are expected to
be more numerous in titin due to the large size of
the coding sequence (>100kb). In silico saturation
mutagenesis has also been carried out to enable
users to predict the impact of novel nsSNVs.

In the following case studies, we show how
TITINdb allows the exploration of disease
associated nsSNVs, and how the application can
be used to facilitate the classification of new
nsSNVs.

S2.1 Investigating disease associated
nsSNVs

TITINdb allows the user to search by disease;
currently 12 myopathies have associated titin
variants. This enables the detection of patterns
or hotspots characteristic of variants associated
with particular diseases. Two known nsSNV
hotspots have been investigated in the main
text: one in domain Fn3-119 associated with
hereditary myopathy with early respiratory failure
(HMERF) (Palmio et al., 2014; Pfeffer et al.,
2012; Ohlsson et al., 2012; Toro et al., 2013;
Izumi et al., 2013; Vasli et al., 2012; Uruha
et al., 2015) and one in Ig-169 associated with
tibial muscular dystrophy/limb-girdle muscular
dystrophy 2J (TMD/LGMD2J) (Pollazzon et al.,
2010; Van den Bergh et al., 2003; Hackman et al.,
2002; Evila et al., 2016). Here, we present an
additional example, which investigates nsSNVs

associated with dilated cardiomyopathy (DCM).
This disease is primarily associated with titin
truncating variants (Schafer et al., 2016). There
are, however, a number of nsSNVs which are also
associated with this condition.

On searching for dilated cardiomyopathy (DCM)
associated nsSNVs (Itoh-Satoh et al., 2002; Gerull
et al., 2002; Herman et al., 2012; LIU et al., 2008;
Roncarati et al., 2013; Matsumoto et al., 2005),
it can be seen that these do not appear to form
a distinct hotspot as observed for both TMD and
HMERF, and, although two of the thirteen nsSNVs
localise to the domain Ig-30, they are situated at
opposite ends of the domain. It can be noted that
these nsSNVs are both found in gnomAD and one is
also found in the 1000 genomes project; indicating
that these nsSNVs are unlikely to demonstrate
complete penetrance. Upon visualisation on the
available model of Ig-30, it can be seen that the
affected residues are also both located on the
surface of the protein, with the S4780N nsSNV not
predicted to be destabilising. This suggests that
pathogenicity could be a result of the disruption
of protein-protein interactions. Indeed, from the
SNV table it can be seen that both residues affected
by these nsSNVs are predicted to take part in
protein-protein interactions.

From this example and those in the main text,
it can be seen that inferring titin disease nsSNV
pathogenicity can be a complex task; however, even
with the sparse association of titin nsSNVs with
disease, emerging patterns/hotspots are already
discernible and further work will aid in the
classification of currently unclassified nsSNVs.

S2.2 Investigating NGS nsSNV data

Hypertrophic cardiomyopathy (HCM) is a clinically
heterogeneous disease in which the walls of the
heart become thickened, in particular the wall of
the left ventricle (Pantazis et al., 2015). It is caused
by cardiac sarcomere mutations with incomplete
penetrance (Seidman and Seidman, 2011) and is
one of the leading causes of sudden death in
young adults, affecting approximately 1 in 500
individuals (Maron et al., 1995). A number of rare
and unique missense variants have recently been
found in a cohort of HCM patients (Lopes et al.,
2013), however how many of these play a causative
role in the disease is currently unclear. In the
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Figure S1: Summary showing how the information in TITINdb can be used to assess unclassified nsSNVs.
This can be done in several ways, for example by comparing nsSNV properties to known SNVs, of which
there are currently 51 disease associated nsSNVs and a larger number of population nsSNVs (19741 in the
gnomAD database and 1982 in the 1000 genomes data). There is an overlap of 24 nsSNVs between disease
associated nsSNVs and population nsSNVs (from the 1000 genomes project and gnomAD database); this
is most likely due to the incomplete penetrance of some disease associated SNVs. Information based
assessment can also contribute to the classification of unclassified SNVs through structure and sequence
based predictions of their impact, and properties of their location on 3D structure.

main text we show one possible use of TITINdb
through the analysis of the P13979S titin N2B
nsSNV which is published in the supplementary
information associated with the paper from Lopes

et al. (2013). The visualisation of this particular
nsSNV mapped to structure can be seen in Fig.
S2.
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Figure S2: Visualisation of the P13979S titin N2B nsSNV on the Fn3-55 domain structure. The red
colour indicates the nsSNV affects a buried residue. The nsSNV can be compared to the gnomAD
distribution of nsSNVs (shown in orange).

S3 Methods

S3.1 Data

1000 genomes titin variant data was obtained in
VCF format using the online data slicer (Auton
et al., 2015). Variants were mapped to isoform
and position using ANNOVAR (Wang et al.,
2010). gnomAD variant data was obtained from
the gnomAD web server (Lek et al., 2016) in
Variant Dataset Format and titin nsSNVs were
extracted using Hail (Ganna et al., 2016). Titin
related disease nsSNVs were obtained from ’A
rising titan: TTN review and mutation update’
(Chauveau et al., 2014b). Disease nsSNVs reported
in the literature discovered since the publication
of Chauveau et al. (2014b) were queried for on
PubMed using the terms ”(”titin”[All Fields]) AND

(”snp”[All fields])”,”(”titin”[All Fields]) AND
(”mutation”[All fields])” and ”(”titin”[All Fields])
AND (”variant”[All fields])”.

Data from the 1000 genomes project originates
from 2504 nominally healthy individuals. The
gnomAD database represents a much larger
number of individuals (138632) and is aggregated
from a number of studies, including the 1000
genomes project. It does not only include
healthy individuals; however individuals with
severe paediatric diseases have been filtered from
the dataset. Therefore the gnomAD database is
unlikely to be enriched in variants associated with
severe diseases and is likely to be indicative of a
population distribution of variants.

Titin functional site information was obtained
from UniProt (The UniProt Consortium, 2017).
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S3.2 Defining titin domain
boundaries

HMMER (Finn et al., 2011) was used to
scan the protein sequence of titin IC variant
(NP 001254479.2), obtained from the RefSeq
database (Pruitt et al., 2012) against Pfam seed
libraries (Finn et al., 2014). Where hits overlapped
the hit with the lowest E-value was accepted. When
the lowest E-value hit for a region was greater than
0.0001 additional evidence was required to accept
a hit, such as an existing experimental structure or
high homology to other titin domains of the same
type.

Sequences of titin domains defined in this way,
including an extra 5 amino acids upstream and
16 amino acids downstream of the Pfam defined
boundary, were aligned using T-coffee (Notredame
et al., 2000) (separate alignments were created for
titin Fn3 and Ig domain sequences).

Sequence logos were also created from these
alignments using Weblogo (Notredame et al., 2000).
Additionally sequence logos were created from the
Pfam I-set and Fn3 seed alignments. It should be
noted that all titin Ig domains are determined to be
of the I-set type when defined by scanning against
Pfam seed alignments.

Comparisons were made between sequence logos
derived from aligned titin domain sequences and
those derived from Pfam seed alignments. Where
the two types of sequence logo differed substantially
or the domain boundaries did not appear to
be clearly defined by sequence conservation,
the boundaries were mapped onto available
experimental 3D structures and information from
this mapping used to define titin domain
boundaries.

S3.3 Mapping of titin isoforms

Stretcher (Myers and Miller, 1988) was used to
align all titin isoforms to the IC variant. Isoform
sequences were obtained from RefSeq (Pruitt et al.,
2012). Positions were mapped according to these
alignments.

S3.4 Modelling of titin domains

An automated homology modelling pipeline was
set up. The pipeline takes a fasta file of

domain sequences as input and uses only publicly
available PDB structures as templates. The overall
modelling process can be seen in Fig. S3A and
a flow diagram detailing the template selection
process is depicted in Fig. S3B. The template
search, modelling and model assessment were
performed using Modeller (Webb and Sali, 2016),
the alignment of query and templates performed
using 3DCoffee (O’Sullivan et al., 2004), and the
overall pipeline produced using Python 2.7. Models
were selected based on zDOPE score. zDOPE
score is a normalised atomic distance-dependant
statistical potential based on a sample of native
structures (Shen and Sali, 2006). Lower zDOPE
scores indicate better models with zDOPE scores
below -1 indicating the distribution of atomic
distances is similar to that in the sample of native
structures.

The I-TASSER server (Zhang, 2008) was used
to model Ig-112 as a satisfactory (negative)
zDOPE score was not obtained using the homology
modelling pipeline.

S3.5 Validation of models

The modelling pipeline described in section S3.3
was used to model all models with existing
experimental structures. However so as to exclude
the already solved structure from the templates, all
hits with an identity >95% were excluded during
template selection.

To validate the models these were compared to
the representative experimental structures detailed
in Table 1 in a similar manner to Sánchez and Sali
(1998) as well as the Critical Assessment of Protein
Structure Prediction experiments (Cozzetto et al.,
2009). Sequence alignments between structures
and models were calculated using Muscle (Edgar,
2004) and, structural superpositions guided by
the sequence alignments as well as per residue
RMSD calculations were performed using Theseus
(Theobald and Wuttke, 2006).

S3.6 In silico assessment of the
impact of nsSNVs

The in silico assessment of known nsSNVs
occurring within Ig and Fn3 domains was
performed using DUET (Pires et al., 2014b).
This tool exploits structural information and is
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Figure S3: Flow-diagrams showing A an outline of the modelling pipeline and B template selection
criteria. Qualifying templates refer to those templates which are selected for the modelling procedure.

based on a consensus of mCSM (Pires et al.,
2014a), a graph-based method combined with

machine learning to predict free energy changes
resulting from single point mutations, and SDM
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(Topham et al., 1997) which uses environment
specific substitution tables. The prediction of
impact for all possible SAVs which localise to
domain structures was carried out using mCSM
(Pires et al., 2014a); this algorithm was chosen
as its speed enables the prediction to be carried
out for the large number of such possible SAVs
(492271). Where experimental structures were
available these were used for the assessment.
Where no experimental structures were available
the model with the lowest zDOPE score was used.
See table S1 for experimental structures used in the
in silico assessment of nsSNVs. The impact of of
nsSNVs on protein-protein binding affinity was also
predicted using mCSM (Pires et al., 2014a) where
experimental structures of titin domains in complex
with binary interaction partners exist. See table S2
for structures used in the assessment of the impact
of nsSNVs on protein-protein binding affinity.

Table S1: PDB structures used for the structural
investigation of nsSNVs.

domain PDB ID method resolution/ Å

Ig-1 2a38 X-RAY 2.00
Ig-2 2a38 X-RAY 2.00
Ig-10 1g1c X-RAY 2.10
Ig-18 5jdd X-RAY 1.53
Ig-19 5jdd X-RAY 1.53
Ig-20 5jdd X-RAY 1.53
Ig-84 5j0e X-RAY 2.00
Ig-94 1waa X-RAY 1.80
Ig-156 3lcy X-RAY 2.50
Ig-157 3lcy X-RAY 2.50
Ig-158 2j8h X-RAY 1.99
Ig-159 2j8h X-RAY 1.99
Ig-160 2bk8 X-RAY 1.69
Ig-163 3qp3 X-RAY 2.00
Ig-164 1tnn NMR NA
Ig-166 3puc X-RAY 0.96
Ig-169 3knb X-RAY 1.40
Fn3-3 4o00 X-RAY 1.85
Fn3-62 1bpv NMR NA
Fn3-66 3lpw X-RAY 1.65
Fn3-67 3lpw X-RAY 1.65
Fn3-132 2nzi X-RAY 2.90‘

Assessment of all nsSNVs was performed
using the method Condel (González-Pérez and
López-Bigas, 2011). This method is purely
sequence based and uses the weighted average of
the normalised scores of 5 methods: Log R Pfam
E-value, MAPP, Mutation Assessor, Polyphen2
and Sift (González-Pérez and López-Bigas, 2011).

S3.7 Definition of structural
elements

Interface and core regions were defined using POPS
(Cavallo et al., 2003). Residues with a Q(SASA)
(quotient solvent accessible surface area)> 0.3 were
defined as being surface residues and those with
a Q(SASA) ≤ 0.3 defined as core residues. Here
Q(SASA) is defined as the quotient of the SASA
(solvent accessible surface area) and Surf (surface
area of the isolated residue).

Putative PPI interface regions were predicted
using SPPIDER II (Porollo et al., 2007) with
a balanced trade-off between sensitivity and
specificity (SPPIDER estimates this based on
a control data set of 149 protein chains with
no sequence homology), using representative
structures (see Table 1).

S3.8 Creation of a titin database

A database was set up to integrate titin structural,
variant and disease information. The database was
created using SQLite and DJANGO. nsSNVs from
the 1000 genomes project, ExAC and the paper ‘A
rising Titin: TTN review and mutation update’
(Chauveau et al., 2014b), as well as information
concerning structures modelled by the pipeline and
PDB structures were loaded to the database.

S3.9 Web server implementation

TITINdb is a python-based application
implemented using the DJANGO framework.
JSmol is used to visualise protein structures. It is
hosted on an Apache2.2.15 web server.
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Table S2: PDB structures used for the investigation of the impact of nsSNVs on protein-protein binding
affinity.

domain PDB ID method resolution / Å interaction partner

Ig-1 1ya5 X-RAY 2.44 TCAP
Ig-2 1ya5 X-RAY 2.44 TCAP

Ig-169 3knb X-RAY 1.40 OBSL1
Ig-2 4c4k X-RAY 1.95 TCAP

S4 Results

S4.1 Comparison of the calculated
properties of categorised
nsSNVs/SAVs

A comparison of the calculated properties of
categorised nsSNVs/SAVs which feature in
TITINdb can be seen in Fig. S4. The top left
plot compares the log transformed distribution
of gnomAD frequencies for nsSNVs found in the
1000 genomes project with the log transformed
distribution of gnomAD frequencies for nsSNVs
associated with disease (a small pseudocount
of 3.6E-6 has been added to each frequency to
allow for log transformation). It can be seen
that although the two subsets are significantly
different the MAF values show a large overlap.
Here the caveat must be taken that data from
1851 individuals from the 1000 genomes project
is a subset of the gnomAD data set. However, as
data from the 1000 genomes project only accounts
for 1.3% of the data in gnomAD it is considered
unlikely that this will have a large impact on the
MAF values observed in gnomAD. These results
suggest that not all pathogenic variants can be
distinguished from non-disease causing variants by
differences in MAF.

The top right plot shows the distributions
of Condel scores for nsSNVs from the 1000
genomes project, the gnomAD database, saturation
mutagenesis, and disease associated nsSNVs.
The disease associated nsSNVs are predicted to
be significantly more deleterious than nsSNVs
the other subsets. nsSNVs from saturation
mutagenesis are predicted to be significantly more
deleterious than those from the 1000 genomes
project and gnomAD database (from Fig. S4 it is
clear the difference is very small and significance
reached due to the large size of the dataset),

however significantly less deleterious than disease
associated variants.

In the bottom left plot it can be seen that
disease associated nsSNVs localise to residues
with a significantly lower Q(SASA) than nsSNVs
and SAVs from all other subsets. SAVs from
saturation mutagenesis localise to residues with a
significantly lower Q(SASA) than variants from the
1000 genomes data or ExAC database, however
it is clear that the difference is very small and
significance reached due to the large size of the
dataset.

The bottom right plot shows the distribution
of mCSM scores (predicted impact on stability in
kcal/mol, negative values indicate destabilisation)
for variants from each subset of the data. Here
it can be seen that disease associated nsSNVs
are predicted to be significantly more destabilising
than nsSNVs from the 1000 genomes project,
the gnomAD database and SAVs from saturation
mutagenesis.

Please note that saturation mutagenesis has
explored all variants (SAVs) which can be achieved
by a single amino acid change through mCSM
and POPs, however only those variants (nsSNVs)
which can be achieved by a single nucleotide change
through Condel.

S4.2 Titin domain boundaries

We find titin has 169 Ig domains in contrast to the
previously reported 152 (Chauveau et al., 2014b).
This discrepancy arises from both the previous
use of shorter isoforms to define domains rather
than the reference IC isoform, and the failure to
integrate available experimental evidence. Domain
Ig-94 is identified with an E-value of 0.0079 which
is higher than the set threshold of 0.0001, but
is validated by the experimental PDB structures
(1WAA, 1TIU and 1TIT) which exist of this
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Figure S4: A comparison of the properties of titin nsSNVs from the 1000 genomes project and gnomAD
database with disease associated nsSNVs and nsSNVs/SAVs from saturation mutagenesis. It can be seen
that disease associated nsSNVs are predicted to be both significantly more destabilising and significantly
more deleterious than nsSNVs/SAVs from the other subsets. It can also be seen that disease associated
SNVs localise to residues with a significantly lower Q(SASA). Significance calculated using pairwise
Mann-Whitney tests with Bonferroni correction (*p<0.05; **p<0.01; ***p<0.001; ****p<0.0001).

domain. Ig-88, Ig-89, Ig-90 and Ig-98 were also
identified with E-values higher than the threshold
(0.00079, 0.00026, 0.0022 and 0.0005); however
when the titin sequence was scanned using an
HMM created from an alignment of all (165) other
titin Ig domains, these domains were identified
with significantly low E-values (5.9E-11, 1.2E-12,
2.9E-10,7.4E-12). The mapping of all titin isoform

protein sequence positions to the reference IC
isoform has enabled the instigation of a consistent
naming scheme for domains in which Ig domains
are sequentially numbered from 1 to 169 and Fn3
domains numbered sequentially from 1 to 132.

Sequences logos (see Fig. S5) showing aligned
titin Fn3 sequences, differ substantially from such
logos depicting Pfam seed alignments; particularly
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towards the end of the sequence where the
conservation drops of gradually. Therefore the
correct boundaries do not appear to be clearly
defined from sequence alone. When mapped onto
available structures, for example in the case of
the Fn3 dimer 3LPW (bottom Fig. S5), it
becomes clear that the Pfam defined boundaries
do not cover entire titin Fn3 domains. Due
to this information it was decided the Pfam
defined Fn3 domain boundaries were not accurately
determined. Therefore Fn3 domains were initially
identified using Pfam/HMMER and the sequences
of these domains, including an extra 5 amino
acids upstream and 16 amino acids downstream
of the Pfam defined boundaries, were aligned
using T-coffee. This alignment was cut using
structural information from available titin Fn3
crystal structures, in particular 3LPW. An HMM
was created from this alignment and titin scanned
again using this HMM to redefine titin Fn3 domain
boundaries.

S4.3 Modelling of titin Ig and Fn3
domains

A pipeline was set up as described in the methods
section to perform the homology modelling of titin
Fn3 and Ig domains. Fig. S6 shows the structural
coverage of titin by experimental crystal/NMR
structures from the PDB, existing models from
the ModBase database (Pieper et al., 2009), and
models produced by the TITINdb pipeline.

It can be seen in Fig. S6 that our pipeline has
greatly increased both the structural coverage of
domains and the quality of the coverage (lower
zDOPE (Shen and Sali, 2006) scores indicate better
structures with native structures expected to have
a zDOPE score around -1). Here, for each domain
sequentially along the length of titin, existing
experimental structures are represented by purple
diamonds and blue hexagons, ModBase models are
represented by blue bars and models created by
the TITINdb pipeline are represented by red bars.
The closest identity each domain shares with an
experimental PDB structure is annotated along the
top x-axis.

Model validation was performed by modelling all
domains for which experimental structures already
exist, however excluding structures with >95%
identity from template selection. The models

were then compared to the solved structures for
relevant domain as described in the methods
section, in a similar manner to Sánchez and Sali
(1998) and Cozzetto et al. (2009). Cumulative
distribution plots for the RMSD (root-mean-square
deviation) for the comparison between models and
representative structures are shown in Fig. S7A (Ig
domains) and Fig. S7C (Fn3 domains). It can be
seen that a large proportion of modelled residues
have RMSD values lower than 1Å indicating that
the modelling has predicted the actual structure
with a high degree of accuracy. For 82% of the
models >60% of their residues fall within 1Å of the
solved structure and for 65% of the models >70% of
their residues fall within 1Å of the solved structure
(see table S4.3). As experimental structures have
only been solved for 5 titin Fn3 domains, summary
statistics are perhaps less informative, however for
80% of these >70% of residues lie within 1Å of the
solved crystal structures. For this small sample size
the Fn3 models generally show less deviation in
terms of alpha carbon (Cα) RMSD from the solved
structures than the Ig models do. This is perhaps
a result of the proportionally lower loop content of
the majority of titin Fn3 domains when compared
to titin Ig domains; as loop regions tend to be more
flexible and less conserved these tend to result in
larger RMSD values.

In the majority of cases those residues with
the highest RMSDs when compared to solved
structures localise to loops; as discussed this
is unsurprising due to the inherently greater
flexibility of loop regions. The exception to this is
the model for Ig-19, shown aligned to the crystal
structure 5JDD in Fig. S7A-I, which, from the
cumulative RMSD distribution appears to have
been modelled with the least success. On closer
inspection it becomes apparent that the majority of
the backbone aligns closely to the crystal structure
however the loop prior to the C-terminus is not as
tight as in the crystal structure which results in
misplacement of the final β sheet. On observation
of the alignment between the query and template
sequences (see Fig. S8) it can be seen that the
quality of the alignment drops for the portion of
the sequence which corresponds to the C-terminal β
sheet which perhaps explains the poor accuracy of
modelling this region. The other immunoglobulin
model which appears less accurate judging by the
RMSD values is Ig-164, shown aligned to the NMR
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structure 1TNN in Fig. S7A-II . Here, as expected,
the beta sheet core regions show close alignment
to the solved NMR structure 1TNN, however the
loop regions show large differences, in particular a
short helical stretch can be seen in the loop between
beta sheets E and F in the model which is not
present in the structure. Interestingly, the model
was built using only crystal structures as templates,
and all the crystal structures available for titin
Ig domains show such a short helical segment in
their analogous loops; however none of the NMR

structures demonstrate this property. Therefore it
is likely that the helical structure does not form in
solution due to competition with the surrounding
solvent for hydrogen bond formation with partially
exposed residues. This indicates that the higher
RMSD values observed in the loop regions for
this domain may be an indicator of conformational
differences caused by the distinct environments in
which the structures have been solved, rather than
poor model quality.
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Table S3: Percentage of domains for which models have a particular percentage of residues within 1Å
of the solved experimental structure after structural superposition. The analysis was performed using
17 domains for Ig domains and 5 domains for Fn3 domains (see Table S1 for domains and experimental
structures used for validation).

% residues <1Å RMSD from representative structure % Ig domains

10 100
20 100
30 100
40 100
50 94
60 82
70 65
80 35
90 12

% residues <1Å RMSD from representative structure % Fn3 domains

10 100
20 100
30 100
40 100
50 100
60 80
70 80
80 60
90 0
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Figure S7: Cumulative RMSD plots for models aligned to representative structures A for Ig domains
B for Fn3 domains. Alignments of Ig models with representative structures coloured by RMSD can be
seen for two of the least successful cases (I Ig-19 aligned to 5JDD and II Ig-164 aligned to 1TNN) and
two of the most successful cases (III Ig-2 aligned to 2A38 and IV Ig-163 aligned to 3QP3). A similar
method of model assessment has been used by Sánchez and Sali (1998) and Cozzetto et al. (2009)
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Figure S8: Alignment of query sequence and templates for the domain Ig-19, obtained using T-coffee
(Notredame et al., 2000).
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the assessment of the outcome of nonsynonymous
SNVs with a consensus deleteriousness score,
Condel. Am J Hum Genet, 88(4):440–9, 2011.
doi: 10.1016/j.ajhg.2011.03.004.

P. Hackman et al. Tibial muscular dystrophy is
a titinopathy caused by mutations in TTN, the
gene encoding the giant skeletal-muscle protein
titin. Am J Hum Genet, 71(3):492–500, 2002.
doi: 10.1086/342380.

D.S. Herman et al. Truncations of titin causing
dilated cardiomyopathy. N Engl J Med, 366(7):
619–28, 2012. doi: 10.1056/NEJMoa1110186.

M. Itoh-Satoh et al. Titin mutations as the
molecular basis for dilated cardiomyopathy.
Biochem Biophys Res Commun, 291(2):385–93,
2002. doi: 10.1006/bbrc.2002.6448.

R. Izumi et al. Exome sequencing identifies
a novel TTN mutation in a family with
hereditary myopathy with early respiratory
failure. J Hum Genet, 58(5):259–66, 2013. doi:
10.1038/jhg.2013.9.

M. Lek et al. Analysis of protein-coding genetic
variation in 60,706 humans. Nature, 536(7616):
285–91, 2016. doi: 10.1038/nature19057.

X. LIU et al. [Titin gene mutations in Chinese
patients with dilated cardiomyopathy]. Zhonghua
Xin Xue Guan Bing Za Zhi, 36(12):1066–9, 2008.

L.R. Lopes et al. Genetic complexity in
hypertrophic cardiomyopathy revealed
by high-throughput sequencing. J
Med Genet, 50(4):228–39, 2013. doi:
10.1136/jmedgenet-2012-101270.

B.J. Maron et al. Prevalence of hypertrophic
cardiomyopathy in a general population of
young adults. Echocardiographic analysis of
4111 subjects in the CARDIA Study. Coronary
Artery Risk Development in (Young) Adults.
Circulation, 92(4):785–9, 1995.

17



Y. Matsumoto et al. Functional analysis
of titin/connectin N2-B mutations found
in cardiomyopathy. J Muscle Res
Cell Motil, 26(6-8):367–74, 2005. doi:
10.1007/s10974-005-9018-5.

S. Mundy et al. Duchenne/becker muscular
dystrophy: advances in reproductive testing
options. Fertility and Sterility, 106(3):e372, 2016.
doi: 10.1016/j.fertnstert.2016.07.1058.

E.W. Myers and W. Miller. Optimal alignments
in linear space. Comput Appl Biosci, 4(1):11–7,
1988.

C. Notredame et al. T-Coffee: A novel
method for fast and accurate multiple sequence
alignment. J Mol Biol, 302(1):205–17, 2000. doi:
10.1006/jmbi.2000.4042.

M. Ohlsson et al. Hereditary myopathy with early
respiratory failure associated with a mutation in
A-band titin. Brain, 135(Pt 6):1682–94, 2012.
doi: 10.1093/brain/aws103.

O. O’Sullivan et al. 3DCoffee: combining
protein sequences and structures within multiple
sequence alignments. J Mol Biol, 340(2):385–95,
2004. doi: 10.1016/j.jmb.2004.04.058.

J. Palmio et al. Hereditary myopathy with
early respiratory failure: occurrence in
various populations. J Neurol Neurosurg
Psychiatry, 85(3):345–53, 2014. doi:
10.1136/jnnp-2013-304965.

A. Pantazis et al. Diagnosis and management of
hypertrophic cardiomyopathy. Echo Res Pract,
2(1):R45–53, 2015. doi: 10.1530/ERP-15-0007.

G. Pfeffer et al. Titin mutation segregates
with hereditary myopathy with early respiratory
failure. Brain, 135(Pt 6):1695–713, 2012. doi:
10.1093/brain/aws102.

U. Pieper et al. MODBASE, a database
of annotated comparative protein structure
models and associated resources. Nucleic Acids
Res, 37(Database issue):D347–54, 2009. doi:
10.1093/nar/gkn791.

D.E. Pires et al. mCSM: predicting the effects
of mutations in proteins using graph-based
signatures. Bioinformatics, 30(3):335–42, 2014a.
doi: 10.1093/bioinformatics/btt691.

D.E. Pires et al. DUET: a server for predicting
effects of mutations on protein stability using
an integrated computational approach. Nucleic
Acids Res, 42(Web Server issue):W314–9, 2014b.
doi: 10.1093/nar/gku411.

M. Pollazzon et al. The first Italian family with
tibial muscular dystrophy caused by a novel titin
mutation. J Neurol, 257(4):575–9, 2010. doi:
10.1007/s00415-009-5372-3.

A. Porollo et al. Prediction-based fingerprints
of protein-protein interactions. Proteins, 66(3):
630–45, 2007. doi: 10.1002/prot.21248.

K.D. Pruitt et al. NCBI Reference Sequences
(RefSeq): current status, new features and
genome annotation policy. Nucleic Acids
Res, 40(Database issue):D130–5, 2012. doi:
10.1093/nar/gkr1079.

R. Roncarati et al. Doubly heterozygous
LMNA and TTN mutations revealed by
exome sequencing in a severe form of dilated
cardiomyopathy. Eur J Hum Genet, 21(10):
1105–11, 2013. doi: 10.1038/ejhg.2013.16.

R. Sánchez and A. Sali. Large-scale protein
structure modeling of the Saccharomyces
cerevisiae genome. Proc Natl Acad Sci U S A,
95(23):13597–602, 1998.

S. Schafer et al. Titin-truncating variants affect
heart function in disease cohorts and the general
population. Nat. Genet., Nov 2016. doi:
10.1038/ng.3719.

C.E. Seidman and J.G. Seidman. Identifying
sarcomere gene mutations in hypertrophic
cardiomyopathy: a personal history.
Circ Res, 108(6):743–50, 2011. doi:
10.1161/CIRCRESAHA.110.223834.

M.Y. Shen and A. Sali. Statistical potential for
assessment and prediction of protein structures.
Protein Sci, 15(11):2507–24, 2006. doi:
10.1110/ps.062416606.

C. M. Strom et al. Cystic fibrosis testing 8 years
on: lessons learned from carrier screening and
sequencing analysis. Genet. Med., 13(2):166–172,
Feb 2011. doi: 10.1097/GIM.0b013e3181fa24c4.

18



The UniProt Consortium. UniProt: the
universal protein knowledgebase. Nucleic Acids
Res., 45(D1):D158–D169, Jan 2017. doi:
10.1093/nar/gkw1099.

D.L. Theobald and D.S. Wuttke. THESEUS:
maximum likelihood superpositioning and
analysis of macromolecular structures.
Bioinformatics, 22(17):2171–2, 2006. doi:
10.1093/bioinformatics/btl332.

C.M. Topham et al. Prediction of the
stability of protein mutants based on structural
environment-dependent amino acid substitution
and propensity tables. Protein Eng, 10(1):7–21,
1997.

C. Toro et al. Exome sequencing identifies titin
mutations causing hereditary myopathy with
early respiratory failure (HMERF) in families of
diverse ethnic origins. BMC Neurol, 13:29, 2013.
doi: 10.1186/1471-2377-13-29.

A. Uruha et al. Necklace cytoplasmic bodies
in hereditary myopathy with early respiratory

failure. J Neurol Neurosurg Psychiatry, 86(5):
483–9, 2015. doi: 10.1136/jnnp-2014-309009.

P.Y. Van den Bergh et al. Tibial muscular
dystrophy in a Belgian family. Ann Neurol, 54
(2):248–51, 2003. doi: 10.1002/ana.10647.

N. Vasli et al. Next generation sequencing for
molecular diagnosis of neuromuscular diseases.
Acta Neuropathol, 124(2):273–83, 2012. doi:
10.1007/s00401-012-0982-8.

K. Wang et al. ANNOVAR: functional annotation
of genetic variants from high-throughput
sequencing data. Nucleic Acids Res, 38(16):
e164, 2010. doi: 10.1093/nar/gkq603.

B. Webb and A. Sali. Comparative Protein
Structure Modeling Using MODELLER. Curr
Protoc Protein Sci, 86:2.9.1–2.9.37, 2016. doi:
10.1002/cpps.20.

Y. Zhang. I-TASSER server for protein 3D
structure prediction. BMC Bioinformatics, 9:40,
2008. doi: 10.1186/1471-2105-9-40.

19


