
LEAP: Constructing gene-coexpression networks for single-cell

sequencing data using pseudo-time ordering

Alicia T. Specht and Jun Li

October 18, 2016

Abstract

Summary: To construct gene co-expression networks based on single-cell RNA-Sequencing data, we present an
algorithm called LEAP, which utilizes the estimated pseudo-time information of the cells to find stronger associations
between pairs of genes.
Contact: aspecht2@nd.edu

Contents

1 Introduction 1

2 Data format 2

3 Maximum Absolute Correlation (MAC) Counter Function 2

4 Permutation Analysis Function 3

5 Creating Table 1 from our paper 5

6 Generating matrices for use in WGCNA 6

7 Session information 7

8 Citation information 7

1 Introduction

Advances in sequencing technology now allow researchers to capture the expression profiles of individual cells. Several
algorithms have been developed to attempt to account for these effects by determining a cell’s so-called ‘pseudo-time’,
or relative biological state of transition.

By applying these algorithms to single-cell sequencing data, we can sort cells into their pseudotemporal ordering
based on gene expression. LEAP (Lag-based Expression Association for Pseudotime-series) then applies a time-series
inspired lag-based correlation analysis to reveal linearly dependent genetic associations.

1



2 Data format

LEAP takes a data matrix for which the rows are genes and the columns are experiments, sorted by their pseudo-time.
For example, consider this dataset consisting 20 genes from a dataset of high throughput single-cell RNA sequencing
counts of Mus musculus dendritic cells(Shalek et al, 2014):

> library("LEAP")

> example_data[,1:5]

X..0.000000 X..1.056273 X..1.402318 X..1.607550 X..1.779713

1 5.445686 5.102184 0.0000000 2.9839979 0.0000000

2 4.526036 6.532284 6.0904955 5.6275842 6.1838837

3 6.528766 6.214955 0.0000000 3.2003647 6.4477135

4 7.252316 6.627344 0.0000000 1.6035663 0.0000000

5 0.000000 5.209410 5.5418589 5.5792501 2.8199493

6 0.000000 0.000000 0.0000000 5.8262664 3.4519732

7 3.253274 2.959225 3.9272823 6.3940181 6.2686141

8 0.000000 0.000000 0.9958159 1.3969442 5.0141277

9 6.685728 6.414861 6.6039581 6.0960811 5.8442669

10 0.000000 3.201347 5.9733666 6.4752538 5.1608972

11 0.000000 0.000000 2.8945397 5.3855163 0.0000000

12 0.000000 0.000000 0.0000000 5.9502785 0.0000000

13 0.000000 5.413914 5.6621031 0.0000000 5.2452502

14 0.000000 3.174056 0.0000000 3.2505840 6.6724467

15 6.664693 7.092854 0.0000000 0.0000000 6.7583925

16 1.035870 7.706152 0.0000000 0.9082936 6.6226587

17 5.773570 4.750586 0.0000000 0.0000000 0.9529196

18 3.884139 4.667165 0.0000000 5.6001221 4.5408934

19 6.288354 6.437330 6.4375612 6.2336922 6.5298076

20 0.000000 0.000000 0.0000000 0.0000000 5.3029461

We’ve shown only the first 5 cells here. The column names are the pseudo-times that were generated for each
sample using Monocle (Trapnell et al., 2014). As you can see, the samples have been ordered from lowest to greatest
pseudo-time. We’ve also applied a log(x+1) transformation to the count data.

3 Maximum Absolute Correlation (MAC) Counter Function

Once your data is in the above format, you can use the MAC_counter() function to calculate the Max Absolute
Correlation (MAC) matrix for you data. The output of this function is a matrix where Row gene index and Column

gene index correspond to the indeces for the gene pair (i,j), Correlation is the maximum absolute correlation
(MAC) achieved for the pair, and Lag is the lag at which the MAC occurred. Note that the pair (i,j) and (j,i) will both
appear in the results, as they will potentially have different MACs. As can be seen below, setting MAC_cutoff=0.2

restricts the output to only those pairs with an MAC of 0.2 or greater.

> MAC_results = MAC_counter(data=example_data, max_lag_prop=1/3, MAC_cutoff=0.2, file_name="example", lag_matrix=T)

> MAC_results[99:119,]

Correlation Lag Row gene index Column gene index

[1,] 0.2635403 172 2 19

[2,] 0.2526990 0 4 1

[3,] 0.2526990 0 1 4

[4,] -0.2496095 3 1 7

[5,] 0.2485226 0 15 9

[6,] 0.2485226 0 9 15

[7,] 0.2420226 93 2 5

2



[8,] -0.2322217 3 1 12

[9,] 0.2314823 0 16 13

[10,] 0.2314823 0 13 16

[11,] 0.2224057 0 4 3

[12,] 0.2224057 0 3 4

[13,] -0.2214821 0 16 15

[14,] -0.2214821 0 15 16

[15,] 0.2205179 0 17 4

[16,] 0.2205179 0 4 17

[17,] -0.2193975 114 15 8

[18,] 0.2161187 0 7 4

[19,] 0.2161187 0 4 7

[20,] -0.2137327 90 17 5

[21,] -0.2125380 102 17 18

Here, max_lag_ prop is the largest proportion of your experiments that you want your lag to be. For this example, we
have 512 experiments, so the largest lag we will try is 172. We recommend using at most a max_lag_prop=1/3. The
variable file_name is the name you’d to associate with your files. Our example creates the file MAC_example.csv.

> MAC_example[1:4,1:4]

[,1] [,2] [,3] [,4]

[1,] NA -0.1728618 0.4182790 0.2526990

[2,] 0.1414134 NA -0.1427626 0.1463172

[3,] 0.4182790 0.1583516 NA 0.2224057

[4,] 0.2526990 -0.1593688 0.2224057 NA

The variable lag_matrix decides whether you would like the associated matrix of lag values to be saved as well.
For our example, setting lag_matrix=T creates the file lag_example.csv.

> lag_example[1:4,1:4]

V1 V2 V3 V4

1 NA 172 0 0

2 121 NA 141 165

3 0 67 NA 0

4 0 47 0 NA

Again, note that the diagonal is set to NA. It is important to note that each of the values in the lag matrix correspond
to the size of the lag used on the gene listed in the column. In our example, 172 corresponds to starting gene 1’s
expression at its first pseudo-time point and staggering the expression of gene 2 by 172 pseudo-time points (hence
starting at 173).

4 Permutation Analysis Function

To determine a cutoff for significant MAC values, you can use the MAC_perm() function.

> MAC_perm(data=example_data, MACs_observ=MAC_example, num_perms=10, max_lag_prop=1/3,

+ FDR_cutoffs=101, perm_file_name="example")

The variable num_perms determines the number of permutations to use. Note we’ve only used 10 here to simplify
our example. For larger datasets, using 100 is most likely appropriate. FDR_cutoffs determines the number of cutoffs
you’d like to use to split the domain [0,1] for the correlation. data, max_lag_prop and perm_file_name follow the
same use as described for MAC_counter().

This returns the dataset below, where cors are the correlation cutoffs, MACs_observed are the number of observed
correlations at that cutoff, MACs_ave_perm are the average number observed in the permuted datasets at that cutoff,
and fdr is the false discovery rate (FDR) observed at that cutoff. We can see that for our example dataset, if we
would like to control the FDR around 0.1, then a correlation cutoff of 0.18 would be appropriate. Below are shown
the results with nonzero FDR:

3



> perm_example[74:101,]

cors MACs_observed MACs_ave_perm fdr

74 0.27 98 0.0 0.0000000000

75 0.26 99 0.0 0.0000000000

76 0.25 101 0.1 0.0009900990

77 0.24 104 0.1 0.0009615385

78 0.23 106 0.3 0.0028301887

79 0.22 110 0.7 0.0063636364

80 0.21 113 2.4 0.0212389381

81 0.20 120 4.7 0.0391666667

82 0.19 137 8.6 0.0627737226

83 0.18 152 17.7 0.1164473684

84 0.17 168 35.8 0.2130952381

85 0.16 188 59.8 0.3180851064

86 0.15 217 95.4 0.4396313364

87 0.14 235 135.8 0.5778723404

88 0.13 244 170.9 0.7004098361

89 0.12 248 186.7 0.7528225806

90 0.11 248 191.1 0.7705645161

91 0.10 248 191.7 0.7729838710

92 0.09 248 191.7 0.7729838710

93 0.08 248 191.7 0.7729838710

94 0.07 248 191.7 0.7729838710

95 0.06 248 191.7 0.7729838710

96 0.05 248 191.7 0.7729838710

97 0.04 248 191.7 0.7729838710

98 0.03 248 191.7 0.7729838710

99 0.02 248 191.7 0.7729838710

100 0.01 248 191.7 0.7729838710

101 0.00 248 191.7 0.7729838710

4



5 Creating Table 1 from our paper

To generate the table found in our paper, we first compared our resulting LEAP and simple correlation based-networks
with the true network taken from FunCoup (Schmitt et al, 2013). The results of this analysis were assembled into
tables such as the one shown below, where each row shows the number of correctly identified known associations up
to the current row (”Count”), the MAC value, and the row index and column indeces for the current association. See
TP_counts below:

> TP_counts[10:20,]

Count MAC Row Column

10 1 0.7696197 73 74

11 2 0.7665432 74 220

12 2 0.7660433 110 358

13 2 0.7632045 61 453

14 2 0.7596131 220 541

15 2 0.7595162 38 358

16 2 0.7514357 110 111

17 3 0.7486041 275 345

18 4 0.7476178 38 359

19 4 0.7468748 110 359

20 4 0.7448159 61 74

>

We then counted the number of correctly identified known associations for the cutoffs 0.18-0.23 for LEAP and
simple correlation, resulting in the counts shown below (note only the code for LEAP’s analysis is shown for simplic-
ity):

> cutoffs= c(0.23,0.22,0.21,0.20,0.19,0.18)

> true.cor.leap=rep(NA, 6)

> for(i in (1:length(cutoffs))){

+

+ inds = which(TP_counts[,2]<= cutoffs[i])

+ max = max(TP_counts[inds,2])

+ ind = which(TP_counts[,2]==max)

+

+ true.cor.leap[i] = TP_counts[ind,1]

+

+ }

> true.cor.leap

[1] 2394 3315 4686 6767 9508 12989

> true.cor.sim

[1] 1313 1508 1751 2022 2367 2804

Next we counted for each cutoff the number of lags greater than 0 and 50. We do this by first finding the rows
in our network comparison tables containing a correctly identified association. Note that lags here is the lag matrix
outputed by the MAC_counter() function.

> # get rows where true association is found #

>

> inds.trues=c()

> for(n in(1:(nrow(TP_counts)-1))){

+

+ if(TP_counts[n,1]<TP_counts[n+1,1]){inds.trues = c(inds.trues, n+1)}

+

5



+ }

> lag.count.0 = rep(NA, 6)

> lag.count.50 = rep(NA, 6)

> TP_trues = TP_counts[inds.trues,]

> # count the number of lags at each cutoff #

>

> for(j in (1:length(cutoffs))){

+

+ inds = which(TP_trues[,2]>= cutoffs[j])

+

+ row.inds = TP_trues[inds,3]

+ col.inds = TP_trues[inds,4]

+ lag.cutoff = rep(NA, length(row.inds))

+

+ for(k in (1:length(row.inds))){

+

+ lag.cutoff[k] = lags[row.inds[k],col.inds[k]]

+

+ }

+

+ lag.count.0[j] = length(which(lag.cutoff>0))

+ lag.count.50[j] = length(which(lag.cutoff>50))

+

+ }

>

We then count the total number of observations for LEAP and simple correlation that were identified at each
cutoff, and finally pull all of these results together to create Table 1. Note that the FDR values are pulled directly
from the MAC_perm() function output.

> Table1 = cbind(cutoffs, num.cor.sim, true.cor.sim, num.cor.leap,

+ true.cor.leap, lag.count.0, lag.count.50, fdr)

> Table1

cutoffs num.cor.sim true.cor.sim num.cor.leap true.cor.leap lag.count.0

[1,] 0.23 8494 1313 14735 2394 911

[2,] 0.22 9640 1508 20405 3315 1661

[3,] 0.21 11101 1751 28843 4686 2818

[4,] 0.20 12942 2022 41778 6767 4691

[5,] 0.19 15142 2367 59556 9508 7204

[6,] 0.18 17761 2804 82424 12989 10446

lag.count.50 fdr

[1,] 526 0.002373495

[2,] 1007 0.005096089

[3,] 1744 0.010747098

[4,] 2927 0.021010715

[5,] 4579 0.047542090

[6,] 6746 0.082107443

>

6 Generating matrices for use in WGCNA

If you intend to use the results from LEAP for further analysis with WGCNA (Langfelder and Horvath, 2008),
then you will require a symmetric matrix of correlations. LEAP will compute this matrix by setting symmetric=T.

6



This creates two files, lag_symmetric_example.csv and MAC_symmetric_example.csv. LEAP finds this matrix by
comparing the correlation of each (i,j) and (j,i) pair, and keeping the value with the maximum absolute correlation.
In our example, the pair gene 1 and gene 2 have correlation -0.17 when gene 2 is the lagged gene, (1,2), and correlation
0.14 when gene 1 is the lagged gene, (2,1), then in the symmetric matrix (1,2)=(2,1) = -0.17. Below are the results
when we find the symmetric matrix for our example dataset:

> output=MAC_counter(data=example_data, max_lag_prop=1/3, file_name="example", lag_matrix=T, symmetric=T)

> MAC_symmetric[1:5,1:5]

V1 V2 V3 V4 V5

1 NA -0.1728618 0.4182790 0.2526990 -0.1765579

2 -0.1728618 NA 0.1583516 -0.1593688 0.2420226

3 0.4182790 0.1583516 NA 0.2224057 0.1622316

4 0.2526990 -0.1593688 0.2224057 NA 0.1699593

5 -0.1765579 0.2420226 0.1622316 0.1699593 NA

7 Session information

> sessionInfo()

R version 3.2.2 (2015-08-14)

Platform: x86_64-w64-mingw32/x64 (64-bit)

Running under: Windows 7 x64 (build 7601) Service Pack 1

locale:

[1] LC_COLLATE=English_United States.1252

[2] LC_CTYPE=English_United States.1252

[3] LC_MONETARY=English_United States.1252

[4] LC_NUMERIC=C

[5] LC_TIME=English_United States.1252

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] LEAP_0.2

loaded via a namespace (and not attached):

[1] tools_3.2.2

8 Citation information

References

[Langfelder and Horvath, 2008] Langfelder, Peter and Horvath, Steve (2008) WGCNA: an R package for weighted
correlation network analysis. BMC bioinformatics, 9(1), 1.

[Schmitt et al., 2013] Schmitt, T., Ogris, C., and Sonnhammer, E. L. (2013) FunCoup 3.0: database of genome-wide
functional coupling networks. Nucleic Acids Research, 42(Database issue), D821-8.

[Shalek et al., 2014] Shalek AK, Satija R., Shuga J., Trombetta J.J. et al. (2014) Single-cell RNA-seq reveals dynamic
paracrine control of cellular variation. Nature, 510(7505), 363-369.

[Trapnell et al., 2014] Trapnell, Cole and Cacchiarelli, Davide and Grimsby, Jonna and Pokharel, Prapti and Li,
Shuqiang and Morse, Michael and Lennon, Niall J. and Livak, Kenneth J. and Mikkelsen, Tarjei S. and Rinn, John
L. (2014) The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single
cells, Nature Biotechnology, 32(4), 381-386.

7


