Web Material:

Residential Proximity to Major Roadways, Fine Particulate Matter, and Hepatic Steatosis: The Framingham Heart Study

Wenyuan Li^{1,2}, Kirsten S. Dorans^{1,2}, Elissa H. Wilker^{1,2}, Mary B. Rice^{2,3}, Michelle T. Long^{4,5}, Joel Schwartz^{1,6}, Brent A. Coull⁷, Petros Koutrakis⁶, Diane R. Gold^{6,8}, Caroline S. Fox^{5,9}, Murray A. Mittleman^{1,2}

1 Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts;

2 Cardiovascular Epidemiology Research Unit, Division of Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts;

3 Division of Pulmonary, Critical Care and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts;

4 Division of Gastroenterology, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts;

5 National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, Massachusetts;

6 Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts;

7 Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston,

Massachusetts;

8 Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts;

9 Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, Maryland.

Web Table 1. The associations of 2003 annual $PM_{2.5}^{a}$ with liver-to-phantom ratio (LPR) and presence of hepatic steatosis stratified by median age at the time of multi-detector computed tomography (MDCT) scan, sex, and education levels in the Framingham MDCT Study (2002-2005), Boston, Massachusetts.

	Liver-to-phantom ratio		Hepatic steatosis ^b			
-	β	95% CI	Р	PR	95% CI	Р
Median age ^c						
\leq 50 yr	0.001	-0.001, 0.004	0.25	0.93	0.83, 1.05	0.22
> 50 yr	-0.001	-0.004, 0.002	0.23	1.01	0.91, 1.13	0.55
Sex ^d						
Women	-0.001	-0.004, 0.002	0.15	1.05	0.95, 1.17	0.06
Men	0.002	-0.001, 0.005	0.15	0.91	0.82, 1.02	0.00
Educational level ^e						
\leq High school	0.002	-0.003, 0.006	0.59	1.00	0.83, 1.21	0.74
\geq College	0.000	-0.002, 0.002	0.39	0.97	0.88, 1.06	0.74

Abbreviation: MDCT, multi-detector computed tomography; CI, confidence intervals; PR, prevalence ratio.

 a Results from $PM_{2.5}$ analyses were scaled to be as equivalent to per 1.4 $\mu g/m^3$ increase in 2003 annual $PM_{2.5}$ concentrations.

^b Defined as liver-to-phantom ratio ≤0.33.

^c Models were additionally adjusted for age at MDCT scan, and (age at MDCT scan)²; sex; smoking status (current, former, or never); pack years; alcohol intake; educational level; usual occupation; physical activity; anti-hypertensive medication use; statin use; quartile of median household income in the participant's census tract in 2000; median value of owner occupied housing units in the census tract; population density (population/km²) in the census tract; cardiovascular disease; diabetes; and an exam identifier.

^d Models were additionally adjusted for age at MDCT scan, and (age at MDCT scan)²; smoking status (current, former, or never); pack years; alcohol intake; educational level; usual occupation; physical activity; anti-hypertensive medication use; statin use; quartile of median household income in the participant's census tract in 2000; median value of owner occupied housing units in the census tract; population density (population/km²) in the census tract; cardiovascular disease; diabetes; and an exam identifier.

^e Models were additionally adjusted for age at MDCT scan, and (age at MDCT scan)²; sex; smoking status (current, former, or never); pack years; alcohol intake; usual occupation; physical activity; anti-hypertensive medication use; statin use; quartile of median household income in the participant's census tract in 2000; median value of owner occupied housing units in the census tract; population density (population/km²) in the census tract; cardiovascular disease; diabetes; and an exam identifier.

Web Table 2. The associations of distance to the nearest major roadway ^a with liver-to-phantom ratio (LPR) and presence of hepatic steatosis stratified by median age at the time of multi-detector computed tomography (MDCT) scan, sex, and education levels in the Framingham mdct Study (2002-2005), Boston, Massachusetts.

	Liver-to-phantom ratio		Hepatic steatosis ^b			
_	β	95% CI	Р	PR	95% CI	Р
Median age ^c						
\leq 50 yr	-0.002	-0.005, 0.002	0.25	1.09	0.92, 1.29	0.22
> 50 yr	-0.005	-0.008, -0.001	0.23	1.21	1.07, 1.37	0.55
Sex ^d						
Women	-0.005	-0.008, -0.001	0.20	1.37	1.20, 1.56	0.001
Men	-0.002	-0.006, 0.002	0.29	0.98	0.84, 1.14	0.001
Educational level ^e						
\leq High school	-0.005	-0.010, 0.000	0.39	1.29	1.11, 1.51	0.15
\geq College	-0.003	-0.006, 0.000		1.11	0.98, 1.26	0.15

Abbreviation: MDCT, multi-detector computed tomography; CI, confidence intervals; PR, prevalence ratio.

^a Results were scaled to approximate comparing participants who lived 58 m (25^{th} percentile) from the nearest major roadway to those who lived 416 m (75^{th} percentile) from the nearest major roadway.

^b Defined as liver-to-phantom ratio ≤0.33.

^c Models were additionally adjusted for age at MDCT scan, and (age at MDCT scan)²; sex; smoking status (current, former, or never); pack years; alcohol intake; educational level; usual occupation; physical activity; anti-hypertensive medication use; statin use; quartile of median household income in the participant's census tract in 2000; median value of owner occupied housing units in the census tract; population density (population/km²) in the census tract; cardiovascular disease; diabetes; and an exam identifier.

^d Models were additionally adjusted for age at MDCT scan, and (age at MDCT scan)²; smoking status (current, former, or never); pack years; alcohol intake; educational level; usual occupation; physical activity; anti-hypertensive medication use; statin use; quartile of median household income in the participant's census tract in 2000; median value of owner occupied housing units in the census tract; population density (population/km²) in the census tract; cardiovascular disease; diabetes; and an exam identifier.

^e Models were additionally adjusted for age at MDCT scan, and (age at MDCT scan)²; sex; smoking status (current, former, or never); pack years; alcohol intake; usual occupation; physical activity; anti-hypertensive medication use; statin use; quartile of median household income in the participant's census tract in 2000; median value of owner occupied housing units in the census tract; population density (population/km²) in the census tract; cardiovascular disease; diabetes; and an exam identifier.

Web Table 3. Summary of Results from Sensitivity Analyses Conducted for the Associations of Distance to Major Roadways and 2003 Annual Average PM2.5 with Liver-to-Phantom Ratio (LPR) and Presence of Hepatic Steatosis in the Framingham Multi-Detector Computed Tomography (MDCT) Study (2002-2005), Boston, Massachusetts.

	Living close	er to major roadways ^a	$PM_{2.5}$ ^a	
Liver-to-Phantom Ratio	β	95% CI	β	95% CI
Primary results	-0.003	-0.006, -0.001	0.000	-0.002, 0.002
Adjust for BMI ^b	-0.003	-0.006, 0.000	0.000	-0.002, 0.002
Further exclusion alcohol intake ^c	-0.003	-0.006, 0.000	0.000	-0.002, 0.003
Adjust for time covariates ^d	-0.003	-0.006, -0.001	0.000	-0.002, 0.002
Exclude those who changed addresses ^e	-0.003	-0.006, -0.001	0.000	-0.002, 0.003
Exclude participants with CVD or diabetes ^f	-0.003	-0.006, -0.001	0.001	-0.002, 0.003
Same sample size for $PM_{2.5}$ and distance analyses	-0.003	-0.006, -0.001	0.000	-0.002, 0.003
2003-2005 annual average $PM_{2.5}$			0.000	-0.002, 0.002
Hepatic Steatosis ^g	PR	95% CI	PR	95% CI
Primary results	1.16	1.05, 1.28	0.97	0.89, 1.06
Adjust for BMI ^b	1.17	1.05, 1.29	0.98	0.90, 1.07
Further exclusion alcohol intake ^c	1.16	1.04, 1.30	0.98	0.89, 1.07
Adjust for time covariates ^d	1.16	1.05, 1.29	0.98	0.90, 1.06
Exclude those who changed addresses ^e	1.17	1.05, 1.29	0.97	0.89, 1.06
Exclude participants with CVD or diabetes ^f	1.15	1.03, 1.29	0.98	0.89, 1.07
Same sample size for $PM_{2.5}$ and distance analyses	1.16	1.05, 1.28	0.97	0.88, 1.07
2003-2005 annual average PM _{2.5}			0.97	0.90, 1.05

Abbreviation: MDCT, multi-detector computed tomography; BMI, body mass index; CI, confidence interval; PM_{2.5}, fine particulate matter; PR, prevalence ratio.

a Models were adjusted for age at MDCT scan, and (age at MDCT scan)², sex; an exam identifier; smoking status; pack years; alcohol intake; educational level; usual occupation; physical activity; anti-hypertensive medication use; statin use; quartile of median household income in the participant's census tract in 2000; median value of owner occupied housing units in the census tract; population density in the census tract, cardiovascular disease and diabetes. Results from distance analyses were scaled to approximate contrasting participants who lived 58 m (25th percentile) from the nearest major roadway to those who lived 416 m (75th percentile) from the nearest major roadway. And results from PM_{2.5} analyses were scaled to be equivalent to per 1.4 μ g/m³ increase in 2003 annual PM_{2.5} concentrations.

b Additionally adjusted for BMI

c Further excluded men who reported > 14 drinks/week and women who reported > 7 drinks/week.

d Additionally adjusted for date of MDCT scan, days between physical examination date and MDCT examination date, and the year of MDCT scan.

e Excluded participants who changed their addresses between Offspring examination 6 and 7.

f Excluded participants who had cardiovascular disease or diabetes.

g Hepatic steatosis defined as having liver-to-phantom ratio ≤ 0.33 .

Primary analyses ^a Include participants who lived $\geq 1000 \text{ m}^{a}$ 95% CI Liver-to-Phantom Ratio β 95% CI ß Log_e Distance ^b -0.003 -0.006, -0.001 -0.002 -0.005, 0.000 Distance Categories, m <50 -0.004 -0.010, 0.002 -0.002 -0.008, 0.00350-99.9 -0.010 -0.018, -0.003 -0.009 -0.017, -0.002 100-199.9 -0.002 -0.008, 0.004 -0.001 -0.007, 0.005200-399.9 0.000 -0.006, 0.005 0.001 -0.004.0.006Reference 0 0 Hepatic Steatosis^c PR 95% CI PR 95% CI Log_e Distance ^b 1.05, 1.28 1.16 1.12 1.02, 1.23 Distance Categories, m < 50 1.21 0.94, 1.55 1.16 0.92, 1.45 50-99.9 1.05, 1.98 1.39 1.03, 1.87 1.44 100-199.9 0.79, 1.36 1.09 0.81, 1.46 1.04 200-399.9 0.95 0.91 0.72, 1.25 0.71, 1.17 0 0 Reference group

Web Table 4. Comparison of the Associations of Distance to Major Roadways and 2003 Annual Average $PM_{2.5}$ with Liver-to-Phantom Ratio (LPR) and Presence of Hepatic Steatosis before and after including Participants Who Lived > 1000 m from Major Roadways in the Framingham Multi-Detector Computed Tomography (MDCT) Study (2002-2005), Boston, Massachusetts.

Abbreviation: MDCT, multi-detector computed tomography; PR, prevalence ratio; CI, confidence interval. a Models were adjusted for age at MDCT scan, and (age at MDCT scan)², sex; an exam identifier; smoking status; pack years; alcohol intake; educational level; usual occupation; physical activity; antihypertensive medication use; statin use; quartile of median household income in the participant's census tract in 2000; median value of owner occupied housing units in the census tract; population density in the census tract, cardiovascular disease and diabetes.

b Results from distance analyses were scaled to approximate contrasting participants who lived 58 m (25th percentile) from the nearest major roadway to those who lived 416 m (75th percentile) from the nearest major roadway.

c Hepatic steatosis defined as having liver-to-phantom ratio ≤ 0.33 .