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Figure 1: Overview of Integrated Prediction Methodology

1.1 Random Forest (RF)

Random Forest regression refers to ensemble of regression trees where a set of T un-pruned regression
trees are generated based on bootstrap sampling from the original training data. For selecting the
feature for splitting at each node, a random set of m features from the total M features are used.
The inclusion of the concepts of bagging (Bootstrap sampling for each tree) and random subspace
sampling (node split selected from random subset of features) increase the independence of the
generated trees and thus the averaging of the prediction over multiple trees has lower variance
compared to individual regression trees.

Process of splitting a node

Let, x(i, j) and y(i)(i = 1, ., n; j = 1, ...,M) denote the input and output response samples
respectively. At each node of the regression tree, the node cost is considered as the sum of squares:

D(ηP ) =
∑
i∈ηP

(y(i)− µ(ηP ))2 (1)
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where µ(ηP ) is the expected value y(i) in node ηP .
The reduction in cost for partition γ at node ηP is

C(γ, ηP ) = D(ηP )−D(ηL)−D(ηR) (2)

where ηL (left node with samples x(I ∈ ηp, js) ≤ z) and ηR (right node with samples satisfying
xtr(I ∈ ηp, js) > z) denotes the child nodes after the split. The partition γ∗ that maximizes
C(γ, ηP ) for all possible partitions is selected for node ηP .

Forest Prediction

If ŷ(x, i) denotes the prediction for Tree i for input x, the prediction for the forest is given by

ŷ(x) =
1

T

T∑
i=1

ŷ(x, i) (3)

1.2 Multivariate Random Forest (MRF)

The multiple response scenario has output y(i, k)(i = 1, ..., n; k = 1, ..., r). The primary difference
between MRF and RF is in the generation of the trees with different node costs DMRF (η) and D(η).

The node cost D(ηP ) =
∑
i∈ηP (y(i) − µ(ψP ))2 for the univariate case is the sum of squares

of the differences between the output response and the mean output response for the node. For
multivariate case, the difference between a sample point and the multivariate mean distribution is
desirable and can be achieved as the sum of the squares of Mahalanobis Distance as shown next:

DMRF (ηP ) =
∑
i∈ηP

(y(i)− µ(ηP ))Γ−1(y(i)− µ(ηP ))T (4)

where Γ is the covariance matrix, y(i) is the row vector (y(i, 1), .., (y(i, r)) and µ(ηP ) is the row
vector denoting the mean of y(i) in node ηP . Note that the covariance between output responses Γ
can be considered as dependent on the samples at the node (i.e. Γ(ηP )) but we have decided to use
the covariance generated from the initial training samples.

The inverse covariance matrix (Γ−1) is a precision matrix which provides a measure of conditional
dependence between multiple random variables. The Mahalanobis distance square normalizes the
output responses by their standard deviations and in case of Γ being diagonal, it represents the
normalized Euclidean distance.

The MRF provides prediction for multiple output responses as compared to single response in
case of RF. When the drugs are related due to similarity of action (such as common targets for
targeted drugs) , the MRF can incorporate that correlation to improve the prediction accuracy as
illustrated through examples in results section.

2 Error Estimation Techniques

2.1 Preprocessing of the Data

Dream challenge drug sensitivity data was normalized by dividing it with the maximum value. The
AUC values of CCLE dataset has been normalized by dividing the AUC measures by the number of
drug concentrations tested which was eight.

2.2 Training (Re-substitution) Error

Re-substitution is the most basic approach that uses the training samples as the testing samples.
Since the testing samples have already been used to train the model, re-substitution estimates will
provide an optimistic view of the model accuracy. In small sample scenarios ( < 100 samples), re-
substitution estimates does not further reduce the number of limited available samples for training
and can potentially be used for model selection. However, we need to be careful about over-fitting as
re-substitution estimates will keep improving when we increase the number of features in the model.

2.3 K-fold Cross Validation and Leave One Out Error Estimation

In K-fold Cross Validation accuracy estimate, we partition the data randomly into K distinct folds
of approximately equivalent sizes. We train the model on K−1 folds and test on the remaining fold
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and repeat it K times each time selecting a different fold to hold out for testing. The final K-fold
Cross Validation accuracy estimate is the average accuracy over the K testing folds. Leave One
Out error estimate is a special form of K-fold Cross Validation where K = number of samples i.e.
we leave one sample out for testing at each iteration.

2.4 Bootstrap & 0.632+ Bootstrap Error Estimation

Bootstrap [1] accuracy estimation considers sampling with replacement while generating the training
samples. Consider that the samples X1, X2, · · · , Xn belong to an underlying distribution and we
want to train a model on that distribution. Bootstrap considers sampling from the underlying
empirical distribution represented by X1, X2, · · · , Xn. Thus, n training samples are generated from
the samples X1, X2, · · · , Xn using sampling with replacement and the samples that are not selected
are used for testing the model accuracy. This procedure is repeated B number of times and average
accuracy estimated. B is usually recommended to be between 25 and 200 [2].

The bias of an estimator is the difference between the expected value and the true value of the
parameter being estimated. The Bootstrap error estimator can be upward biased i.e. the error
estimate can be higher than the actual value. On the other hand, re-substitution error estimate can
be downward biased i.e. the error estimate can be lower than the true value. The 0.632 Bootstrap
method [2,3] considers a combination of these two estimators (one upward biased and one downward
biased) to potentially arrive at an unbiased estimator. The 0.632 Bootstrap error estimate is given
by

α.632Boot = 0.632 · αboot + 0.368 · αresub (5)

Due to the contribution of re-substitution error, 0.632 Bootstrap estimator can be over fitted.
0.632+ Bootstrap error estimator [3] considers the amount of over fitting and assigns higher weight
on bootstrap error estimator in the over fitted case. The scale of over fitting is calculated using
no-information error rate, λ which can be estimated by permuting responses Yi and predictors Xj

λ =

N∑
i=1

N∑
j=1

Error[Yi, Xj ]/N
2 (6)

The relative over fitting rate R is calculated using λ and subsequently the realtive weight (ω) of the
bootstrap error estimator is derived.

R =
Bootstrap Error −Resubstitution error

λ−Resubstitution error
(7)

ω =
0.632

1− 0.368R
(8)

Thus, the 0.632+ Bootstrap error estimate is given by

α.632+Boot = ω · αboot + (1− ω) · αresub (9)

2.5 True Error Estimation

The true error of a model has been estimated by using hold out data that has not been applied for
any form of training or previous error estimations. For the DREAM dataset, a separate set of 18
cell line data is used for estimating true error. For the CCLE dataset, 40 or 100 cell lines out of
400 were used for training and error estimation and remaining cell lines were used for true error
estimate.

2.6 Jackknife-After-Bootstrap Confidence Interval Generation

Jackknife-After-Bootstrap approach [1] is used for generating the confidence intervals of 0.632 Boot-
strap errors. Let, Nk denote the set of bootstrap samples that does not contain sample Xk and the
0.632 bootstrap estimate computed from Nk is denoted by εk. The standard error can be computed
as

s =

√√√√n− 1

n

n∑
k=1

(εk − ε̄)2 (10)
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where ε̄ = (1/n)
∑n
k=1 εk. The 100(1−α)% prediction intervals for the true error can be computed as

[ε̄−szα/2, ε̄+szα/2] where zα is the α quantile of the standard normal distribution. Since we consider
the absolute error, the lower bound of the confidence interval is calculated as max [0, ε̄− szα/2].

3 Integration of Models

We approached the integration of prediction from individual models of different genetic characteri-
zations as a linear regression problem. Let Ωi(j) denote the prediction obtained by Random Forest
approach for genomic characterization dataset Gi and cell line j. The weight αi for each dataset Gi
is obtained by minimizing ∑

j

(yj −
∑
i

αiΩi(j))
2 (11)

where yj is the experimental drug response for cell line j and αi is the corresponding weight of
dataset Gi.

Following the generation of the weights of the individual datasets, the combined prediction result
ŶC(j) is generated as follows [4]:

ŶC(j) =
∑
i

αiΩi(j) (12)

4 Datasets

4.1 Dream Challenge Dataset

For the NCI-DREAM Drug Sensitivity prediction sub-challenge 1, genomic characterizations were
provided for 53 cell lines (48 breast cancer cell lines and 5 non-malignant breast cell lines) that
were exposed to 31 therapeutic compounds at a concentration required to inhibit proliferation by
50% after 72 hours (GI50) and responses to these 31 drugs were provided for 35 of these 53 cell
lines. The drug response of the remaining 18 cell lines were provided later and used as validation
dataset. Multiple types of genomic and epigenetic data (copy number variation, methylation, gene
expression through micro-array, RNA sequencing, exome sequencing and protein abundance) were
generated before exposure of the cells to the drugs for each of the 53 cell lines [5]. Details of the
genomic characterization datasets are provided in Table 1. From table 1, we note that the genomic
characterizations were not available for all the 53 cell lines and each dataset had missing information
for some of the cell lines (the number of such cell lines is denoted by Missing cell lines in table 1).
The last column denotes whether the genomic dataset had some missing values for the cell lines
containing that specific genomic characterization.

Table 1: Description of Genomic Datasets for NCI-DREAM drug sensitivity challenge. Out of 53
cell lines, 35 cell lines are used for training and 18 for testing the prediction accuracy

Data Type Dimension Missing
cell lines

Missing val-
ues(Y/N)

Gene Expression 46×18632 7 N
Methylation 41×27551 12 N
RNa seq 44×36953 9 Y
RPPA 42×131 11 N
SNP6 47×27234 6 Y

4.2 CCLE Dataset

Cancer Cell Line Encyclopedia(CCLE) dataset was downloaded from "http://www.broadinstitute.

org/ccle/home". CCLE dataset consists of two forms of genetic characterizations (i) Gene Ex-
pression and (ii) Single Nucleotide Polymorphisms (SNP6). The corresponding file for Gene ex-
pression dataset is CCLE Expression Entrez 2012-09-29.gct. In this dataset, there are 18988 gene
features for 1037 cell lines with no missing values. The SNP6 data has been extracted from
CCLE copynumber byGene 2013-12-03.txt. For 1043 cell lines, there are 23316 features. For our
computations, we have selected 1012 cell lines that are common to both gene expression and SNP6.
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Drug sensitivity data has been downloaded from the addendum published by Barretina et al [6]
where 24 drug responses are recorded for 504 cell lines. The dose-response data at eight concentra-
tions were reduced to a fitted model using a decision tree methodology based on NIH/NCGC assay
guidelines (http://assay.nih.gov/assay/index.php/Table_of_Contents). For our predictions,
we have considered Area Under the Curve (AUC) as the drug sensitivity data.

5 Results

5.1 Model Performance for different Genetic Characterization Combina-
tions for NCI-DREAM using RF

From the NCI-Dream challenge dataset, we consider 5 genomic characterizations (Gene expression,
Methylation, RNA seq, RPPA and SNP6). Based on 5 different genomic characterizations, there are
(25 − 1) = 31 possible nonempty combinations. Figure 2 shows 5 different error estimates (Leave
one out, 5-Fold Cross Validation, Bootstrap and 0.632+ Bootstrap) and validation errors for the
31 different combinations of datasets for a specific drug in the DREAM challenge dataset. The
integration of prediction has been achieved through linear regression over Random Forest models.
The different error estimates have variations across the different dataset combinations but we do
observe an overall trend of the error estimators producing smaller values when higher
number of datasets are being used for prediction (leftmost results with only one dataset and
the rightmost with all five datasets).

Figure 2: Leave-one-out, 5 fold Cross Validation, Bootstrap, 0.632+ Bootstrap and Validation error
for Drug-10 for different dataset combinations.The datasets are denoted by: G: Gene Expression,
M:Methylation, R:RNASeq, P:RPPA and S:SNP6. For instance, MR denotes Methylation and
RNASeq data combination.

Figure 3 shows the 80% Confidence Interval for drug-15 along with bootstrap error estimate
(squares) for 31 different dataset combinations. From figure 3, we observe that the addition of
dataset reduces the confidence interval. The confidence interval is highest when using only
one dataset and the confidence interval decreases gradually with addition of more datasets (going
right). The lowest confidence interval is shown by the rightmost bar which represents the confidence
interval of 0.632 bootstrap error while using all 5 datasets for prediction.

5.2 Comparing Integrated Prediction Options for NCI-DREAM dataset

In the previous section, we have used all the features for each dataset for a data type prediction
and combined the predictions using linear regression. In this section, we analyze the effect of
feature selection on the performance along with the effect of concatenating all the features before
model generation which is in contrast to earlier results where we generated individual models for
each dataset and integrated the predictions from these individual models. Figure 4 shows the Mean
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Figure 3: Mean Bootstrap error and 80% confidence intervals for Drug 15 for 31(=25 − 1) dif-
ferent dataset combinations. The datasets are denoted by: G: Gene Expression, M:Methylation,
R:RNASeq, P:RPPA and S:SNP6. For instance, MR denotes Methylation and RNASeq data com-
bination.

Absolute Validation Error for integrated model with or without feature selection and with or without
dataset concatenation for Drug-28.

Based on Fig. 4, we observe that concatenating the datasets without feature selection may
increase the Mean Absolute validation error (red bars). The differences between single RF over
appended datasets (last three bars black, yellow, red) and integrated RFs (gray and blue) are more
pronounced when larger number of datasets are used. As compared to our previous results (gray
bars), a minor improvement was achieved by applying feature selection in individual datasets and
generating individual models for each dataset for final integrated model (blue bars).

The reported results allude to the observation that it is better to generate individual pre-
dictive models for each dataset and then combine them to form an integrated model
rather than designing a single model from a concatenated dataset.

5.3 Predictions for integrated models using CCLE Dataset

There are 2 genetic characterization information in CCLE, gene expression and SNP6, resulting in
22 − 1 = 3 possible dataset combinations. For the three possible combinations, we have calculated
the 0.632 bootstrap error and confidence interval, Leave-one-out error and validation error. Figure
5 shows the different error estimates for drug Saracainib when 100 random samples from the CCLE
dataset were used for training and remaining 404 samples were used to generate the validation or
true error. Similar to DREAM challenge results, we observe a reduction in error when
datasets are combined for sensitivity prediction. Note that due to the availability of only two
forms of genetic characterizations, the reduction in average error is significantly lower than what
was observed in DREAM challenge dataset using five datasets.

5.3.1 Effect of Sample Size on Confidence Interval

The number of cell lines selected for generating the random forest can have an impact on the errors
when sample size is limited. For instance, figure 6(a) shows the 0.632BSP error and confidence
interval with training set of 100 cell lines for Saracatinib, while figure 6(b) shows that the confidence
Interval reduces when 250 samples are used for training. The results indicate a reduction in
confidence interval with larger number of training samples.
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Figure 4: Mean Absolute Error for validation set for Drug-28 with different integrated models.
These models were build using different dataset combinations along with following ways of feature
selection and model generation (i) 5 dataset all feature 5 RF : All features of the dataset are used and
random forests designed for each individual dataset that are subsequently integrated using linear
regression (ii) 5 dataset 1000 features 5 RF : Important 1000 features of each dataset are selected
using RELIEFF feature selection and RF models designed for each dataset that are subsequently
integrated using linear regression (iii) 5 dataset 1000 feature append 1 RF : Important 1000 features
of each dataset selected using RELIEFF and appended and a single RF designed from the appended
dataset. (iv) 5 dataset all feature append relieff 1 RF : All features of all datasets appended and
important 1000 features selected using RELIEFF from the appended dataset. A single RF designed
for the features selected from the appended dataset. (v) 5 dataset all feature append 1 RF : All
features of all datasets appended and a single random forest designed from this combined dataset

Figure 5: Leave-one-out, 5-fold cross validation, Bootstrap, 0.632 Bootstrap+ and Validation error
for drug Saracainib (gene expression, SNP6 and combined dataset from left to right respectively).
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Figure 6: (a) 80% confidence interval of 0.632 Bootstrap error for drug Saracainib with 100 cell
lines for building integrated random forest. (b) 80% confidence interval of 0.632 Bootstrap error for
drug Saracainib with 250 cell lines for building integrated random forest (gene expression, SNP6
and combined dataset from left to right respectively)

5.3.2 Error Estimation Performance using CCLE dataset

The CCLE dataset consists of 24 drugs. For each drug, the number of cell lines with genetic
characterization data and pharmacological data varies between 350 to 490. We utilize 100 cell lines
to build the integrated random forest model along with estimation of Leave-one-out, 5-fold cross
validation, Bootstrap and 0.632 Bootstrap+ errors. The remaining cell lines of that drug are used
as holdout data to calculate the validation or true error. Figure 7 shows the Leave-one-out, 5-
fold cross validation, Bootstrap, 0.632+ Bootstrap and Validation error estimates in the form of
Mean Absolute Error for all the 24 drugs. The Bootstrap errors were calculated with B = 40.
Figure 7 shows that the value of LOO error is higher than 0.632+ Bootstrap error for all the drugs
but when compared to validation (true) error, LOO is closer to true error as compared to
0.632+ bootstrap for the CCLE 100 sample training scenario. However, Leave One Out
error estimation can be extremely computationally intensive when the number of samples increases
as a separate model has to be trained for each additional sample. For sample size greater than 50
or 100, 5 fold cross validation or Bootstrap error estimates provides comparable results with less
computational complexity.

The 80% confidence interval of 0.632 bootstrap error for the integrated model is shown in figure
8.

5.4 Multivariate Random Forest Performance

NCI-Dream Challenge Dataset

For the Dream Challenge data, we have considered 5 genetic characterizations. There are 31 drugs
resulting in

(
31
2

)
= 465 pairwise combinations. Drug-13 had standard deviation of zero for the

common cell lines and thus we excluded these 30 combinations from the 465 possible pairwise
combinations.

High Correlation among drug pairs: Table 2 shows the performance comparison for RF and
MRF for drug pairs that have the highest correlations. We observe that the performance of MRF
in terms of both correlation coefficient and MAE is better than RF for drug pairs that
have high correlations. Table 3 shows the MAE for individual datasets and integrated model for
RF and MRF for the pair of drugs: drug 1 and drug 2. We note that the MAE decreases when
MRF is used as compared to RF.

Low Correlation among drug pairs: In this section, we consider the comparison of RF and
MRF performance for drug pairs that have low correlations. We expect that the performance of
MRF will be poor for the scenario where the drug sensitivities are not correlated. The considered
drug pairs in this section are the ones with the lowest absolute correlation coefficients among the
drug response pairs. The results for these drug pairs are shown in Table 4. We observe that the
performance of MRF is worse than the performance of RF for the drug pairs that have
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Figure 7: Leave-one-out, 5-fold cross validation, Bootstrap, 0.632 Bootstrap+ and Validation error
for all 24 drugs for a certain run. For different runs, the cell lines selected for training can change
significantly but we observed that the change in the errors are minimal.

Figure 8: 80% confidence interval of 0.632 Bootstrap error for all 24 drugs of CCLE dataset. The
square indicates the 0.632 bootstrap error.
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Table 2: 5 fold CV results for DREAM challenge dataset drug sensitivity prediction for ten drug
pairs with HIGH correlation in the form of correlation coefficients between predicted and experi-
mental values and Mean Absolute Errors (MAE). RF and MRF denotes regular Random Forest and
Multivariate Random Forest respectively. Results are for fixed number of trees = 100, feature size
= 10 and leaf size = 2.

Correlation coefficient MAE
Drug Set Drug Name Correlation RF MRF RF MRF

SC1
Drug-1

0.8959
0.1515 0.4000 0.0301 0.0295

Drug-2 0.4175 0.5811 0.0241 0.0203

SC2
Drug-8

0.7313
0.3404 0.3724 0.0460 0.0445

Drug-18 0.4979 0.5650 0.0320 0.0282

SC3
Drug-30

0.7573
0.2984 0.3342 0.0287 0.0250

Drug-31 0.3015 0.3522 0.0298 0.0263

SC4
Drug-19

0.6693
0.4841 0.5435 0.0178 0.0162

Drug-23 0.4408 0.5667 0.0165 0.0154

SC5
Drug-23

0.6646
0.7208 0.7649 0.0125 0.0122

Drug-28 0.4313 0.4836 0.0156 0.0136

SC6
Drug-19

0.6413
0.5295 0.7328 0.0180 0.0127

Drug-28 0.5802 0.7121 0.0138 0.0115

SC7
Drug-14

0.6265
0.5871 0.5916 0.0506 0.0456

Drug-16 0.5442 0.7183 0.0256 0.0217

SC8
Drug-1

0.6212
0.2674 0.4759 0.0255 0.0246

Drug-21 0.3612 0.4287 0.0289 0.0256

SC9
Drug-8

0.6126
0.5973 0.7056 0.0401 0.0323

Drug-22 0.2240 0.5986 0.0133 0.0106

SC10
Drug-2

0.6021
0.5594 0.6476 0.0857 0.0836

Drug-21 0.1414 0.2857 0.0654 0.0657

Table 3: Mean Absolute Error of Single Dataset and integrated model using all 5 datasets.

Drug
Name

Type GENE Methy-
lation

RNAseq RPPA SNP6 Integrated
Model

Drug 1 RF 0.0346 0.0327 0.0350 0.0355 0.0318 0.0301
Drug 2 RF 0.0298 0.0285 0.0347 0.0335 0.0306 0.0241
Drug 1

MRF 0.0327 0.0295 0.0329 0.0345 0.0322
0.0295

Drug 2 0.0203
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low correlations.

Table 4: 5 fold CV results for DREAM challenge drug sensitivity prediction dataset for five drug
sets with LOW correlation in the form of correlation coefficients and Mean Absolute Errors (MAE).
RF and MRF denotes regular Random Forest and Multivariate Random Forest respectively. Results
are for fixed number of trees = 100 and feature size = 10 and leaf size= 2.

Correlation coefficient MAE
Drug Set Drug Name Correlation RF MRF RF MRF

SC11
Drug-16

1.84E-04
0.3643 0.3471 0.0239 0.0254

Drug-28 0.6304 0.5527 0.0120 0.0130

SC12
Drug-15

8.08E-04
0.3125 0.2545 0.0156 0.0172

Drug-22 0.2693 0.2095 0.0121 0.0131

SC13
Drug-9

2.30E-03
0.5553 0.2672 0.0174 0.0217

Drug-21 0.4345 0.1639 0.0059 0.0067

SC14
Drug-6

6.90E-03
0.6104 0.1919 0.0129 0.0147

Drug-30 0.4107 0.0147 0.0223 0.0247

SC15
Drug-17

8.50E-03
0.4550 0.4345 0.0477 0.0475

Drug-29 0.7236 0.4763 0.0153 0.0188

For the implementation of RF and MRF, we have considered all features of the genomic charac-
terizations. When we have applied feature selection or concatenated all the features of all datasets,
we did not observe any improvement in performance.

CCLE Dataset

The CCLE [7] database includes genomic characterization for 1037 cell lines and drug responses
over 24 drugs for around 400 to 490 cell lines. For comparison between RF, MRF, Elastic Net (EN)
and Kernelized Bayesian multitask learning (KBMTL) approaches for predicting responses, 4 sets
of drugs were selected. The first set SC1 = { Selumetinib, PD-0325901 } has MET as a common
target, the second set SC2 = { Erlotinib, Lapatinib } has EGFR as a common target, the third set
SC3 = { ZD6474, AZD0530 } has EGFR as a common target and the fourth set SU = { 17-AAG,
AEW541 } has no common target.

Each cell line had initially 18, 988 features (probesets) as gene expressions. We reduced it to
500 for each drug response using RELIEFF feature selection and used a union of the 500 features
in each of the four sets of drugs. We have used all the cell lines that have gene expression and
drug responses for specific pairs of drugs. To report our results, we compared 5 fold cross-validated
Pearson correlation coefficients between predicted and experimental responses for RF and MRF. For
both RF and MRF, we set the minimum size of samples in each leaf to nsize = 5, the number of
trees in the forest to T = 200 and the splitting in each node considers m = 10 random features.

The correlation coefficients using 5 fold cross validation error estimation are illustrated for each
drug set in table 5. Table 5 shows that MRF performed better than Elastic Net (EN),
Kernelized Bayesian multitask learning (KBMTL) and RF for the related drug pairs
SC1, SC2, SC3. When there is no relationship in the drug pair as in SU , univariate RF
performs better than the MRF approach.

GDSC Dataset

The Genomics of Drug Sensitivity for Cancer (GDSC) dataset [8] includes genomic characterizations
for 700 cell lines and drug responses for 140 drugs. For comparing multivariate Random Forest
(MRF ) with Elastic Net (EN), Kernelized Bayesian multitask learning (KBMTL) and Random
Forest (RF ), we considered ten sets of drug pairs with the highest correlation coefficients between the
responses and five sets of drug pairs with the lowest correlation coefficients between the responses.
The correlation coefficients using 5 fold cross validation error estimation are illustrated for each drug
set in tables 6 and 7. Similar to earlier results, we observe that MRF performs better than RF, EN
and KBMTL for drug pairs that have high correlation coefficient between the responses (S1 to S10)
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Table 5: 5 fold Cross validation results for CCLE dataset drug sensitivity prediction. Correlation co-
efficients between actual and predicted drug sensitivity using Elastic Net (EN), Kernelized Bayesian
multitask learning (KBMTL), Random Forest (RF ) and Multivariate Random Forest (MRF ) are
reported here.

Correlation Co-efficients
Drug Set Common Target Drug Name EN KBMTL RF MRF

S1 MEK Selumetinib 0.38 0.45 0.52 0.55
PD-0325901 0.36 0.48 0.58 0.60

S2 EGFR Erlotinib 0.28 0.38 0.39 0.41
Lapatinib 0.34 0.41 0.44 0.46

S3 EGFR ZD6474 0.23 0.29 0.32 0.34
AZD0530 0.25 0.24 0.29 0.30

SU None 17-AAG 0.29 0.40 0.37 0.36
AEW541 0.27 0.32 0.38 0.38

whereas RF performs better than MRF for drug pairs with low correlation coefficient between the
responses (S11 to S15).

Table 6: 5 fold Cross validation results for GDSC dataset drug sensitivity prediction for ten drug
sets with HIGH correlation. Correlation coefficients between actual and predicted drug sensitivity
using Elastic Net (EN), Kernelized Bayesian multitask learning (KBMTL), Random Forest (RF )
and Multivariate Random Forest (MRF ) are reported here.

Correlation Co-efficients
Drug Set Common Target Drug Name EN KBMTL RF MRF

S1 0.8439 RDEA119 0.6161 0.5669 0.6345 0.6606
PD-0325901 0.4815 0.4679 0.6129 0.6334

S2 0.8410 BI-2536 0.2277 0.2289 0.2575 0.2755
GW843682X 0.2979 0.2755 0.3144 0.3322

S3 0.8366 CI-1040 0.4609 0.5106 0.5867 0.6020
PD-0325901 0.5060 0.5211 0.6245 0.6495

S4 0.8209 RDEA119 0.4942 0.5371 0.6365 0.6539
CI-1040 0.4647 0.5168 0.5879 0.6026

S5 0.8175 Paclitaxel 0.2038 0.2935 0.3116 0.3301
BI-2536 0.0390 0.0365 0.2313 0.2507

S6 0.8156 Doxorubicin 0.3524 0.3957 0.4204 0.4348
Etoposide 0.4136 0.3649 0.4583 0.4701

S7 0.8047 Dasatinib 0.5886 0.5546 0.6788 0.7013
WH-4-023 0.5228 0.5825 0.5925 0.6103

S8 0.7993 Paclitaxel 0.1962 0.3075 0.3593 0.3738
GW843682X 0.2751 0.2718 0.3391 0.3569

S9 0.7634 Doxorubicin 0.3690 0.3249 0.4275 0.4422
Epothilone B 0.4101 0.3417 0.4342 0.4527

S10 0.7543 Dasatinib 0.6317 0.5927 0.6753 0.6903
A-770041 0.4582 0.4841 0.4645 0.5093

5.5 Biological Validation and Variable Importance Measure (VIM)

We have examined the variable importance measure for Random Forest and Multivariate Random
Forest models trained on GDSC database in terms of protein interaction network enrichment anal-
ysis. In this section, we will primarily provide the detailed results for Drug pair AZD0530 and
Erlotinib of GDSC.

For MRF, the top 100 features or probe-sets were estimated based on the frequency of their being
selected in multivariate regression tree generation. For the individual RF models for two separate
drugs, 100 top ranked probe-sets were estimated separately. Note that that multiple probe-set IDs
can map to a single Gene Symbol of a protein. We have utilized HG-U133A Plus 2 of Affymetrix for
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Table 7: 5 fold Cross validation results for GDSC dataset drug sensitivity prediction for five drug
sets with LOW correlation. Correlation coefficients between actual and predicted drug sensitivity
using Elastic Net (EN), Kernelized Bayesian multitask learning (KBMTL), Random Forest (RF )
and Multivariate Random Forest (MRF ) are reported here.

Correlation Co-efficients
Drug Set Common Target Drug Name EN KBMTL RF MRF

S11 6.59E-07 Mitomycin C 0.2808 0.2525 0.3744 0.3818
Axitinib 0.3126 0.3270 0.3609 0.3166

S12 1.76E-05 JW-7-52-1 0.1568 0.2220 0.3708 0.3605
Methotrexate 0.6752 0.5078 0.6954 0.6890

S13 8.62E-05 Lapatinib 0.4915 0.4938 0.5918 0.5547
Shikonin 0.2329 0.3607 0.3990 0.4009

S14 9.74E-05 Vinorelbine 0.3191 0.3287 0.3276 0.3606
Lenalidomide 0.0059 0.0113 0.2826 0.2300

S15 1.12E-04 AZD-2281 0.1768 0.2439 0.4202 0.4146
PD-0325901 0.5165 0.5138 0.6010 0.6096

mapping the probe-sets into proteins. Based on this mapping, we arrived at 94 top ranked proteins
for RF1, 89 top ranked proteins for RF2 and 94 top ranked proteins for MRF. The enrichment
analysis was conducted using STRING-db database (http://string-db.org/) and the p-value
for the network based on top 100 features of MRF model is less than the p-values of the individual
networks generated from the RF top 100 features as shown in Table 8 illustrating higher connectivity
between the MRF selected features as compared to RF model selected features. Table 8 also shows
that similar conclusion will be obtained based on the network features of clustering coefficient (MRF
clustering coefficient is higher) and ratio of observed to expected node edges (ratio for MRF is higher
as compared to individual RF models).

Table 8: Biological Network Enrichment Analysis for RF and MRF model selected proteins

RF model of
AZD0530

RF model of
Erlotinib

MRF model

P-value 4.44e-16 6.05e-11 1.11e-16
Clustering
Coefficient

0.895 0.893 0.935

Ratio of ob-
served to ex-
pected nodes

2.32 2.06 2.54

The protein-protein interaction (PPI) networks or network connectivity graphs for top proteins
using RF1, RF2 and MRF are shown in Figures 9,10 and 11 respectively.

6 Package Application Example

To provide an overview of the IntegratedMRF package, a practical implementation is shown next
using NCI-DREAM Challenge Dataset. The description of the dataset has been provided in earlier
Dataset section and it has been attached as a demo data in the package with reduced number of
predictor features. The lines in Bold and Italic represent comments and code respectively.

Set the working directory, which also contains the dataset
library(IntegratedMRF)#Call the package
Drug=c(1,2,10)#Number of output responses that the user wants to model in a multi-
variate form
n tree=10#Number of trees in the forest
m feature=5#Number of randomly selected features considered for a split in each re-
gression tree node

13
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Figure 9: Protein-protein interaction network observed between top regulators generated from RF model
of Drug AZD0530 in GDSC dataset

Figure 10: Protein-protein interaction network observed between top regulators generated from RF model
of Drug Erlotinib in GDSC dataset
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Figure 11: Protein-protein interaction network observed between top regulators generated from MRF model
of Drug AZD0530 and Erlotinib in GDSC dataset
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min leaf=1#Minimum number of samples in the leaf node
Confidence Level=80#Confidence level for calculation of confidence interval

data(Dream Dataset) # Loading Dream Dataset
finalX Dream=Dream Dataset[[1]]#List of matrices where each matrix represent a specific
data subtype
Cell line Index Dream=Dream Dataset[[2]]#list of samples for each subtype of dataset
finalY train Dream=Dream Dataset[[3]]#A 35 x 31 matrix of output features for training
samples, where 35 is number of samples and 31 is the number of output features or
drugs.
finalY train cell Dream=Dream Dataset[[4]]#Sample names of output features for training
samples
finalY test Dream=Dream Dataset[[5]]#A 18 x 31 matrix of output features for testing sam-
ples, where 18 is number of samples and 31 is the number of output features or drugs.
finalY test cell Dream=Dream Dataset[[6]]#Sample names of output features for testing sam-
ples

finalY train Dream Drug=matrix(finalY train Dream[,Drug],ncol=length(Drug))#Taking the out-
put responses of training samples of drugs which are user defined

finalY test Dream Drug=matrix(finalY test Dream[,Drug],ncol=length(Drug)) #Taking the out-
put responses of testing samples of drugs which are user defined

#Combination: Calculates combination weights for different subtypes of dataset com-
binations to generate integrated Random Forest (RF) or Multivariate Random Forest
(MRF) model based on different error estimates such as Bootstrap, N-fold cross vali-
dation, 0.632+ Bootstrap or Leave one out. Also calculates different errors for these
error estimation methods and confidence interval. Refer to the package manual for
function details.
Result=Combination(finalX Dream,finalY train Dream Drug,Cell line Index Dream,
finalY train cell Dream,n tree,m feature,min leaf,Confidence Level)

#CombPredict: Generates Random Forest or Multivariate Random Forest model for
each subtype of dataset and predicts testing samples using the generated models. Sub-
sequently, the prediction for different subtypes of dataset are combined using the Com-
bination weights generated from Combination function. Refer to the package manual
for function details.
Prediction1=CombPredict(finalX Dream,finalY train Dream Drug,Cell line Index Dream,
finalY train cell Dream,finalY test cell Dream,n tree, m feature, min leaf, Result[[1]])

#IntegratedPrediction: Generates Random Forest or Multivariate Random Forest
model for each subtype of dataset and predicts testing samples using the generated
models. Subsequently, the prediction for different subtypes of dataset are combined
using the Combination weights generated from Integrated Model which is based on
Bootstrap error estimate. Refer to the package manual for function details.
Prediction2=IntegratedPrediction(finalX Dream,finalY train Dream Drug,Cell line Index Dream,
finalY train cell Dream,finalY test cell Dream, n tree, m feature, min leaf)

6.1 Parameter Selection Guidelines

The generation of the multivariate random forests involve several parameters that are critical to the
performance and/or computation burden of the modeling approach and Table 9 provides guidelines
for the selection of these important features.

6.2 Computational complexity in terms of expected time for potential
scenarios

The computation time to run the package is dependent on a number of variables including number of
datasets integrated, number of trees in the forest, number of features to split at each node, number of
output responses, number of samples used and the type of error estimation being used. We provide
the computation times for some potential scenarios in Table 10 so that a practitioner can generate
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Table 9: Guidelines for selection of Parameters

Parameter Range of
valid val-
ues

Suggested
values

Comment

n tree int [1,∞] 100 to 500 Larger number of trees pre-
ferred for large feature set.
The computational burden
increases linearly with in-
crease in the number of trees.

min leaf int [1,
—sample
size—]

3 to 10 For splitting, the minimum
number of samples at a
node has to be greater than
min leaf.

m feature int [1,
—feature
size—]

5 to 50 Number of randomly selected
features considered for a split
at each node. A large
value can increase correlation
between trees resulting in
higher error variance whereas
a small value can miss selec-
tion of important features.

finalY
train

float
[−∞,∞]

Data De-
pendent

Too few or highly similar re-
sponses can cause numerical
problems while inverting the
covariance matrix.

an estimate of time required for another specific case. Simulation was conducted in an Intel Core
i7 computer with 12GB RAM. For single output response case, the package applies random forest,
whereas for more than one response scenario, the package automatically applies multivariate random
forest.

Table 10: Simulation time in seconds for various error estimators for different scenarios. NCI-Dream
Challenge Dataset has been used to obtain these time estimates. The number of samples used to design the
models were 28 for 2 datasets and 20 for 5 datasets. Here, number of minimum leaf node used in the trees
is 1.

Number
of Re-
sponses

Number
of
Datasets

Number
of Trees

Number
of fea-
tures

Leave-one-
out time (in
s)

N fold cross
validation
time (in s)

Bootstrap
time (in s)

0.632+
Bootstrap
time (in s)

1 2 10 10 51.12 5.23 39.75 41.68

1 2 10 100 66.9 6.7 54.58 57.37

1 5 10 10 53.26 7.07 45.07 48.12

1 5 10 100 67.19 9.46 55.40 59.17

1 2 100 10 399.14 41.81 324.53 341.33

1 2 100 100 611.02 60.91 528.54 554.67

1 5 100 10 476.37 62.37 403.59 432.34

1 5 100 100 698 104.5 519.38 556.7

3 2 10 10 51.36 5.04 39.28 41.36

3 2 10 100 114.33 10.35 85.28 89.73

3 5 10 10 55.48 7.76 46.31 49.68

3 5 10 100 107.71 13.82 88.88 95.14

3 2 100 10 530.03 52.73 410.30 430.74

3 2 100 100 1034.29 99.19 812 853.04

3 5 100 10 521.01 79.21 475.23 509.78

3 5 100 100 1063.91 141.1 823.05 882.58
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