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Web Appendix 1

Causal model

We assume the following nonparametric structural equation model,M:

Yt = fYt(Y t−1,M t−1, Zt−1, At−1, UYt), for t = 1, ..., T + 1

Mt = fMt(Y t,M t−1, Zt−1, At−1, UMt), for t = 1, ..., T

Zt = fZt(Y t,M t, Zt−1, At−1, UZt), for t = 0, ..., T

At = fAt(Y t,M t, Zt, At−1, UAt), for t = 0, ..., T ,

where Ut = (UYt , UMt , UZt and UAt), t = 0, ..., T + 1 are unmeasured exogenous random

variables from some underlying probability distribution PU . This causal model specifies how

each of the variables in the data are generated, with randomness arising only from from the

exogenous variables U . For example, the outcome at a given time period, Yt is a deterministic

function of the full history of treatment and confounder values, and a random error. Yt and

Mt are also functions of previous values of Y and M , encoding the information that after

a patient is discharged, she always remains discharged, but if a patient dies in a given time

period, she remains dead, and can never be discharged. More generally, after an event of

death or discharge, all the processes become degenerate, and for notational convenience we

assume that they take the last value observed. For notational convenience the causal model

allows for Y0, and M0, which are both assumed to take value 0 (at baseline no one is dead or

discharged), and Z−1, A−1 which are assumed to be empty vectors.

∗corresponding author details: Noemi Kreif, Centre for Health Economics, University of York, Heslington,
York, YO10 5DD, UK. Tel: work +44 (0)1904 321401 e-mail: noemi.kreif@york.ac.uk.
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Web Appendix 2

Modification of the estimators for the static regimes with delayed start

For regimes where the intervention starts with a delay, such as ‘feed by day k’, corresponding

to an intervention beginning at t = k − 1, the At nodes denoting feeding prior to time k − 1

are treated as non-intervention nodes or ‘covariates’. As a result, the baseline covariates

(measured prior to the first intervention node Ak−1) consist of

(Z0, A0, ..., Yk−1,Mk−1, Zk−1).

When estimating E[Y d
t∗ ], t∗ = k, ..., T + 1, there are thus a total of t∗ − (k − 1) rather than

t∗ intervention nodes, and a corresponding number of components to the regimes of interest

(d(V̄t) = dk−1(V̄k−1), ..., dt∗−1(V̄t∗−1)).

The IPTW, g-computation, and TMLE estimators are modified accordingly. First, the

indicator of following a regime of interest through time t∗−1, I(Āt∗−1 = d(V̄t∗−1)), used in the

numerator of the weights for the IPTW and TMLE estimators, corresponds to an indicator

of following the regime from time k − 1 to t∗ − 1. (In other words, all subjects follow the

regime of interest before k − 1). Second, the cumulative probability of following the regime

of interest, used in the denominator of the weights for the IPTW and TMLE estimators, is

now based on a product of time point-specific probabilities of continuing to follow the regime

beginning at time k − 1:

gk−1:t∗−1 =
t∗−1∏
t=k−1

gt(At = dt(V̄t)|Āt−1 = d(V̄t−1), L̄t).

Finally, the presence of fewer intervention nodes implies that the longitudinal g-formula

can be expressed using t∗ − (k − 1) rather than t∗ iterated conditional expectations; one

conditional expectation is needed for each intervention node.
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Web Appendix 3

Super Learning estimation of the treatment and outcome mechanism

The Super Learner (1) is a machine learning algorithm that uses cross validation to find the

optimal weighted convex combination of multiple candidate prediction algorithms. The algo-

rithms are pre-selected by the analyst, potentially including parametric and non-parametric

regression models, as well as a range of machine learning approaches. Asymptotically, the

Super Learner algorithm performs as well as the best possible combination of the candidate

estimators, assuming that none of the candidates in the library is a correctly specified para-

metric model; in the latter case it achieves almost parametric rate of converge (see (2) and

(3) for details). Beyond its use for prediction (4; 5), it has been used for estimating the

propensity score and the outcome model to obtain causal parameters (for example, (6; 7; 8)),

and has been shown to reduce bias from model misspecification (9; 10; 11).
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Web Appendix 4

Main R functions used in the analysis

##### deterministic Q function #############################

# objective: set Q to 1 deterministically if any prior L2=1

my.det.Q.fun <- function(data, current.node, nodes, called.from.estimate.g) {

dnodes <- grep("L2", names(data))

if (! any(dnodes < current.node)) { # outputs FALSE if there is no death node

before currnt Anode

return(NULL)

}

dnodes <- dnodes[dnodes < current.node] # only look at death nodes before current

node

dnodes.is1 <- data[, dnodes, drop=FALSE] == 1 & !is.na(data[, dnodes, drop=FALSE

]) # true if dnode is 1 (and not NA)

dead <- apply(dnodes.is1, 1, any)

return(list(is.deterministic=dead, Q.value=0))

}

#### MAIN FUNCTION ACTUALLY CALLING TMLE, it takes different arguments for

different kinds of interventions

#### It calculates iptw, tmlw and gcomp, for 2 interventions. One is never feed (

static), this stays fixed, I call it control.
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#### The other one is a "treatment" regime, either static, or with delayed

intervention ( v ) needs to be specifed, or dynamic.

#### Dynamic intervention is currently a rule based on the presence of mechanical

ventilation each day

my.ltmle.contrast <- function(time, treatment, adjusted, sl) {

d.time <- pick_data(time)

n <- nrow(d.time$d)

abar.static.0 <- rep(0, time)

if (identical(treatment, "dynamic")) {

### dynamic 1: mech vent ######

abar.1 <- as.matrix(d.time$d[, paste0("L4.", 0:(time - 1))])

intervene.time <- 1:time

} else {

set.to.1 <- if (treatment$day <= time) treatment$day:time else NULL

if (treatment$delay) {

intervene.time <- set.to.1

} else {

intervene.time <- 1:time

}

### static or delayed: intervention starts on day

abar.1 <- matrix(0, nrow = n, ncol = time)

abar.1[, set.to.1] <- 1

}

abar.1.subset <- abar.1[, intervene.time, drop = FALSE]
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if (adjusted) {

my.qform <- qform.generate(time)

my.gform.0 <- gform.generate(time)

my.gform.1 <- my.gform.0[intervene.time]

} else {

my.qform <- qform.generate.unadjusted(time) # intercept only for Q

my.gform.0 <- matrix(0, nrow=n, ncol=time) #set P(A=0)=1; unadjusted estimates

are reported by setting the g matrix to 1s

my.gform.1 <- abar.1.subset

}

result.list <- list()

for (gcomp in c(FALSE, TRUE)) {

# run ltmle for control (always static)

result.0 <- ltmle(d.time$d, Anodes=d.time$my.A.nodes, Lnodes=d.time$my.L.nodes,

Ynodes=d.time$my.Y.nodes, abar=abar.static.0, SL.library=sl, estimate.time=

FALSE, survivalOutcome=TRUE, variance.method=’ic’,deterministic.Q.function=

my.det.Q.fun,gform=my.gform.0,Qform=my.qform, gcomp=gcomp)

# run ltmle for treated

result.1 <- ltmle(d.time$d, Anodes=d.time$my.A.nodes[intervene.time], Lnodes=d.

time$my.L.nodes, Ynodes=d.time$my.Y.nodes, abar=abar.1.subset, SL.library=sl

, estimate.time=FALSE, survivalOutcome=TRUE, variance.method=’ic’,

deterministic.Q.function=my.det.Q.fun,gform=my.gform.1, Qform=my.qform[

intervene.time], gcomp=gcomp)

result.list <- c(result.list, GetAllResults(result.0, result.1, gcomp))

}
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return(result.list)

}

GetConfInt <- function(result, estimator) {

c(summary(result, estimator)$treatment$estimate, summary(result, estimator)

$treatment$CI)

}

GetResults <- function(result.0, result.1, estimator) {

x <- list(GetConfInt(result.0, estimator), GetConfInt(result.1, estimator))

names(x) <- paste("est", c("ctrol", "tr"), estimator, sep = ".")

return(x)

}

GetAllResults <- function(result.0, result.1, gcomp) {

if (gcomp) {

GetResults(result.0, result.1, "gcomp")

} else {

c(GetResults(result.0, result.1, "tmle"), GetResults(result.0, result.1, "iptw

"))

}

}
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Web Table 1: Patient flow and unadjusted estimates: regime ‘feed from day 3’

Hosp day In PICU (t) In PICU Dischg Death Stops Cum. Cum. Prob dischg

& follows (t)) event (t+1) (t+1) following (t+1) follows (t) discharge (t) by t+1 |follows t

1 706 678 5 0 236 678 5 0.007

2 701 437 77 0 265 442 82 0.186

3 597 172 23 0 17 254 105 0.413

4 434 132 33 0 5 237 138 0.582

5 325 94 10 0 6 232 148 0.638

6 248 78 21 0 3 226 169 0.748

7 188 54 11 0 0 223 180 0.807

Cumulative discharge is calculated amongst those whole followed the rule. The last column corresponds

the unadjusted estimates reported in Figure 1.
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