
Supplementary Information for

GraphSpace: Stimulating Interdisciplinary Collaborations in

Network Biology

Aditya Bharadwaj1, Divit P. Singh1, Anna Ritz2, Allison N. Tegge1,3, Christopher L.
Poirel4, Pavel Kraikivski5, Neil Adames6, Kurt Luther1,7, Shiv D. Kale8, Jean Peccoud6,

John J. Tyson5, and T. M. Murali1,9

1Department of Computer Science, Virginia Tech, Blacksburg, VA, USA
2Biology Department, Reed College, Portland OR, USA

3Department of Statistics, Virginia Tech, Blacksburg, VA, USA
4RedOwl Analytics, San Francisco, CA, USA

5Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
6Department of Chemical and Biological Engineering, Colorado State University, Fort

Collins, CO, USA
7Center for Human-Computer Interaction, Virginia Tech, Blacksburg, VA, USA

8Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA
9ICTAS Center for Systems Biology of Engineered Tissues, Virginia Tech, Blacksburg, VA,

USA

Contents

S1 Comparison to Other Systems 2

S2 Other Features of GraphSpace 4

S3 GraphSpace Use Cases 5

S4 Interacting with GraphSpace 6
S4.1 Initial Interaction . 6
S4.2 Search . 8
S4.3 Graph Interaction . 11
S4.4 Layouts . 14
S4.5 Layout Editor . 17
S4.6 Filtering Nodes and Edges . 21
S4.7 Node and Edge Editor . 24

1

user2@example.com: This user owns no networks but can access user1’s networks.

S1 Comparison to Other Systems

In the main text, we described five challenges faced by interdisciplinary research groups in network
biology, which we repeat here for the reader’s reference:

Sharing. Computational biologists may generate hundreds or thousands of networks that they
seek to share without manual overhead.

Organization. A research group working on multiple projects may seek to keep the networks from
different collaborations private from each other.

Searching and Filtering. Collaborators may search within and across these networks for proteins
and interactions of interest. Collaborators may also want to examine subgraphs of a network.

Layouts. Automatic layout algorithms incorporate almost no knowledge of the biological informa-
tion underlying the networks. Thus, researchers need layout tools that can help them readily use
their knowledge and intuition to modify node positions manually to bring out salient features.

Release. Upon the publication of a project, researchers may seek to make a subset of networks
publicly available for access.

We are not aware of any existing systems that address all these challenges simultaneously. Many
packages focus primarily on algorithms for laying out networks and/or analyzing their properties (2,
3, 4, 5, 6, 20). Several websites that support user queries on proteins and interactions are typically
tied to a particular set of algorithms and analyses, or specific interaction networks or databases
(e.g., (1, 7, 18, 21)). NetworkPainter (8) supports several features for collaboration, but focuses
on manually created network diagrams and overlaying flow cytometry data on them. CellMaps is
a web tool that allows display, editing, exploring, and analysis of biological networks (14). It does
not appear to have features that permit sharing of networks and layouts on the CellMaps website.

The Cytoscape ecosystem provides solutions to some of the above challenges. Cytoscape (17)
itself is a popular and powerful software environment for visualizing and interacting with networks.
Cytoscape.js is a library of graph algorithms for analysis and visualization (5). CyNetShare (http:
//idekerlab.github.io/cy-net-share) provides a simple mechanism for a user of Cytoscape to
export a network as a file and point the CyNetShare website to the location of this file, which allows
users to share the URL of the network layout with collaborators. Since CyNetShare is designed
for sharing networks one at a time, it does not readily scale to multiple networks. NDex (11) is a
repository designed for storing networks that supports many file formats, network queries, and the
creation of groups for collaboration. However, NDex does not allow users to modify, save, or share
network layouts. While we developed GraphSpace groups and the notion of private collaboration
vs. public sharing independently of NDex, the two resources are similar in this respect.

2

(A)

(B)

Figure S1: The reconstruction of the Wnt pathway by the PathLinker algorithm (13) available at
http://graphspace.org/graphs/public?tags=graphspace-paper. (A) The layout editor pro-
vides an intuitive tool palette that allows the user to group nodes by colors and/or shapes and
arrange them in blocks, circles, or lines to quickly build a custom-made manual layout of large
networks. (B) The final layout of the network visualized in GraphSpace. The RYK-CFTR-DAB2
path referred to in the PathLinker use case in Section S3 appears on the left. The “Graph In-
formation” tab displays a user-provided legend of shapes and colors. “Export” allows saving the
visualization of a network in PNG and JPEG formats. This button also allows saving the structure
and visual style of a network in JSON-formatted files.

3

S2 Other Features of GraphSpace

Here, we describe some other features of GraphSpace.

Network format. GraphSpace networks follow a Cytoscape.js supported JSON format that
separates the specification of the network structure (nodes and edges) from the description of the
visual styles of the nodes and edges (e.g., colors, widths, shapes, labels). The same format can
be exported from or imported to Cytoscape (version 3.1.1 or greater). GraphSpace treats some
attributes specially:

• Cytoscape.js supports a network-level “data” section in the JSON file specifying the network
structure. In this section, we allow users to specify attributes such as “name”, “title”, “de-
scription”, and “tags”. GraphSpace displays the “name” attribute to identify networks in
the list that a user can access and in the list that match search results. When the user accesses
a specific network, GraphSpace displays the “title” above the layout of the graph and the
content of the “description” attribute in the tab called “Graph Information” (Supplementary
Figure S10) We also allow the “data” section to include network-specific attributes in this
section, e.g., “PMID”, “authors”, and “organism”. GraphSpace displays all these additional
attributes in the “Graph Information” tab as well.

• Cytoscape.js also supports a “data” section within each node. Currently, GraphSpace rec-
ognizes an attribute called “aliases” in this section, which specifies a list of aliases for the
node.

• GraphSpace adds a “popup” attribute to each node and edge that allows a user to add
HTML-formatted information, e.g., Gene Ontology annotations and database links for a
protein; or types, mechanism, and database sources for an interaction (Supplementary Fig-
ures S11 and S12).

• Each node and edge may also have an integer-valued attribute called “k”, which denotes a
rank. Through this attribute, GraphSpace allows the user to filter nodes and edges in a
network visualization (Supplementary Section S4.6).

Search Syntax. GraphSpace supports three types of search terms:

1. a single string, e.g., “wnt”. In this case, GraphSpace will return a network (a) if its “name”
attribute contains the query as a substring or (b) if any node in the network has a “name”,
“label”, or “aliases” attribute that contains the query as a substring.

2. two strings separated by a colon, e.g., “name:wnt”. Here, GraphSpace will return a network
if the “data” section of its JSON representation contains an attribute called “name” whose
value contains “wnt” as a substring.

3. two strings separated by two colons, e.g., “wnt::fzd”: This type of search term is only available
when a user is searching a specific network. GraphSpace will highlight every edge that
connects a node that matches “wnt” to a node that matches “fzd”. This search ignores the
direction of the edge.

All searches are case-insensitive. A user may specify more than one search term. When the user
searches all networks, GraphSpace returns only those networks that match all the search terms.
When the user is visualizing an individual network and searching within it, GraphSpace highlights
nodes and edges that match any search term (Supplementary Figure S8).

4

Tags. GraphSpace uses tags as a mechanism for grouping a set of graphs, e.g., all the graphs
that a user may desire to make public upon the publication of a paper. A graph may have any
number of tags. GraphSpace includes an interface to search for networks that match one or more
tags. Tags, which organize graphs, provide a system that is orthogonal to groups, which organize
collaborators.

Programmatic access. The GraphSpace REST API provides endpoints for entities such as
graphs, layouts, and groups that allow developers to interact with the GraphSpace website re-
motely by sending and receiving JSON objects. This API enables developers to create, read, and
update GraphSpace content from client-side JavaScript or from applications written in any lan-
guage. After a network is uploaded, the API allows the network owner to modify, delete, and share
it. The API also allows a user to access several group management features available through the
web interface. For example, a user can create or remove a group, add or remove members, obtain
a list of groups he or she belongs to, and get information such as the membership on a group.

Python module. The GraphSpace software also includes a simple yet powerful Python library
called “graphspace python” that allows a user to rapidly construct a network, add nodes and edges,
modify their visual styles, and then upload the network, all within tens of lines of code. Moreover,
the user need not know the details of the REST API to use this module. It is very easy to integrate
this library into a user’s software pipeline.

GraphSpace implementation. GraphSpace uses Django (https://www.djangoproject.com),
a popular, high-level Python web framework, for server-side functionality. It uses PostgreSQL for
storing and querying its internal database of users, groups, graphs, nodes, edges, and layouts.
GraphSpace also uses ElasticSearch as a NoSQL datastore for the JSON documents storing the
network structure. This Apache Lucene-based indexing engine allows us to perform queries on the
contents of the “data” attributes of networks and nodes. The distributed nature of ElasticSearch
also offers us the ability to easily scale our systems to accommodate increased bandwidth in the
future. GraphSpace takes advantage of three open-source JavaScript libraries for its client-side
functions: (i) Bootstrap (http://www.getbootstrap.com), an HTML, CSS, and JavaScript frame-
work for the user interface; (ii) JQuery (http://www.jquery.com) for easy access to the Document
Object Model (DOM), fast event handling, and Asynchronous JavaScript and XML (AJAX) calls;
and (iii) Cytoscape.js (5) for network layout and visual styles for nodes and edges.

S3 GraphSpace Use Cases

We provide two examples of how we have used GraphSpace in collaborations. First, we sought
to determine regulatory mechanisms to extend a mathematical model of the budding yeast cell
cycle (10). For several query proteins, we computed the 50 shortest paths in a yeast interactome to
the proteins in the model. We uploaded these networks to GRAPHSPACE, annotating each node
with the links to the Saccharomyces Genome Database and each edge with the source database and
PubMed ID of the publication. These networks are available at http://graphspace.org/graphs/
public?tags=2013-jcb-linker. Examination of the network for CDC5 (Polo kinase) revealed an
unexpected connection between the proteins Bub2 and Tem1. The publication that reported this
interaction provided evidence that allowed the modification of the mathematical model to correctly
simulate the phenotype of yeast cells lacking Cdc5 and Bub2 (10).

5

Next, we designed an algorithm that reconstructs a human signaling pathway within an in-
teractome when provided only the receptor and transcriptional regulator (TR) proteins in that
pathway (13). For over 20 pathways, we visualized the 200 shortest paths from any receptor
to any transcriptional regulator using GraphSpace. The filtering panel on the reconstruction
of the Wnt signaling pathway revealed that the RYK-CFTR-DAB2 was the first receptor-to-TF
path that involved a protein (CFTR) not already known to be a member of the Wnt path-
way (left-most path in Figure S1(B)). Subsequent siRNA experiments in HEK290 cells confirmed
CFTR’s role in canonical Wnt signaling and suggested the RYK-CFTR-DAB2 path as an am-
plifier of Wnt signaling to β-catenin (13). These pathway reconstructions are available at http:

//graphspace.org/graphs/public?tags=2015-npj-sysbio-appl-pathlinker.
Since then, GraphSpace has proven useful for other projects involving remote collaborators

spanning multiple scientific disciplines (13, 15, 19) and in diverse contexts, such as exploring sig-
nificant transcriptional links among biological processes (9), studying multi-way molecular reac-
tions (12), and exploring crowd-driven network layout methodologies (16). GraphSpace has also
been an invaluable tool for visually debugging initial implementations of network biology algorithms.
We have adopted GraphSpace for multiple undergraduate research and capstone projects, demon-
strating its ease of use and potential as a teaching tool. Recently, several undergraduate students
used the “graphspace python” module to construct and post networks to GraphSpace as part of a
computational biology course at Reed College. The majority of these students were biology majors
with very little programming experience.

S4 Interacting with GraphSpace

In this section, we use screenshots and their captions to describe how a user may interact with the
GraphSpace web interface.

S4.1 Initial Interaction

The welcome page greets a user when they visit GraphSpace (Figure S2). From this page, a user
can view the networks that have been shared with the public (“Public Graphs”) or upload their
own graphs. Users may also create an account on GraphSpace.

Figure S2: The welcome page, before logging in.

For the rest of the tutorial, we assume that the user has already created an account. We also assume
that the user belongs to a group with shared networks or that the user uploaded networks via the
upload page or the RESTful API. The tutorial specifically steps through how user1@example.com

interacts with GraphSpace after logging in.

6

After creating an account and logging in, a user is directed to the list of networks that they can
access (“My Graphs” in Figure S3).

Figure S3: The welcome page, after logging in.

Clicking on the link titled “My Graphs” takes the user to a page that lists the networks accessible
by the user. In this example, the user (user1@example.com) owns 33 networks, has 33 shared
networks (this user has shared all owned networks with the group “Test Group”), and can access
64 public networks (Figure S4). The user can search this list of networks as shown in Figures S5–S8.

Figure S4: The Graphs page.

7

S4.2 Search

The user searches this list for networks that contain the protein CTNNB1, the symbol for β-catenin,
a transcriptional regulator in the Wnt signaling pathway, obtaining a reduced list of networks. Any
node whose “label”, “name” or “aliases” attribute contains “ctnnb1” as a substring will match this
search. The match is case-insenstive. There are six networks owned by the user and thirty-two
public networks that contain this protein (Figure S5).

Figure S5: The Graphs page, after searching for “ctnnb1” as a substring within the networks.

8

Figure S6: The user clicks on the network with the name “KEGG-Wnt-signaling-pathway” and
reaches the network for the Wnt pathway with the searched node highlighted. This network is avail-
able at http://graphspace.org/graphs/user1@example.com/KEGG-Wnt-signaling-pathway

Figure S7: The search interface allows users to add more search terms using a comma-separated
list. In this example, the user also searches for “wnt”.

9

Figure S8: The user can also add search terms for edges (“wnt::fzd” in this example). GraphSpace
highlights any edge whose tail node matches “wnt” and whose head node matches “fzd”.

10

S4.3 Graph Interaction

In this section, we examine different ways to interact with an individual network on its page. The
information that appears in Figures S9–S12 must be included in the JSON files that are uploaded
by the network owner, as described in the “Network format” paragraph in Section S2.

Figure S9: The “Graph Visualization” tab provides a visualization of the network.

11

Figure S10: The “Graph Information” tab displays information about the network, e.g., a legend
of node and edge shapes and colors. The “description” attribute in the JSON for the network
specifies this content.

Figure S11: Clicking on a node pops up a panel with information on that node. The “popup”
attribute for the node in the network JSON specifies this content.

12

Figure S12: Clicking on an edge pops up a panel with information on that edge. The “popup”
attribute for the edge in the network JSON specifies this content.

13

S4.4 Layouts

Layouts provide a powerful means to organize nodes within a network. Figures S13–S16 illustrate
how a user may access and view automatically generated and previously saved layouts.

Figure S13: The user clicks on the “Change Layout” button.

14

Figure S14: Clicking on the “Change Layout” button displays a layout panel which provides two
alternatives. i) “Select Layout Algorithm”: This section lists all the automatic network layout
algorithms supported by GraphSpace through its use of Cytoscape.js. ii) “Select Saved Layout”:
This section lists layouts saved by the user. The user has created them in earlier sessions by using
the layout editor or manually modifying the positions of nodes and edges created by some automatic
layout algorithm and saving the layout.

15

Figure S15: The user selects the “Grid” algorithm and obtains the displayed layout. The “Grid”
layout algorithm places nodes in a well-spaced grid.

Figure S16: Here, the user opts to view the saved layout titled “manual-top-to-bottom”. To create
this layout, the user manually moved nodes so that extracellular ligands and receptors (triangles)
appear on the top while transcription factors (rectangles) appear at the bottom. The user can click
on the “Back” button to return to the main menu.

16

S4.5 Layout Editor

In this section, we use a different network from the one shown in earlier figures to illustrate
the features of the layout editor (Figures S17–S21). This public network is available at http:

//graphspace.org/graphs/annaritz@vt.edu/Wnt-Pathway-Reconstruction. The layout edi-
tor allows the user to group nodes by colors and/or shapes and arrange them in blocks, circles, or
lines to quickly build a custom-made manual layout of large networks. The editor also allows the
user to change the visual appearance of nodes and edges. We describe these features in Section S4.7.

Figure S17: The user clicks on “Use Layout Editor” button available on the “Graph Visualization”
tab to enter the layout editor mode.

17

Figure S18: The user reaches this page after clicking the “Use Layout Editor” button. The panel
on the right side of the page allows the user to select nodes by color (green/purple/gray/orange in
this network), select nodes by shape (rectangle/triangle/ellipse in this network), or a combination
of these choices. After selecting nodes, a user can arrange the nodes in an empty or filled circle,
an empty or filled rectangle, or a horizontal or vertical line. The user can also adjust the spacing
between nodes.

18

Figure S19: The user selects all triangles, arranges them in a horizontal line, and moves them to
the top of the layout.

Figure S20: The user selects all rectangles, arranges them in a horizontal line, and moves them to
the bottom of the layout.

19

Figure S21: The user selects ellipses of each color, and arranges the nodes of each color in a
circle, yielding the layout shown here. When the user presses the “Exit layout editor” button,
GraphSpace prompts the user for a name for the layout. The user is then taken to the “Graph
Visualization” tab (Figure S23). Clicking on the “Layouts” tab allows the user to manage the
layouts, e.g., including sharing them with other users, deleting them, and renaming them. We do
not display this functionality in this supplement.

20

S4.6 Filtering Nodes and Edges

Graph algorithms may output networks where nodes and edges can be ranked, e.g., by path index or
by weight/score. GraphSpace allows each node and edge to have an integer-valued data-attribute
called “k” that specifies the rank of the node or the edge. For any network that contains this
attribute (and only for such networks), GraphSpace displays the “Filter nodes and edges” button.
Selecting this button take the user to a page that shows a “Current rank” slider on the right.
Changing the value in this slider hides all nodes and edges whose “k” values are larger than the
value in the slider. The possible values in this slider range from 1 to the maximum value of “k”
in the network. The figures in this section (Figures S23- S26) display what happens for different
values of this slider. This interface element allows the user to unveil the network gradually in real
time and gain intuition about how the network expands or contracts as this threshold changes.

Figure S22: The user clicks on “Filter nodes and edges” button on the right hand side of the “Graph
Visualization” tab to display a panel with the “Current rank” slider.

21

Figure S23: Moving the slider to the left removes all nodes and edges with the “k” attribute larger
than the slider value without changing the positions of the remaining nodes and edges.

Figure S24: In this example, only nodes and edges with “k” ≤ 100 are visible.

22

Figure S25: In this example, only nodes and edges with “k” ≤ 50 are visible.

Figure S26: In this example, only nodes and edges with “k” ≤ 10 are visible. When the user clicks
on “Back” button, they return to the main menu in the “Graph Visualization” tab.

23

S4.7 Node and Edge Editor

The layout editor includes features that allows the user to change the appearance of the nodes and
edges using an easy-to-use editing interface. In this section, we use a subnetwork of the network in
Figure S22 to illustrate the features of this editor. We generated this subnetwork by filtering nodes
and edges with “k” > 10 using the procedure explained in Figures S22–S26. The users can access
the node and edge editor by visiting the layout editor as explained in Figure S17.

Figure S27: Once the user enters the layout editor, they can select nodes or edges using the gestures
supported by Cytoscape.js (e.g., clicking to select one node or edge, using the “Shift” button on
the keyboard and the mouse to select multiple nodes) or the tool palette for selecting nodes in the
layout editor. In this example, the user selects the node called “CTNNB1” and opens the node
editor by clicking on the “Edit selected nodes” button. The user may select more than one node.

24

Figure S28: The options that appear on the right allow the user to change the following style
properties of the selected node(s): i) Color: The background color of the node. ii) Shape: The
shape of the node. iii) Width: The width of the node in pixels iv) Height: The height of the node
in pixels v) Label: The label inside the node.

25

Figure S29: The figure displays the layout after the user makes the following changes: (i) color
from green to pink, (ii) shape from rectangle to ellipse, (iii) width and height from 45px to 100px,
and (iv) label from “CTNNB1” to “Updated CTNNB1”. At this point, the user can apply these
changes by clicking on the “OK” button or discard them by clicking on the “Cancel” button. In
the remaining figures in this section, we assume the user discards these changes and goes back to
the initial layout.

26

Figure S30: In this example, user selects the edge between “LRP6” and “DAB2” by clicking on it
and opens the edge editor by clicking on “Edit selected edges” button. The user may select more
than one edg.

Figure S31: The panel on the right allows the user to change the following style properties of the
selected edge(s): i) Line Color: the colour of the edge, ii) Line Style: the style of the edge. iii)
Width: the width of the edge in pixels, iv) Source Arrow Shape: the shape of the edges source
arrow, and v) Target Arrow Shape: the shape of the edges target arrow.

27

Figure S32: The layout after the user makes the following changes: (i) line color from grey to red
(ii) line style from solid to dashed (iii) width from 3px to 10px iv) target arrow shape from none to
triangle. At this point, the user can apply these changes by clicking on the “OK” button or discard
the changes by clicking on the “Cancel” button.

28

References

[1] Basha, O., Tirman, S., Eluk, A., and Yeger-Lotem, E. (2013). ResponseNet2.0: Revealing
signaling and regulatory pathways connecting your proteins and genes–now with human data.
Nucleic Acids Res., 41(Web Server issue), 198–203.

[2] Bastian, M., Heymann, S., and Jacomy, M. (2009). Gephi: an open source software for exploring
and manipulating networks. ICWSM , 8, 361–362.

[3] Cromar, G. L., Zhao, A., Yang, A., and Parkinson, J. (2015). Hyperscape: Visualization for
complex biological networks. Bioinformatics.

[4] De Nooy, W., Mrvar, A., and Batagelj, V. (2011). Exploratory social network analysis with
Pajek , volume 27. Cambridge University Press.

[5] Franz, M., Lopes, C. T., Huck, G., Dong, Y., Sumer, O., and Bader, G. D. (2015). Cytoscape.js:
a graph theory library for visualisation and analysis. Bioinformatics, 32, 309–311.

[6] Gerasch, A., Faber, D., Kuntzer, J., Niermann, P., Kohlbacher, O., Lenhof, H. P., and Kauf-
mann, M. (2014). BiNA: a visual analytics tool for biological network data. PLoS ONE , 9(2),
e87397.

[7] Hu, Z., Chang, Y.-C., Wang, Y., Huang, C.-L., Liu, Y., Tian, F., Granger, B., and DeLisi,
C. (2013). VisANT 4.0: Integrative network platform to connect genes, drugs, diseases and
therapies. Nucleic Acids Research, 41(W1), W225–W231.

[8] Karr, J. R., Guturu, H., Chen, E. Y., Blair, S. L., Irish, J. M., Kotecha, N., and Covert,
M. W. (2015). NetworkPainter: dynamic intracellular pathway animation in Cytobank. BMC
Bioinformatics, 16, 172.

[9] Lasher, C. D., Rajagopalan, P., and Murali, T. M. (2013). Summarizing cellular responses as
biological process networks. BMC Syst Biol , 7, 68.

[10] Poirel, C. L., Rodrigues, R. R., Chen, K. C., Tyson, J. J., and Murali, T. M. (2013). Top-down
network analysis to drive bottom-up modeling of physiological processes. Journal of Computa-
tional Biology , 20(5), 409–418.

[11] Pratt, D., Chen, J., Welker, D., Rivas, R., Pillich, R., Rynkov, V., Ono, K., Miello, C., Hicks,
L., Szalma, S., Stojmirovic, A., Dobrin, R., Braxenthaler, M., Kuentzer, J., Demchak, B., and
Ideker, T. (2015). NDEx, the Network Data Exchange. Cell Syst , 1(4), 302–305.

[12] Ritz, A., Avent, B., and Murali, T. M. (2015). Pathway analysis with signaling hypergraphs.
IEEE Transactions on Computational Biology and Bioinformatics. In review.

[13] Ritz, A., Poirel, C. L., Kim, H., Tegge, A. N., Powell, A., Simmons, K., Kale, S. D., and
Murali, T. M. (2016). Pathways on demand: Automated reconstruction of human signaling
networks. NPJ Systems Biology and Applications, 2. Article number 16002.

[14] Salavert, F., Garcia-Alonso, L., Sanchez, R., Alonso, R., Bleda, M., Medina, I., and Dopazo, J.
(2016). Web-based network analysis and visualization using CellMaps. Bioinformatics, 32(19),
3041–3043.

29

[15] Santos, M. C. T., Tegge, A. N., Correa, B. R., Mahesula, S., Kohnke, L. Q., Qiao, M., Ferreira,
M. A. R., Kokovay, E., and Penalva, L. O. F. (2015). mir-124, -128, and -137 orchestrate neural
differentiation by acting on overlapping gene sets containing a highly connected transcription
factor network. Stem Cells, 34(1), 220–232.

[16] Singh, D. P. (2015). GraphCrowd: Harnessing the Crowd to Lay Out Graphs with Applications
to Cellular Signaling Pathways. Master’s thesis, Department of Computer Science, Virginia Tech.

[17] Smoot, M. E., Ono, K., Ruscheinski, J., Wang, P. L., and Ideker, T. (2011). Cytoscape 2.8:
new features for data integration and network visualization. Bioinformatics, 27(3), 431–432.

[18] Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas, J., Si-
monovic, M., Roth, A., Santos, A., Tsafou, K. P., Kuhn, M., Bork, P., Jensen, L. J., and von
Mering, C. (2015). STRING v10: protein-protein interaction networks, integrated over the tree
of life. Nucleic Acids Res., 43(Database issue), D447–452.

[19] Tegge, A. N., Sharp, N., and Murali, T. M. (2016). XTalk: a path-based approach to identifying
crosstalk between signaling pathways. Bioinformatics, 32(2), 242–251.

[20] Tripathi, S., Dehmer, M., and Emmert-Streib, F. (2014). NetBioV: an R package for visualizing
large network data in biology and medicine. Bioinformatics, 30(19), 2834–2836.

[21] Wong, A. K., Krishnan, A., Yao, V., Tadych, A., and Troyanskaya, O. G. (2015). IMP 2.0: a
multi-species functional genomics portal for integration, visualization and prediction of protein
functions and networks. Nucleic Acids Res., 43(W1), W128–133.

30

