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1 Background

1.1 Introduction

PyDREAM provides access to a Python-based version of the DREAM(ZS) and MT-DREAM(ZS)

algorithms. As described in the main text, both algorithms use a Markov Chain Monte Carlo
(MCMC) chain to generate inferred Bayesian posterior distributions for fitted model parameters.
In the background information below, we provide an informal, tutorial-style approach to Bayesian
inference (section 1.2) and MCMC (section 1.3), some practical advice for using MCMC (section
3), and detailed pseudocode for the DREAMZS algorithm (section 1.4).

1.2 Bayesian Statistics

Most biological scientists have been introduced to the frequentist approach to statistical analysis.
PyDREAM provides access to an efficient algorithm that uses Bayesian statistical inference. In
what follows we provide a short introduction to Bayesian statistical methodology and refer the
novice user to further didactic material.
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Figure 1: Predicting a Flight Delay



The first step in our introduction is to consider the definition of ”probability” in frequentist and
Bayesian statistics. In a frequentist context, the probability that a particular event will take place
is interpreted as the frequency of that event over a set of observations (hence the name frequentist).
For example, from the frequentist perspective, the probability that a flight will be delayed is the
proportion of delayed flights relative to all flights in a given time range. In a Bayesian context,
probability is instead defined as a measure of belief or confidence that a given event will take place.
Often, the frequentist and Bayesian definition of probability align; the Bayesian concept of prior
belief is particularly powerful when data is sparse. A didactic example concerning airport flight
delays may clarify the concept (see Figure 1). If an individual has no prior experience flying out
of a particular airport, then a reasonable way for that person to determine their belief that their
flight will be delayed would be to analyze the frequency of delayed flights from that airport in the
past year (the frequentist approach, Figure 1, top). If flight data for similar days is available, this
will likely provide a good prediction. However, if the day is unusual when compared to past days,
the prediction may not be very accurate. Bayesian inference is most useful in situations where
the available data is sparse. The alternative (Bayesian) approach would be to incorporate prior
knowledge into the probability estimate. Suppose the person has flown out of this airport ten times
in the past year and experienced a delay every time. In addition, it is a rainy day, making flight
delays seem more likely (Figure 1, bottom). With that prior knowledge, the individual would have a
greater expectation of a delayed flight. Different individuals can have different prior beliefs because
different individuals can have different prior knowledge they use to generate predictions. Impor-
tantly, an inaccurate prior belief can be ”washed out” by enough conflicting data. For example, if
very few flight delays have occurred on rainy days at this airport in the past, and if enough flight
data is available to indicate this, then even if an individual has a high prior belief that there will
be a flight delay, the actual probability of a flight delay will still be small.

The overarching goal of Bayesian inference is to calculate the posterior probability , that is, the
probability of an occurrence (e.g. a delayed flight) given both the prior probability of that event
(e.g. prior experience at an airport and knowledge of delay history) and the likelihood of observing
the available data (e.g. the frequency of flight delays from the airport) given a particular probability
of delayed flights. The relationship between these terms is defined mathematically as:

π(θ|D) =
π(θ)L(D|θ)∫

θ
π(θ)L(D|θ) dθ

(1)

where π(θ|D) is the posterior probability of an event θ after observing the data, D, π(θ) is
the prior probability of the event θ before observing any data, and L(D|θ) is the likelihood , the
probability of observing the data D if θ were true. The denominator in Equation (1) is termed
the evidence, and is often computationally intensive to calculate. Fortunately, when only a single
model is being studied, the evidence can be treated as a normalizing constant. We refer the novice
user to a more in-depth introduction to Bayesian methods found in reference [1].

Occasionally, the posterior probability can be calculated analytically. More often, such as when θ
is a high-dimensional vector, analytical solutions become intractable, and numerical approximations
must be used. In this case, a suitable method to calculate posterior probabilities is to apply the
Markov Chain Monte Carlo (MCMC) technique, discussed in the next section.



1.3 Markov Chain Monte Carlo (MCMC)

Sometimes it is easier to estimate a deterministic quantity (such as the posterior probabilities dis-
cussed above) through random sampling rather than a direct analytical calculation. This approach
was first envisioned by Stanislaw Ulam, a Polish American mathematician, while he passed the
time recovering from an illness by playing Canfield solitaire. After considering for some time how
to calculate the probability of winning a game of solitaire, he realized that sampling many solitaire
games and recording win rates was a simpler approach than analytically calculating the win prob-
ability. He called the new random sampling method Monte Carlo sampling [2] in reference to the
eponymous region of Monaco famous for its casinos and games of chance.

In order to generate random samples from a particular probability distribution, Markov Chain
Monte Carlo (MCMC) walk employs the Markov chain method. In a Markov chain, the next step
taken depends only on the current location, and not on the path that led to the current location
(i.e. the previous steps). Markov chains have some useful mathematical properties for sampling
of probability distributions, detailed in reference [5]. In MCMC, a Markov chain that has the
probability distribution of interest as its equilibrium distribution is created. After a number of
steps spent reaching equilibrium, the chain can be analyzed and tested for convergence to the
target distribution, and all further chain steps are samples taken from the converged probability
distribution.
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A simple example may clarify how the technique works (Figure 2). Consider a closed ecosystem
containing a single honeybee and two flowers. The nectar levels in the flowers do not change with
time. Every hour, the bee determines whether to move to the other flower using an unchanging
rule: if the other flower contains the same or more nectar, the bee always switches flowers, but
if the other flower contains less nectar, it may (or may not) switch flowers. It will do so with a
probability proportional to the difference in nectar levels between the two flowers (i.e. the bee is
more likely to jump to a slightly worse flower than to a flower that is much worse).

If one wished to determine the probability that the bee is located at a particular flower, one
could do so by recording samples of the bee’s location over time. As sampling increases, the fraction
of time spent on a particular flower converges to a particular value and the probability of the bee
being on that flower can be inferred. In MCMC parlance, the system has reached convergence
when further samples do not change the probability estimate within a given error; the samples
taken before convergence are termed burn-in. There are a number of statistical tests for assessing
convergence, all designed to test whether convergence has not occurred. Passing a given test is not
a guarantee that the walk has converged and is sampling from the desired probability distribution.

1.4 Algorithm Details

The PyDREAM algorithm employs the DREAM(ZS) algorithm to sample posterior parameter dis-
tributions given by specified priors and a likelihood function. The pseudo-code of the algorithm is
given on the next page. This recipe follows [10] with the exception that we hardwired the use of a
single chain pair (e.g. δ = 1) for the parallel direction and snooker update. Scalars appear as lower-
case italic, vectors as lower case letters, and matrices as upper case letters. Functions are typeset
bold. Default values are used for the algorithmic variables. The DREAM(ZS) code uses as inputs
the dimensionality, d of the target distribution (number of model parameters), and the number of
chains, nchains (default is 3 unless d is large). In addition, a version of the algorithm with parallel
multi-try updates, MT-DREAM(ZS), is also available in PyDREAM. Details of the algorithms are
presented in various publication in the literature and their MATLAB implementation is discussed
in detail by [10].



1: c = 0.05 . Default values of DREAM algorithmic variables
2: c∗ = 10−12

3: ncr = 3
4: pγ = 0.2
5: k = 10 . Default values of DREAM(ZS) algorithmic variables
6: psn = 0.1
7: m0 = 10d
8: cr =

[
1/ncr 2/ncr · · · 1

]
. Crossover values

9: pcr = 1/ncrones(ncr) . Selection probability crossover values: ncr unity vector multiplied with 1/ncr

10: Z = prior(m0) . Create initial archive with m0 draws from the prior distribution
11: X = Z[m0 − nchains + 1 : m0] . Use last nchains points of archive Z as initial chain states
12: pX = pdf(X) . Calculate posterior density of initial chain states
13: m = m0 . Set initial length archive equal to m0

14: for iter in niter do . For each iteration
15: Λ = uniform(-c, c,nchains) . Draw nchains values from uniform distribution between −c and c
16: e = c∗normal(0,1,nchains) . Vector of nchains standard normal draws multiplied with c∗

17: if uniform(0,1) ≤ (1− psn) then . Parallel direction or snooker jump for this generation (iteration)?
18: for chain in nchains (sequential) do . Parallel direction jump for each chain
19: a, b = randsample(m, 2) . Sample two integers from 1, 2, ... m
20: cross = draw crossover(cr, pcr) . Sample crossover from vector cr with probabilities pcr

21: d∗ = 0 . Number of dimensions to update is zero
22: for dim in ndim do . For each dimension
23: if uniform(0,1) ≤ cross then . Is dimension dim selected with current crossover, cross
24: dxdim = Z[a]dim - Z[b]dim . Update dx dimension dim to difference of dim of points Z[a] and Z[b] of archive
25: d∗ = d∗ + 1 . Increment dimensions updated
26: else
27: dxdim = 0 . Zero jump in respective dimension
28: end if
29: end for
30: if uniform(0,1) ≥ pγ then

31: γ = 2.38/
√

2δd∗ . Use default jump factor for d∗ dimensions
32: else
33: γ = 1 . Set jump factor to unity to simplify mode jumping
34: end if
35: dX[chain] = e[chain] + γ(1 + Λ[chain])dx . Parallel direction jump vector of current chain
36: αsn[chain] = 1 . Symmetric proposal distribution (no snooker correction needed)
37: end for
38: else
39: for chain in nchains (sequential) do . Snooker jump for each chain
40: a, b, c = randsample(m, 3) . Sample three integers from 1, 2, ... m
41: γ = uniform(1.2, 2.2) . Sample randomly the jump factor
42: F = X[chain] - Z[a] . Difference vector of current chain state and archive point Z[a]
43: zp = orthog proj(F, Z[b], Z[c]) . Project orthogonally points Z[b] and Z[c] of archive Z onto F
44: dX[chain] = e[chain] + γ(1 + Λ[chain])zp . Snooker jump vector of current chain

45: αsn[chain] =
(
(X[chain] + dX[chain]− Z[a])2/(X[chain]− Z[a])2

)(d−1)
. Snooker correction nonsymmetry jump

46: end for
47: end if
48: Xp = X + dX . Compute candidate points for the chains
49: for chain in nchains (in parallel) do . For each chain
50: pXp[chain] = pdf(Xp[chain]) . Calculate posterior density of proposal point
51: end for
52: for chain in nchains (sequential) do
53: pacc[chain] = min

(
1, αsn[chain](pXp[chain]/pX[chain])

)
. Calculate acceptance probability

54: if pacc[chain] ≥ uniform(0,1) then . If accept Xp of current chain
55: X[chain] = Xp[chain] . Candidate point becomes new state of chain
56: pX[chain] = pXp[chain] . Density of proposal is equivalent to density of current state chain
57: end if
58: end for
59: if modulus(iter, k) == 0 then . Check whether to append current population to archive
60: Z[m+ 1 : m+ nchains] = X . Append current states of chains to archive
61: m = m+ nchains . Increment number of points in archive
62: end if
63: end for



2 Detailed Biological Example

2.1 Introduction

In this section, we provide greater detail on the PyDREAM systems biology calibration example
included in the main text, the COX-2 Reaction Model (CORM), previously published in reference
[7].

2.2 COX-2 Reaction Model (CORM)

As mentioned in the main text, CORM is a model that describes the reaction kinetics of the
enzyme cyclooxygenase-2 (COX-2) with two substrates, arachadonic acid (AA) and 2-arachadonyl
glycerol (2-AG), as shown schematically in Figure 3. Although COX-2 is structurally a homodimer,
functionally it behaves as a heterodimer with one catalytic site and one allosteric site in each
subunit. AA turnover by COX-2 produces prostaglandin (PG) while 2-AG turnover produces
prostaglandin glycerol (PGG). The CORM reaction network consists of 13 chemical species and 29
reactions and it is not possible to directly measure all the associated kinetic rates. Therefore, we
used PyDREAM to infer the values for the unmeasurable kinetic rates. To ensure parameters were
physically meaningful, we made sure the obtained values were consistent with the experimental data,
that experimentally measured kinetic rates were kept fixed throughout the calibration, and that
system thermodynamic constraints were satisfied. CORM was created using the Python package
PySB [6] and is currently maintained as Python code at http://github.com/LoLab-VU/CORM.
Model species are shown in Table 1 and model reactions in Table 2.
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Figure 3: COX-2 Reaction Model
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Species Starting Concentration (µmolar)
COX-2 .015
AA 0, .5, 1, 2, 4, 8, 16
2-AG 0, .5, 1, 2, 4, 8, 16
PG 0
PGG 0
COX-2:AA(cat) 0
COX-2:2-AG(cat) 0
COX-2:AA(allo) 0
COX-2:2-AG(allo) 0
COX-2:AA(cat):AA(allo) 0
COX-2:2-AG(cat):2-AG(allo) 0
COX-2:AA(cat):2-AG(allo) 0
COX-2:2-AG(cat):AA(allo) 0

Table 1: CORM Species

PySB-generated Reaction Rate or Equilibrium Constant
COX-2 + AA ⇀↽ COX-2:AA(cat) KD AA cat1 = .83 µmolar
COX-2 + AA ⇀↽ COX-2:AA(allo) KD AA allo1
COX-2 + 2-AG ⇀↽ COX-2:2-AG(cat) KD AG cat1 = .76 µmolar
COX-2 + 2-AG ⇀↽ COX-2:2-AG(allo) KD AG allo1
COX-2:2-AG(allo) + AA ⇀↽ COX-2:AA(cat):2-AG(allo) KD AA cat2
COX-2:AA(cat) + AA ⇀↽ COX-2:AA(cat):AA(allo) KD AA allo2
COX-2:2-AG(allo) + 2-AG ⇀↽ COX-2:2-AG(cat):2-AG(allo) KD AG cat2
COX-2:AA(cat) + 2-AG ⇀↽ COX-2:AA(cat):2-AG(allo) KD AG allo2
COX-2:AA(allo) + AA ⇀↽ COX-2:AA(cat):AA(allo) KD AA cat3
COX-2:2-AG(cat) + AA ⇀↽ COX-2:2-AG(cat):AA(allo) KD AA allo3
COX-2:AA(allo) + 2-AG ⇀↽ COX-2:2-AG(cat):AA(allo) KD AG cat3
COX-2:2-AG(cat) + 2-AG ⇀↽ COX-2:2-AG(cat):2-AG(allo) KD AG allo3 = 63 µmolar
COX-2:AA(cat) → PG + COX-2 kcat AA1 = 1.3 s-1

COX-2:2-AG(cat) → PGG + COX-2 kcat AG1 = 1.2 s-1

COX-2:AA(cat):2-AG(allo) → PG + COX-2:2-AG(allo) kcat AA2
COX-2:2-AG(cat):2-AG(allo) → PGG + COX-2:2-AG(allo) 0 s-1

COX-2:AA(cat):AA(allo) → PG + COX-2:AA(allo) kcat AA3
COX-2:2-AG(cat):AA(allo) → PGG + COX-2:AA(allo) kcat AG3

Table 2: CORM Reactions

2.3 Experimental Data

The available experimental data consisted of 49 measurements at different substrate concentrations
of the products and PG and PGG, all measured ten seconds after the mixing of enzyme and sub-
strate. Each data point was collected in triplicate and reported as a mean and standard deviation.
The experimental data can be found in reference [7], Figure 3.



2.4 Experimental Rates

Six experimentally measured catalytic rates and disassociation constants were available from our
collaborators. These are marked in red in Table 2.

2.5 Thermodynamic Constraints

When a kinetic scheme contains cycles with identical beginning and ending species, at equilibrium
the net flux through the cycle vanishes. This constrains the product of the equilibrium constants
for the reactions in the cycle to be equal to one. Alternatively, one may view the cycle as energy
conserving (no net change in free energy). Within the specified interaction network, there are four
such thermodynamic cycles, within which relative parameter values must be consistent with energy
conservation. These cycles are shown in Figure 4. These constraints were incorporated into the
likelihood function as described in section 2.7.
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Figure 4: Thermodynamic Cycles in CORM



2.6 Specifying Priors

Broad (spanning multiple orders of magnitude), normal prior distributions were specified for all
parameters to be fitted. These were selected based on expert biological knowledge provided by
our collaborators. Disassociation constants were used rather than forward and reverse rates; the
forward rates were assumed to be diffusion limited and the reverse rates were varied to give a
particular KD. Prior distributions for all parameters are shown in Figure 5.
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Figure 5: Prior Distributions for Fitted Parameters

2.7 Specifying a Likelihood Function

The likelihood function used to calibrate CORM included two terms: a fit to experimental data and
the degree to which the thermodynamic constraints were maintained (assuming normally distributed
error with σ = .01 tolerance to deviations from perfect energy conservation). Because both terms
were normally distributed, both used the normal probability density function:

f(x, µ, σ) =
1

σ
√

2π
e−

(x−µ)2

2σ2 (2)

where x is the simulated data point (or simulated equilibrium constant product), µ is the exper-
imental data mean (or the correct equilibrium constant product = 1), and σ is the experimental



standard deviation (or the allowed thermodynamic constraint deviation of .01). To learn how to
implement this likelihood function in PyDREAM, see section 7.2.

2.8 Posterior Distributions

Sampling was continued until convergence (as measured by the Gelman Rubin statistic) was achieved
for all fitted parameters. The final posterior distributions are shown in Figure 6. Notice that there is
little information learned about some parameters after calibration; this is indicated by the fact that
those parameters closely resemble their prior distributions. Other parameters are well-constrained
by the data and deviate considerably from their prior distributions.
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Figure 6: Posterior Distributions for Fitted Parameters

3 Practical Advice for MCMC Analysis

3.1 Considerations for Priors

• Priors are meant to capture any previous knowledge about the model parameters to be fitted.

• In cases where a previous Bayesian analysis has been performed, more experimental data has
become available, and further analysis is desired, the prior for the new analysis could be the



posterior from the original analysis.

• If one has no prior information about the parameters to be fitted, one can use a flat prior ,
which returns zero no matter the value of the parameter. The fitted parameters will then be
constrained only by the fit to experimental data captured by the likelihood function.

• If the data fit captured by the likelihood function adds no information about a particular
parameter, the posterior for that prior will be its prior.

• Some probability distributions are called conjugate; this means that for a given likelihood
function distribution, selecting its conjugate prior will yield a posterior distribution of the
same type as the prior. For example, the conjugate prior for a normally distributed likelihood
function is a normal distribution; this means that if one uses a normally distributed likelihood
function and normal priors, the posterior distributions will also be normal.

• For chemical kinetics systems, popular parameter prior choices are normal and uniform dis-
tributions over biologically plausible kinetic parameter ranges.

• If concern exists that the choice of prior may bias the posterior distributions (perhaps one
is unsure about the strength of belief in the prior), Bayesian sensitivity analysis can be
performed. In a Bayesian sensitivity analysis the choice of prior is varied and the effect this
has on the final posterior distributions is observed.

3.2 Considerations for Likelihood Functions

• One can think of the likelihood function as answering the following question (for a given
parameter vector): ’What is the probability of observing the experimental data given these
parameters and how one believes the data is distributed?’

• As alluded to in the last point, specifying a likelihood function entails specifying the type of
distribution one believes represents the experimental data.

• The presentation of biological experimental data often implicitly assumes normally distributed
data (e.g. experiments run in triplicate are frequently reported with a mean and standard
deviation).

• If multiple datasets exist one may calculate the individual likelihoods and multiply the indi-
vidual probabilities (or add log-probabilities).

3.3 Considerations for Assessing Convergence

• Posterior distributions should be examined once all parameters have converged.

• Using multiple methods to assess MCMC walk convergence is advantageous because individual
methods can fail to detect lack of convergence under various circumstances.

• It is also advantageous to initialize different MCMC chains from disperse start points, as the
only way to detect chains trapped in a local minimum is the presence of at least one chain
not in the local minimum. Some convergence tests (including Gelman Rubin, mentioned
below) assume that start points are disperse for different chains relative to the final posterior
distributions.



• A way to graphically assess convergence is using a trace plot , a plot of iterations versus
sampled value. Ideally, the plot will show good mixing (sampling across the range of good
fit values occurs in few iterations). In addition, if one compares trace plots from different
chains (either from the same run, as in PyDREAM, or from different runs), one should see
that after later iterations, values are being sampled in the same region for each chain. The
samples from earlier iterations are termed burn-in and should not be included in the posterior
distributions.

• There are numerous statistical tools to test for lack of convergence. One of the most popular,
Gelman Rubin, is included in PyDREAM. This test compares between-chain and within-chain
variance for multiple MCMC chains; after convergence, these measures should be similar, but
before convergence the between-chain variance will be larger. Note that the Gelman Rubin
metric assumes that the MCMC chains being compared have been initialized from points that
are dispersed relative to the posterior distribution. Also note that the presence of multiple
modes in the posterior distributions will cause Gelman Rubin to fail, possibly falsely.

• A final quantity to assess in the MCMC chains obtained from run(s) is their autocorrelation.
In a true Markov chain, a given draw depends only on the previous draw. In an actual MCMC
chain, there will likely be autocorrelation at shorter lag times. This means that samples are
not strictly independent, and some MCMC practitioners choose to employ a technique called
thinning , retaining only the ith samples, with i dependent on the lag at which autocorrelation
is minimized. An alternative to thinning is simply to continue running the chain for a longer
period.

4 Installation

After installing Python, the pydream package can be installed by typing the command:

pip install pydream

in the command line. This automatically installs all dependencies. PyDREAM has been tested on
Linux and Mac. If you need further help with installation, please see section 9.

5 Implementation

PyDREAM is implemented in the pydream Python package, based on the original MATLAB code
[10]. The package includes a class Dream (in the file Dream.py). The Dream class contains the astep
method, which takes as input a point in parameter space, generates a proposed point, accepts or
rejects the proposed point, and returns the current point in parameter space. This method is called
iteratively when running DREAM sampling. The Dream class also includes other methods which are
called by the astep method. For instance, there are methods to generate proposal points with the
default or snooker update scheme, accept or reject proposal points, update crossover probabilities,
and save sampled histories to file. The user interfaces with the Dream class through wrapper
functions included in the file core.py, specifically the run_dream function. Detailed PyDREAM
usage is described in section 7. Detailed code documentation is included within the code base and
online at http://pydream.readthedocs.io/en/latest/.

http://pydream.readthedocs.io/en/latest/


6 Test Case Performance

To ensure that the PyDREAM implementation replicated the output of the original MATLAB-
based MT-DREAM(ZS) algorithm, output from the two implementations was compared for several
test cases. We describe these below.

6.1 10D Bimodal Mixture Model

This test case, originally described in [9], is a ten-dimensional bimodal pdf with modes centered
around -5 and 5, each with a variance of 5. Two thirds of the density is centered around the latter
mode. Example code implementing this test case is provided in the examples folder within the
PyDREAM package and described in Section 7.4.1. PyDREAM was run for 50,000 iterations with
3 chains and 5 multi-try parallel tests, requiring 5 minutes on a six-core CPU. The first 50% of
the samples were removed as burn-in. The sampled distributions for each parameter dimension are
shown in Figure 7.

Figure 7: PyDREAM samples for a 10D bimodal test case. Each subfigure depicts a parameter
dimension. Samples drawn using PyDREAM are shaded while the true distribution is indicated by
a black line. Sampled values are in arbitrary units.

6.2 200D Multivariate Normal

This test case, described in [4], is a 200-dimensional multivariate normal distribution. The vari-
ance of the j th variable is equal to j, and the pairwise correlations are set to 0.5. Example code



implementing this test case is provided in the examples folder within the PyDREAM package and
described in Section 7.4.2. PyDREAM was run for 150,000 iterations with 3 chains and 5 multi-try
parallel tests, requiring 50 minutes on a six-core CPU. The first 50% of the samples were removed
as burn-in. The sampled distributions for 10 representative dimensions are shown in Figure 8.

Figure 8: PyDREAM samples for a 200D multivariate normal test case. Each subfigure depicts one
of ten representative parameter dimensions. Samples drawn using PyDREAM are shaded while the
true distribution is indicated by a black line. Sampled values are in arbitrary units.



7 PyDREAM Usage
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Figure 9: Schematic representation of PyDREAM workflow. The experimental data, model setup,
prior parameter distribution, and likelihood function are defined as algorithmic input (top). This
serves as input to the technical heart of PyDREAM (middle) which uses differential evolution for
chain evolution, with a Metropolis selection rule to decide whether to accept/reject candidate points.
These sampled chain trajectories (bottom) are then returned to the user and used to summarize
the marginal posterior parameter distributions.



Using PyDREAM to infer parameter distributions involves three steps:

1. Specifying Parameter Priors (Figure 9, top box, item 5)

2. Defining a Likelihood Function (which measures the fit to experimental data, Figure 9, top
box, item 3)

3. Sampling (Figure 9, middle box)

An overview of PyDREAM usage is shown in Figure 9. A detailed guide to each of these steps is
provided below.

7.1 Specifying Parameter Priors

PyDREAM provides simple parameter prior specification for any continuous statistical distribution
defined in SciPy [3]. To use one of these distributions, the user passes the SciPy statistical distri-
bution object and any arguments to the distribution to the PyDREAM SampledParam class. For
example, to create a parameter with a normal prior with µ=3 and σ=1, the following code would
be used:

from scipy.stats import norm

from pydream.parameters import SampledParam

parameter = SampledParam(norm, loc=3, scale=1)

Examples of prior distribution generation with PyDREAM can be seen in any of the examples
included with PyDREAM (described in the Examples section below). Prior classes that are not
dependent on SciPy distributions can also be created if a distribution class with logpdf and rvs

methods is created to mimic SciPy functionality [3].

7.2 Defining a Likelihood Function

A likelihood function links the observed data with the estimated parameters and should return the
probability of a given set of parameters given the observed data. In PyDREAM, a likelihood function
is a Python function that takes as input a parameter vector and returns the log probability for that
parameter vector given the observed data. These functions are user-defined to provide maximum
flexibility and some examples of likelihood function definitions are provided in the examples included
in the PyDREAM distribution. Below, we describe a sample likelihood function used in the PySB
Robertson [8] example provided in the PyDREAM package (described in Section 7.4.3. The function
takes a parameter vector as input, substitutes the current parameter values into a set of ODEs,
solves the ODEs, and computes the probability of observing the simulated values given the normally
distributed experimental data (see Figure 10). The distribution of the experimental data is specified
when the like_ctot object is created outside of the likelihood function using a SciPy statistical
distribution of the user’s choice.

#Load experimental data mean and standard deviation from text files into numpy arrays

exp_data_ctot = numpy.loadtxt('exp_data_ctotal.txt')

exp_data_sd_ctot = numpy.loadtxt('exp_data_sd_ctotal.txt')

#Create scipy normal probability distributions for data likelihoods
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Figure 10: Calculating the Probability of Observing a Simulated Data Point

#loc argument = mean

#scale argument = standard deviation

like_ctot = scipy.stats.norm(loc=exp_data_ctot, scale=exp_data_sd_ctot)

def likelihood(parameter_vector):

param_dict = {pname: pvalue for pname,pvalue in \

zip(pysb_sampled_parameter_names, parameter_vector)}

for pname, pvalue in param_dict.items():

#Change model parameter values to current location in parameter space

model.parameters[pname].value = 10**(pvalue)

#Simulate experimentally measured Ctotal values.

solver.run()

#Calculate log probability contribution from simulated experimental values.

#We use the experimental data distribution specified above when

#we created the like_ctot object

#The logpdf method of the distribution is standard for all SciPy

#continuous distributions and returns the log of the probability

#density associated with the points passed

#We pass a vector of points simulated at the experimental time

#points (specified as a PySB observable)

#This returns a vector of probability densities, one for each



#simulated point. We then sum these using the numpy sum function to

#get our total log probability

logp_ctotal = numpy.sum(like_ctot.logpdf(solver.yobs['C_total']))

#If model simulation failed due to integrator errors, return a log probability of -inf.

if np.isnan(logp_ctotal):

logp_ctotal = -np.inf

return logp_ctotal

This likelihood function can be seen within the context of a full PyDREAM script in the
example_sample_robertson_with_dream.py file in the PyDREAM repository.

7.3 Sampling

Sampling with PyDREAM after defining parameter priors and a likelihood function requires calling
the run_dream function within the PyDREAM core module:

from pydream.core import run_dream

run_dream(parameters, likelihood)

where parameters and likelihood are a list of the previously defined parameter priors, and
the likelihood function, respectively. The run_dream function takes numerous optional arguments
which are then passed to initialize the underlying Dream class. Reasonable defaults are provided
for these options, but some problems may benefit from changing the defaults. All available options
are included below in the Algorithm Options section for reference. Documentation is also provided
within the PyDREAM source code.

7.4 Examples

Four detailed examples are included in the PyDREAM package (in the examples folder). These
include both statistical test models and biological models. These are described below.

7.4.1 Mixture Model

This is the 10-dimensional bimodal distribution discussed in Section 6.1. It was originally described
in [9]. The modes are centered around -5 and 5, each with a variance of 5. 2/3 of the density is
centered around the latter mode. The multiple modes make convergence with a non-adaptive
MCMC algorithm unlikely. This example is contained in mixturemodel.py in the PyDREAM
examples directory.

7.4.2 200-dimensional Gaussian

This is the multi-dimensional gaussian distribution discussed in Section 6.2. It was originally de-
scribed in [4]. The variance of the j th variable is equal to j, and the pairwise correlations are set to
0.5. Correlation amongst parameters and the high-dimensional nature of the problem make conver-
gence using non-adaptive MCMC unlikely. This example is contained in dream_ex_ndim_gaussian.py

in the PyDREAM examples directory.



7.4.3 Robertson Model

This is a simple chemical reaction model originally described in [8] and often used to study stiffness
in differential equations. It consists of the following reactions:

1. A Õ B with rate .04 s-1

2. 2B Õ B + C with rate 3.0 x 107 s-1

3. B + C Õ A + C with rate 1.0 x 104 s-1

A PySB [6] based example is included in example_sample_robertson_with_dream.py and a PySB-
independent version in example_sample_robertson_nopysb_with_dream.py in the PyDREAM
examples directory.

7.4.4 COX-2 Reaction Model (CORM)

This is a biochemical model originally described in [7], included in the main text, and described in
greater detail in Section 2. Attempted calibration of this model with a non-adaptive MCMC algo-
rithm failed to converge after more than a million iterations; in contrast, sampling with PyDREAM
converges within 50,000 iterations. It includes the catalytic and allosteric interactions of the enzyme
cyclooxygenase-2 (COX-2) with two of its substrates, arachadonic acid and 2-arachadonyl glycerol.
The model consists of thirteen species and twenty-nine reactions. A PySB-dependent version of this
model is included in example_sample_corm_with_dream.py in the PyDREAM examples directory.

8 Algorithm Options

nchains The number of parallel DREAM chains to run. Default: 5

niterations The number of iterations of the algorithm to run. Default: 50000

start A location in parameter space to begin the algorithm. This may be either a list of locations
the same length as nchains, or a single location at which to start all chains. Default: None.
Start all chains in random locations drawn from the prior.

restart A flag to use when continuing an earlier run. When used, will attempt to load earlier history
and fitted probability values using the model name specified by the model_name argument.
Default: False

verbose Trigger printing of detailed information relating to the run, such as acceptance or rejection
of a jump and the current acceptance rate. Default: True

tempering Whether to use parallel tempering of the parallel DREAM chains. This feature has
been very minimally tested. Use at your own risk! Default: False

nseedchains The number of draws to seed the history with at the start of a new DREAM run.
Default: The number of sampled parameter dimensions times ten

nCR The number of different crossover probability values to use. Default: 3

adapt crossover Whether to adapt crossover probability values. Default: True



adapt gamma Whether to adapt gamma values. Default: False

crossover burnin How many iterations to adapt crossover and/or gamma values. Default: 10%
of the total iterations.

DEpairs The number of pairs of sampled past points to use for determining the next jump size.
Default: 1

lamb Small random error to ensure ergodicity in walk. Default: .05

zeta Randomization term. Default: 10-12

history thin How many iterations to take before saving a point to the history. Default: 10

snooker Probability of proposing a snooker update. Default: .10

p gamma unity Probability of setting γ=1. Default: .20

gamma levels Levels of γ adaptation (decreases default γ value as levels increase. Useful to get
universally smaller jump sizes.) Default: 1

start random Whether to start from a random location in parameter space. Default: True

save history Whether to save the history to file at the end of the run. This also controls whether
crossover and gamma level probabilities are saved to file at the end of the run. Default: True

history file The name of a file to load a history of chain states from a previous run. This will be
set automatically if you specify the model_name with restart = True.

crossover file The name of a file to load a set of previously fit crossover probabilities. This will
be set automatically if you specify the model_name with restart = True.

gamma file The name of a file to load a set of previously fit gamma level probabilities. This will
be set automatically if you specify the model_name with restart = True.

multitry Whether to use multiple trials for each chain at each iteration. This can be set to True,
False, or a value for the number of multiple trials per iteration. Default: False. If set to True,
the default number of multiple trials is 5.

parallel Whether to execute multiple trials in parallel (different DREAM chains are always run in
parallel). Default: False

model name A string for the model name. This will be used when saving history, crossover
probabilities, and gamma level probability files. It will also be used for automatic loading of
previous run files when restart = True. Default: Save files with the current date and time
in the file name.

9 Support

Any comments or questions may be raised by opening an issue at the PyDREAM GitHub repository
at http://github.com/LoLab-VU/PyDREAM. For more information on the algorithm and other
available implementations, see the detailed DREAM manual [10]. For users who prefer a GUI, a
DREAM Windows implementation is also available at http://www.dreamsuite.eu.

http://github.com/LoLab-VU/PyDREAM
http://www.dreamsuite.eu
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