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1 Probabilistic model and localization algorithm

Suppose that we are given genotypes from n individuals at p SNPs distributed across the geographic
region under study. We denote by xi` ∈ {0, 1, 2} the observed number of alleles at SNP ` in
individual i for ` = 1, 2, . . . , p and i = 1, 2, . . . , n. Further, let X be the n × p genotype matrix,
where the (i, `) entry is xi`.

In order to capture the spatial structure of the genotype matrix, we let zi be the geographical
location of individual i and for each SNP `, we view allele frequency q` as a function of location
zi, i.e., q`(zi). Note that zi are unobserved ancestry coordinates with the implicit assumption that
random mating and localized migration has been occuring between proximate locations.

We define a general flexible probabilistic model of allele frequencies that generalize several pre-
viously developed parametric models of spatial genetic variation such as SPA (Yang et al. 2012),
SCAT (Wasser et al. 2004) and SpaceMix (Bradburd et al. 2016). In our model, we consider an ar-
bitrary stochastic process over the geographical region under consideration. The allele frequencies
{q`}p`=1 for different SNPs are independent sample paths drawn from this stochastic process.

Throughout, we use the shorthand qi` ≡ q`(zi) to represent the allele frequency for SNP `
conditional on zi. Assuming Hardy-Weinberg equilibrium, genotypes are generated by binomial
sampling as

xi` | qi` ∼ Binomial(2, qi`) .

Before presenting our localization algorithm, we provide a brief overview of the PCA method
for recovering geographic ancestry. We explain the rationale behind PCA from a perspective that
motivates our algorithm and clarifies its superiority over PCA.

1.1 Why PCA?
We denote the genotypes for individual i by xi = (xi,1, xi,2, . . . , xi,p). This can be viewed as a
representation of individuals in the p-dimensional space. In this way, the localization task seeks for

∗These authors contributed equally to this work and are ordered alphabetically.
†Correspondence should be addressed to A.B. (abhaskar@stanford.edu) or A.J. (ajavanma@marshall.usc.edu).
‡Department of Genetics, Stanford University, Stanford, CA 94305
§Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305
¶Marshall School of Business, University of Southern California, Los Angeles, CA 90089
‖Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720
∗∗Department of Electrical Engineering, Stanford University, Stanford, CA 94305

1



an embedding of individuals from the p-dimensional space into the two-dimensional geographical
region.

PCA with two principal components gives the best rank two approximation of the genotype
matrix X in the following sense.1 Define

X∗ = arg min
Y ∈Rn×2

‖XXT − Y Y T‖F , (1)

where for a matrix A = (ai,`), ‖A‖F = (
∑

i,` a
2
i,`)

1/2 indicates the Frobenius norm. The solution

to (1) is given by the top singular vectors of X. Specifically, let X = UΣV T be the singular value
decomposition of X where Σ = diag(σ1, σ2, . . . , σn) with σ1 ≥ σ2 ≥ . . . σn. The solutions to (1) are
given by X∗ = U2Σ2Q2, where U2 denotes the first two left singular vectors, Σ2 = diag(σ1, σ2), and
Q2 is an arbitrary 2× 2 orthogonal matrix (i.e. Q2Q

T
2 = I).

We next recall the following identity that for a given set of points relates their pairwise inner
products to their pairwise distances. Consider the centering matrix L = In×n−11T, where In×n is
the identity matrix of size n and 1 = (1/

√
n, . . . , 1/

√
n). For a vector v, Lv centers the entries of v

by subtracting the mean of the entries of v. Further, we denote by D the squared distance matrix
Dij = ‖xi − xj‖2. Using this notation, we have the following,

LXXTL = −1

2
LDL .

A common preprocessing step for PCA is to center each column in the genotype matrix. This
centered genotype matrix is precisely LX. It is then straightforward to see that PCA provides
a lower dimensional representation of points {xi}ni=1 such that their squared distance matrix D∗
solves the following optimization problem,

D∗ = arg min
D̃∈D

‖LDL− LD̃L‖F . (2)

Here D is the set of squared distance matrices for all possible two-dimensional embeddings of the
points {xi}ni=1. In other words, PCA seeks a low-dimensional representation of the n points that
best approximates all pairwise distances.

However, an important question that is unanswered is the following:

How are the spatial distances between individuals reflected in their genotype informa-
tion?

The PCA approach merely assumes that for any two individuals, their genotype distance is a
good approximation of their spatial distance and hence it returns the embedding of individuals on
the map that best preserves all pairwise genotype distances. However, a more profound answer
to the above question requires a model that relates genetic distances to spatial distances. The
PCA approach to ancestry localization lacks such a model. In the following, we use our proposed
probabilistic model for the allele frequencies to answer the above question.

According to our model, the spatial allele frequencies at each SNP ` come from some spatial
stochastic process. Our model posits that the underlying spatial processes are second-order sta-
tionary, in the sense that for each SNP `, E(q`(z)) = µ` for all locations z, and the allele frequency
covariance functions Cov(q`(z), q`(z

′)) depend solely on z− z′ as follows,

Cov(q`(z), q`(z
′)) = E[(q`(z)− µ`)(q`(z′)− µ`)] := η(z− z′) . (3)

1In general, the top k principal components give the best rank k approximation in a similar sense.
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Note that while the processes for different SNPs can have different means µ`, they share the same
covariance function η(·). The implicit structure imposed by the second-order stationarity are used
by our localization algorithm GAP, which consists of three main steps:

(1) Construct consistent estimators of η(·) and µ(·) using the genotype information from p SNPs
(p� n).

(2) Use η(·) and µ(·) functions to approximate local spatial distances between the individuals.

(3) Find a global embedding of individuals on the geographical map that respects the estimated
local distances.

1.2 GAP algorithm
In the following, we discuss the details of each step.

Step (1): Estimating mean and autocorrelation. Estimates for η(·) and µ(·) functions are
given by Theorem 1 below.

Theorem 1. Consider the proposed probabilistic model for the allele frequency functions and define
the following quantities:

µ̂` =
1

2n

n∑
i=1

xi` , (4)

η̂i,j =
1

p

p∑
`=1

(xi`
2
− µ̂`

)(xj`
2
− µ̂`

)
, (5)

η̂0 =
1

p

p∑
`=1

(
1

2n

n∑
i=1

(x2i` − xi`)− µ̂2`

)
. (6)

Let 1 = (1/
√
n, . . . , 1/

√
n)T and let K ∈ Rn×n with Kij = η(zi − zj). Further, set κ := 1TK1.

Then with probability at least 1− (n+ 1)−2, the following statements are true:

|η̂i,j − η(zi − zj)| ≤ 5

√
2 log(n+ 1)

p
+ 16

√
κ

n
+

8

n
, ∀1 ≤ i 6= j ≤ n , (7)

|η̂0 − η(0)| ≤ 5

√
2 log(n+ 1)

p
+ 16

√
κ

n
+

8

n
. (8)

Remark 1.1. The estimates in (5) and (6) are consistent, i.e., as the number of individuals n
increases indefinitely, the resulting sequence of estimates converges in probability to the quantities
of interest, provided that log(n + 1)/p → 0 and κ/n → 0. (Note that κ is bounded by the spectral
radius of K.)

We provide the proof of Theorem 1 in §3.

Step (2): Estimating local spatial distances. The next step consists in showing how the
local spatial distances can be inferred from functions η(·) and µ(·). To do so, we write the Taylor
expansion of η(·) around the origin,

η(zi − zj)− η(0) = ∇η(0)T(zi − zj) +
1

2
(zi − zj)

T∇2η(0)(zi − zj) +O(d3ij) , (9)
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where dij = ‖zi − zj‖ represents the spatial distance between individuals i and j. Further, ∇η
and ∇2η respectively denote the gradient and the Hessian of the η(·) function. Recall that the
autocorrelation function of a stationary distribution achieves its maximum at zero and therefore
∇η(0) = 0. Further, ∇2η(0) is negative semidefinite. We let J be a square root of (−1/2)∇2η(0).
For ‘local distances’ where dij is small enough we can neglect the higher order term O(d3ij) in (9)
and therefore,

η(0)− η(zi − zj) ≈ ‖J(zi − zj)‖2 . (10)

Using our estimates from the previous step we obtain

η̂0 − η̂i,j ≈ ‖J(zi − zj)‖2 . (11)

We correct for the transformation J using some anchor individuals whose locations are known
apriori.2 Hence, we obtain consistent estimates for local pairwise distances.

It is worth noting that the above argument fails if dij is large because the higher order term
O(d3ij) cannot be neglected in our estimation procedure. We thus employ a threshold value τ and

only use the estimated distances in (11) for individuals i and j for which d̂ij = (η̂0 − η̂i,j)1/2 ≤ τ .
When some of the estimated local distances η̂0 − η̂i,j are negative, we shift all of the estimates by
the smallest constant which makes them non-negative. We discuss the procedure for choosing this
threshold τ in §1.3.

Step (3): Global embedding. The final step is finding a ‘global’ embedding of individuals from
their estimated local pairwise distances. There has been a great deal of research on this task as
it appears in various applications such as network localization (Shang et al. 2003; Patwari et al.
2005) and reconstruction of protein conformations from NMR measurements. It is also directly
related to dimensionality reduction of high dimensional data under the topic of manifold learning.
Several interesting algorithms have been proposed in the literature for this task. Probably the
most well-known is the ISOMAP algorithm (Tenenbaum et al. 2000). It first estimates the missing
pairwise distances by computing the shortest path between all pairs of nodes, via local distances.
It then applies multidimensional scaling (MDS) to infer the locations from the pairwise distances.
Some other methods for this task are Locally linear embedding (LLE) (Saul and Roweis 2003),
Laplacian eigenmap (Belkin and Niyogi 2002), Hessian eigenmap (Donoho and Grimes 2003), and
Locally rigid embedding (Singer 2008). Another group of algorithms formulate the localization task
as a non-convex optimization problem and then consider different convex relaxations to solve it. A
famous example of this type is the relaxation to semidefinite programming (SDP) (Biswas and Ye
2004; Alfakih et al. 1999; Weinberger and Saul 2006; Javanmard and Montanari 2013).

One can use any of the above proposed methods for this step. In the remainder of this paper,
we use the ISOMAP algorithm to infer the locations from the estimated local distances. For the
reader’s convenience, we summarize the steps of ISOMAP below.

Let d̂ij = (η̂0 − η̂i,j)1/2 be estimated pairwise distances. Construct a graph G with n nodes such

that i and j are connected by an edge of weight d̂ij if they are within the local distance threshold,

i.e., d̂ij ≤ τ . The steps of ISOMAP follow:

(1) Compute pairwise shortest paths in the (weighted) graph G.

(2) Let Dτ be the matrix of squared shortest paths distances in G.

2PCA also reconstructs locations only up to an orthogonal transformation. In particular, if X∗ is a solution to
the optimization problem (1), then X∗Q2 for any 2 × 2 orthogonal matrix Q2 is also a solution.
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(3) Let (u1, u2) and (σ1, σ2) be the top two eigenvectors and eigenvalues of (−1/2)LDτL, where
L = In×n − 11T is the centering matrix.

(4) Return the estimated locations zi = (
√
σ1u1,i,

√
σ2u2,i), for i = 1, 2, . . . , n.

Remark 1.2. It is straightforward to verify that output of GAP is unaltered if we relabel the alleles
at any SNP. In other words, for any SNP `, if we replace the genotypes 0 and 2 for all individuals
at that SNP, GAP returns the same locations.

1.3 Choosing the local distance threshold τ

We describe two strategies for choosing the distance threshold τ that we use in order to estimate
spatial distances from genetic distances in (11). When we have the true sampling locations for the
individuals in the dataset, we can use a subset of these known locations as training data for choosing
τ . In particular, in the simulations for GAP in §1.5 and in the simulations for the association testing
procedure SCGAP in §2.1, we used the known locations of a random subset of 20% of the samples
as training data, and chose the value of τ that minimized the spatial reconstruction RMSE on the
training set. For evaluation on the real datasets where we have the sampling coordinates for each
subpopulation, we used a leave-one-out cross-validation procedure on the training set to choose
the value of τ . For the simulation scenarios, we optimized τ using the RMSE on the training set
instead of performing leave-one-out cross-validation for computational reasons. Figure S1 shows an
example of the dependence of the spatial reconstruction RMSE (of the entire dataset) on the choice
of τ in the isotropic covariance decay model. In general, different covariance decay models η will
exhibit different dependence of the spatial reconstruction RMSE on the threshold τ , and one can
tune this parameter using the kind of training and cross-validation procedures that are commonly
employed in machine learning.

The second-order stationarity assumption of our model, i.e. Cov(q`(z), q`(z
′)) = η(z − z′), im-

plicitly assumes that the covariance decay function η is the same across space. However, we expect
different covariance decay functions in different geographic regions (Ramachandran and Rosenberg
2011; Jay et al. 2013) due to geographic barriers, historical migrations, and other factors that in-
troduce spatial heterogeneity. The distance threshold τ is used to determine the regime in which
the second-order Taylor expansion of the η function given in (9) can be considered to be valid. As a
result, when the estimated covariances η̂ij and distances d̂ij change, say due to refocusing an earlier
analysis on a subset of the samples, it would make sense to retune the local distance threshold τ
via the above cross-validation procedure using samples from the relevant geographic region.

When we do not have any individuals with known locations, as is the case with the Northern
Finland Birth Cohort GWAS dataset analyzed in §2.2, we use the following procedure for picking
τ . For any given threshold τ , Dτ is the squared shortest paths matrix produced in the second
step of the ISOMAP algorithm. Let D̃τ denote the pairwise squared distance matrix of the two-
dimensional embedding produced in the fourth step of the ISOMAP algorithm. We choose τ to
maximize the value of ||LD̃τL||∗/||LDτL||∗, where ‖A‖∗ is the nuclear norm of the matrix A and
is given by the sum of the singular values of A.

1.4 Relation to previous spatial models
Here, we show that several previously proposed spatial genetic models and ancestry localization
algorithms can be viewed as a special case of our probabilistic model and algorithm.

1. SpaceMix (Bradburd et al. 2016): This model posits that the distribution of alleles among
individuals comes from a spatial process such that the covariance function F between nor-
malized allele frequencies for individuals i and j has an exponential decay with respect to
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Fig. S1: Sensitivity of the spatial reconstruction RMSE to the local distance threshold τ for
the isotropic covariance decay model. The simulations were performed with n = 2,000 individuals
sampled from the unit square [0, 1]2, with p = 50,000 SNPs according to the isotropic covariance decay
model with parameter combinations α0 = α2 = 1 and different choices of α1. Solid lines indicate the spatial
reconstruction RMSE of GAP as a function of the distance threshold τ , while the horizontal dashed lines
indicate the reconstruction RMSE of PCA. In order to put the different ranges for τ for each parameter
setting of α1 on the same scale, the x-axis is measured using the percentage of the estimated

(
n
2

)
genetic

distances d̂ij ≤ τ which are used by GAP.
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their spatial distance:

F (z, z′) =
1

α0
exp(−(α1‖z− z′‖)α2) . (12)

This is clearly a special case of our probabilistic model since F (z, z′) is a function of z− z′.

2. SCAT (Wasser et al. 2004): For the case of two alleles at each locus (similar to the setting
considered in the present paper), this model is based on writing the allele frequencies as

q`(z) =
1

1 + exp(θ`(z))
, (13)

where the θ`(·) values for different SNPs ` are assumed to be independent Gaussian pro-
cesses. For each `, θ` is a Gaussian spatial process with E(θ`(z)) = µ` and covariance kernel
Kθ`(z, z

′) = (1/α0) exp(−(α1‖z− z′‖)α2). Note that process θ` is translation invariant. More
specifically, for any collection of locations {zi}ni=1, the distribution of (θ`(z1+δ), · · · , θ`(zn+δ))
is invariant to δ. This property is preserved after applying any one-to-one deterministic func-
tion, and in particular, the logistic function. Therefore, the process q`(z) is also translation
invariant. As a result, the covariance of allele frequencies Cov(q`(z), q`(z

′)) only depends on
z− z′ and can be written as Cov(q`(z), q`(z

′)) = η(z− z′) for some function η. This is clearly
a special case of our probabilistic model.

3. SPA (Yang et al. 2012): In the SPA model, allele frequencies are given by a logistic function

q`(z) =
1

1 + exp(−〈a`, z〉 − b`)
, (14)

where a` and b` are coefficients for SNP `. Under such a model, the allele frequencies at each
SNP ` are constant along lines perpendicular to the vector a`. The directional covariance
decay model introduced in the Simulation results section of the main text also possesses this
property. In the directional covariance decay model, the allele frequency at SNP ` and location
z is given by q`(z) = 1/(1+exp(G`(z))) where G`(·) is a sample path from a Gaussian spatial
process with mean 0 and covariance kernel K(z, z′) = (1/α0) exp(−(α1|〈u, z − z′〉|)α2). For
any two locations z, z′ such that z − z′ ⊥ u, we have K(z, z′) = 1/α0. Further, K(z, z) =
K(z′, z′) = 1/α0. In words, G`(z) and G`(z

′) have equal variance and are perfectly correlated,
therefore G`(z) = G`(z

′) almost surely. This argument shows that the lines perpendicular
to the direction vector u are level sets for the allele frequency. This is also apparent from
Figure 1 in the main text.

4. PCA (Price et al. 2006; Novembre et al. 2008): We next show that under our probabilistic
model for allele frequencies, GAP asymptotically always dominates PCA. Specifically, if we
choose the local distance threshold τ to be large enough, then GAP and PCA return the same
outputs in the asymptotic regime n → ∞, and hence PCA can be viewed as a special case
of GAP. In Tables S3–S10, the ratio of the RMSE of GAP to the RMSE of PCA exceeds 1
by a very small amount for some parameter combinations, which is due to the effect of finite
sample size. However, this effect of the finite sample size is already very small for n ≥ 2,000.
To corroborate our claim, recall that PCA estimates locations using the two top eigenvectors
of LXXTL, where L is the centering matrix L = I − 11T, with 1 = (1/

√
n, . . . , 1/

√
n)T the

unit norm vector with equal entries. Often, the columns of the centered genotype matrix are
normalized to have unit variance before applying PCA (This is also done in our simulations.)
In the asymptotic regime n → ∞, the normalization factors for all columns concentrate at
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η(0) and as such PCA uses the (scaled) two top eigenvectors of (1/η(0))LXXTL. On the
other hand, in Step (1) of GAP, the estimates η̂i,j can be written as the (i, j) entry of LXXTL.

Let D̂ = (d̂2ij) where d̂ij = (η̂0 − η̂i,j)1/2 are the estimated local spatial distances in Step (2).

We thus have the matrix representation D̂ = η̂011T − LXXTL. If τ is chosen to be larger
than the range of pairwise distances d̂ij , all of them will be treated as local distances and
no thresholding occurs. Therefore, in Step (3) the constructed graph G is a complete graph
and the squared shortest path distances D̂ are indeed the squared local distances D. The
ISOMAP employed in the last step reduces to PCA applied to

−1

2
LD̂L = −1

2
L(η̂011T − LXXTL)L =

1

2
LXXTL ,

where the last equality holds because L1 = 0 and L2 = L. It is now clear that GAP and PCA
are the same procedure in this case (up to a scaling factor which is corrected for using some
individuals with known locations).

1.5 Ancestry localization simulations
As described in the main text, we considered two sets of simulation scenarios to model isotropic and
direction-dependent decay rates for the allele frequency covariance. For both simulation scenarios,
we simulated n = 2,000 individuals at p = 50,000 SNPs. The true geographic origin zi of individual
i was simulated by sampling each coordinate according to a Beta(β, β) distribution from the unit
square. This distribution lets us smoothly interpolate between dense sampling of individuals in
the interior of the space to dense sampling at the boundaries (Figures 1(a) and 1(d) in the main
text), with β = 1 representing uniform sampling. We considered β ∈ {0.25, 0.5, 1, 2, 4}. The spatial
allele frequencies at each SNP were generated by applying the logistic function to sample paths
from a spatial Gaussian process. The genotypes of each individual i were then drawn according to
a binomial distribution from the allele frequencies at their geographic origin zi.

• Isotropic covariance decay: The allele frequency q`(zi) of SNP ` at location zi is given by
q`(zi) = 1/(1 + exp(Z`,i)), where Z`,· is an n-dimensional Normal random variable with mean
0 and covariance Cov(Z`,i, Z`,j) = exp(−(α1‖zi − zj‖)α2)/α0. Such covariance decay models
have been previously used by Wasser et al. (2004) and Bradburd et al. (2016). Figure S2A
in the main text shows example allele frequency surfaces drawn from this model.

• Directional covariance decay: Given a unit norm direction vector uk ∈ R2, the allele
frequency q`(zi) of SNP ` at location zi is given by q`(zi) = 1/(1 + exp(Z`,i)), where Z`,·
is an n-dimensional Normal random variable with mean 0 and covariance Cov(Z`,i, Z`,j) =
exp(−(α1|〈uk, zi − zj〉|)α2)/α0. Figure S2B in the main text shows example allele frequency
surfaces of this form. Such models can be viewed as a generalization of the SPA model of
Yang et al. (2012) (see §1.4). In the simulations, we sampled 100 different direction vectors
uk from a von Mises distribution, which is a circular analogue of the Normal distribution.
For each such direction vector uk, we simulated 500 SNPs, which will have level sets of equal
allele frequency in directions perpendicular to uk.

For each parameter combination in the above simulation scenarios, we simulated 10 random
datasets, and used PCA and our algorithm GAP to infer the spatial coordinates zi. PCA can
estimate the coordinates up to an orthogonal transformation, while GAP estimates coordinates up
to the invertible linear transformation J in (11). We use the true geographic locations of a random
subset of 20% of the simulated individuals to rescale the coordinates inferred by PCA and GAP. As
a measure of inference accuracy, we use the root mean squared error (RMSE) between the inferred
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Fig. S2: Sample spatial allele frequencies from our probabilistic model. Each figure corresponds to
an allele frequency covariance function η in the underlying collection of spatial stochastic processes over the
two-dimensional space represented by a 5× 5 grid.
(A) Isotropic covariance decay. The allele frequency surface is generated by a logistic function applied
to a Gaussian process. In particular, the allele frequency q`(z) of SNP ` at location z is given by q`(z) =
1/(1 + exp(G`(z))), where G`(·) is a sample path from a stationary Gaussian process with mean 0 and
covariance kernel K(z, z′) = exp(−(α1‖z− z′‖)α2)/α0. In this example, α0 = α1 = α2 = 1. Such families of
allele frequency functions are also used in previous probabilistic models such as SCAT (Wasser et al. 2004)
and SpaceMix (Bradburd et al. 2016).
(B) Directional covariance decay. The allele frequency q`(z) of SNP ` at location z is given by q`(z) =
1/(1 + exp(G`(z))), where G`(·) is a sample path from a stationary Gaussian process with mean 0 and
covariance kernel K(z, z′) = exp(−(α1|〈u, z−z′〉|)α2)/α0. This form for the Gaussian process kernel leads to
level sets of equal allele frequency in directions perpendicular to u. In this example, α0 = α1 = α2 = 1 and
the directions u, shown as black arrows, were randomly chosen for each SNP. Such allele frequency functions
can be viewed as a generalization of the logistic allele frequency surfaces considered in the SPA model (Yang
et al. 2012).
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locations ẑi and the true locations zi as follows,

RMSE =

√√√√ 1

n

n∑
i=1

‖zi − ẑi‖2 . (15)

In order to choose the threshold parameter τ that is used when estimating the local spatial dis-
tances from the genetic distances, we picked a uniform grid (of 20 points) over the quantiles of
the

(
n
2

)
estimated pairwise genetic distances d̂ij . We picked the value of τ which minimized the

reconstruction RMSE over the aforementioned random subset containing 20% of the samples whose
locations were assumed known. For most parameter combinations in both the simulation models,
and for the range of sampling distribution parameters β, the RMSE of GAP is substantially lower
than that of PCA (Tables S1–S10).

β = 1

α2 α1
RMSE GAP

RMSE PCA
RMSE PCA RMSE GAP τ

Proportion of
distances used

0.5

1 1.010 0.0879 0.0888 0.2507 100.0%
2 0.978 0.1030 0.1008 0.2305 17.2%
4 0.699 0.1001 0.0700 0.2349 11.4%
8 0.414 0.1151 0.0477 0.2416 6.2%
16 0.307 0.1372 0.0421 0.2612 5.8%

1

1 1.018 0.0716 0.0729 0.2700 100.0%
2 0.880 0.0929 0.0818 0.2599 24.4%
4 0.359 0.1285 0.0461 0.2584 11.7%
8 0.094 0.1733 0.0163 0.2587 5.7%
16 0.096 0.2554 0.0245 0.2816 5.7%

1.5

1 1.028 0.0555 0.0570 0.2806 100.0%
2 0.857 0.0983 0.0843 0.2800 33.5%
4 0.212 0.1647 0.0349 0.2610 12.2%
8 0.100 0.2842 0.0285 0.2595 5.7%
16 0.100 0.3114 0.0311 0.1963 0.5%

Table S1: Isotropic covariance decay model: Comparison of the localization accuracy of GAP and PCA
for simulated datasets with n = 2,000 samples and p = 50,000 SNPs. The geographic locations zi of the
individuals are simulated by sampling each coordinate according to a Beta(β, β) distribution from the unit
square. In this table, β = 1, which is equivalent to sampling the individuals uniformly from the unit square.
The allele frequency for individual i at locus ` is given by qi` = 1/(1+exp(Zi`)), where Z·,` is an n-dimensional
multivariate Gaussian random variable with mean 0 and covariance between the i-th and j-th entries given
by exp(−(α1‖zi − zj‖)α2)/α0. In these simulations, α0 = 1. The columns for PCA and GAP show the root
mean squared error (RMSE) in the reconstruction accuracy for PCA and MDS, respectively. The column
τ indicates the threshold on the genetic distance that was used when applying GAP. This threshold τ was
optimized using the known ancestral locations of a random subset of 20% of the simulated points. The last
column of the table indicates the percentage of entries in the pairwise genetic distance matrix less than the
threshold value τ .
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β = 0.5

α2 α1
RMSE GAP

RMSE PCA
RMSE PCA RMSE GAP τ

Proportion of
distances used

0.5

1 0.925 0.0605 0.0560 0.2223 23.4%
2 0.774 0.0650 0.0503 0.2371 23.1%
4 0.681 0.0697 0.0475 0.2326 6.9%
8 0.448 0.0718 0.0321 0.2609 12.1%
16 0.444 0.0826 0.0367 0.2633 6.2%

1

1 0.966 0.0623 0.0602 0.2309 37.1%
2 0.593 0.0770 0.0457 0.2524 24.4%
4 0.205 0.1090 0.0224 0.2293 6.8%
8 0.200 0.1174 0.0234 0.2544 5.9%
16 0.072 0.3645 0.0263 0.2290 1.2%

1.5

1 1.027 0.0567 0.0583 0.2817 100.0%
2 0.466 0.0921 0.0429 0.2797 36.9%
4 0.195 0.1336 0.0261 0.2451 11.6%
8 0.071 0.3815 0.0269 0.2619 5.9%
16 0.102 0.4187 0.0425 0.2144 0.9%

Table S2: Isotropic covariance decay model: The geographic locations zi of the individuals are simulated
by sampling each coordinate according to a Beta(β, β) distribution from the unit square, with β = 0.5. The
other simulation settings are as described in Table S1.

β = 0.25

α2 α1
RMSE GAP

RMSE PCA
RMSE PCA RMSE GAP τ

Proportion of
distances used

0.5

1 0.772 0.0476 0.0367 0.2005 15.1%
2 0.590 0.0524 0.0309 0.2212 15.2%
4 0.491 0.0715 0.0351 0.2232 9.3%
8 0.252 0.1190 0.0300 0.2445 9.1%
16 0.221 0.1938 0.0428 0.2628 8.4%

1

1 1.010 0.0534 0.0540 0.2758 100.0%
2 0.545 0.0532 0.0290 0.2169 15.2%
4 0.228 0.1736 0.0396 0.2462 14.0%
8 0.132 0.3293 0.0433 0.2616 8.5%
16 0.067 0.4390 0.0293 0.2455 3.1%

1.5

1 0.991 0.0464 0.0460 0.2315 40.3%
2 0.499 0.0795 0.0397 0.2409 22.7%
4 0.097 0.3640 0.0352 0.2522 12.8%
8 0.165 0.3683 0.0609 0.2678 7.6%
16 0.089 0.4571 0.0407 0.2711 4.3%

Table S3: Isotropic covariance decay model: The geographic locations zi of the individuals are simulated
by sampling each coordinate according to a Beta(β, β) distribution from the unit square, with β = 0.25. The
other simulation settings are as described in Table S1.
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β = 2

α2 α1
RMSE GAP

RMSE PCA
RMSE PCA RMSE GAP τ

Proportion of
distances used

0.5

1 1.009 0.0891 0.0899 0.2508 100.0%
2 1.008 0.0940 0.0947 0.2617 100.0%
4 0.910 0.1064 0.0968 0.2319 11.4%
8 0.657 0.1241 0.0816 0.2358 5.8%
16 0.347 0.1377 0.0478 0.2295 1.1%

1

1 1.020 0.0663 0.0677 0.2647 100.0%
2 1.014 0.0859 0.0871 0.3076 100.0%
4 0.695 0.1182 0.0821 0.2683 17.5%
8 0.202 0.1725 0.0349 0.2554 5.9%
16 0.085 0.2438 0.0207 0.2401 1.5%

1.5

1 1.030 0.0483 0.0498 0.2662 100.0%
2 1.018 0.0757 0.0771 0.3356 100.0%
4 0.468 0.1416 0.0663 0.2869 18.8%
8 0.092 0.2205 0.0203 0.2513 5.7%
16 0.066 0.2845 0.0187 0.2318 1.5%

Table S4: Isotropic covariance decay model: The geographic locations zi of the individuals are simulated
by sampling each coordinate according to a Beta(β, β) distribution from the unit square, with β = 2. The
other simulation settings are as described in Table S1.

β = 4

α2 α1
RMSE GAP

RMSE PCA
RMSE PCA RMSE GAP τ

Proportion of
distances used

0.5

1 1.011 0.0775 0.0783 0.2448 100.0%
2 1.009 0.0809 0.0816 0.2550 100.0%
4 1.006 0.0922 0.0927 0.2723 100.0%
8 0.815 0.0994 0.0810 0.2340 5.8%
16 0.467 0.1131 0.0528 0.2247 1.1%

1

1 1.020 0.0540 0.0551 0.2441 100.0%
2 1.017 0.0694 0.0706 0.2986 100.0%
4 0.958 0.0940 0.0900 0.2759 18.8%
8 0.417 0.1257 0.0524 0.2489 6.3%
16 0.105 0.1798 0.0189 0.2561 3.7%

1.5

1 1.029 0.0369 0.0380 0.2419 100.0%
2 1.025 0.0538 0.0552 0.3239 100.0%
4 0.962 0.0956 0.0920 0.2848 18.0%
8 0.225 0.1576 0.0355 0.2742 10.5%
16 0.108 0.2030 0.0219 0.2786 6.3%

Table S5: Isotropic covariance decay model: The geographic locations zi of the individuals are simulated
by sampling each coordinate according to a Beta(β, β) distribution from the unit square, with β = 4. The
other simulation settings are as described in Table S1.
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β = 1

κ α1
RMSE GAP

RMSE PCA
RMSE PCA RMSE GAP τ

Proportion of
distances used

0.1

1 1.026 0.0680 0.0697 0.2383 100.0%
2 1.021 0.0808 0.0825 0.2779 100.0%
4 0.644 0.1105 0.0711 0.2561 23.5%
8 0.345 0.1392 0.0480 0.2397 6.0%
16 0.257 0.1597 0.0410 0.2575 5.9%

1

1 1.024 0.0660 0.0676 0.2367 100.0%
2 1.032 0.0884 0.0912 0.2387 36.1%
4 0.655 0.1062 0.0695 0.2617 23.3%
8 0.362 0.1395 0.0505 0.2369 6.2%
16 0.167 0.1552 0.0259 0.2621 5.8%

10

1 0.512 0.2962 0.1518 0.1817 23.6%
2 0.518 0.2956 0.1532 0.2135 19.3%
4 0.345 0.2980 0.1028 0.2186 8.9%
8 0.411 0.3067 0.1260 0.2252 6.4%
16 0.356 0.3142 0.1118 0.1762 0.6%

Table S6: Directional covariance decay model: Comparison of the localization accuracy of GAP and
PCA for simulated datasets with n = 2,000 samples and p = 50,000 SNPs. The geographic locations zi of the
individuals are simulated by sampling each coordinate according to a Beta(β, β) distribution from the unit
square. The geographic locations zi of the individuals are simulated by sampling each coordinate according
to a Beta(β, β) distribution from the unit square, with β = 1. In this table, β = 1, which is equivalent to
sampling the individuals uniformly from the unit square. 100 different directions vectors uk were chosen
from a von Mises distribution with mean direction (1, 0)T (i.e. the x-axis) and dispersion parameter κ. For
each such direction vector uk, 500 SNPs were simulated such that they have level sets of equal frequency
along directions perpendicular to uk. The allele frequency for individual i at SNP ` for direction vector uk
is given by q`(zi) = 1/(1 + exp(Z`,i)), where Z`,· is an n-dimensional multivariate Gaussian random variable
with mean 0 and covariance between the i-th and j-th entries given by exp(−(α1|〈uk, zi − zj〉|)α2)/α0. In
these simulations, α0 = α2 = 1. Bold values indicate those parameter combinations where the root mean
squared error (RMSE) of GAP is lower than that of PCA.
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β = 0.5

κ α1
RMSE GAP

RMSE PCA
RMSE PCA RMSE GAP τ

Proportion of
distances used

0.1

1 1.024 0.0648 0.0664 0.2366 100.0%
2 0.836 0.0710 0.0593 0.2340 36.2%
4 0.549 0.0984 0.0540 0.2304 13.6%
8 0.340 0.0896 0.0305 0.2320 6.3%
16 0.102 0.2766 0.0281 0.2603 6.3%

1

1 1.021 0.0663 0.0677 0.2357 100.0%
2 0.885 0.0780 0.0690 0.2437 40.8%
4 0.479 0.0803 0.0384 0.2430 18.6%
8 0.255 0.0854 0.0218 0.2320 6.4%
16 0.109 0.2747 0.0299 0.2558 6.0%

10

1 0.360 0.3584 0.1291 0.1750 27.6%
2 0.272 0.3571 0.0970 0.1927 17.4%
4 0.221 0.3542 0.0783 0.1936 7.8%
8 0.278 0.3579 0.0994 0.2049 6.3%
16 0.359 0.3562 0.1279 0.1574 0.7%

Table S7: Directional covariance decay model: The geographic locations zi of the individuals are
simulated by sampling each coordinate according to a Beta(β, β) distribution from the unit square, with
β = 0.5. The other simulation settings are as described in Table S6.

β = 0.25

κ α1
RMSE GAP

RMSE PCA
RMSE PCA RMSE GAP τ

Proportion of
distances used

0.1

1 1.016 0.0433 0.0441 0.2384 100.0%
2 0.979 0.0523 0.0512 0.1943 17.5%
4 0.559 0.0511 0.0286 0.2194 14.4%
8 0.102 0.2807 0.0286 0.2248 8.3%
16 0.115 0.3723 0.0428 0.2618 8.7%

1

1 1.013 0.0425 0.0431 0.2401 100.0%
2 0.865 0.0613 0.0531 0.1917 17.1%
4 0.553 0.0740 0.0409 0.1964 9.9%
8 0.140 0.2284 0.0321 0.2180 7.8%
16 0.117 0.2678 0.0313 0.2596 8.3%

10

1 0.303 0.4099 0.1243 0.1441 18.7%
2 0.193 0.4172 0.0806 0.1650 12.7%
4 0.318 0.4083 0.1300 0.1447 4.9%
8 0.192 0.4163 0.0798 0.2159 8.0%
16 0.313 0.3580 0.1120 0.1921 2.3%

Table S8: Directional covariance decay model: The geographic locations zi of the individuals are
simulated by sampling each coordinate according to a Beta(β, β) distribution from the unit square, with
β = 0.25. The other simulation settings are as described in Table S6.
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β = 2

κ α1
RMSE GAP

RMSE PCA
RMSE PCA RMSE GAP τ

Proportion of
distances used

0.1

1 1.025 0.0627 0.0643 0.2286 100.0%
2 1.022 0.0780 0.0797 0.2732 100.0%
4 1.014 0.0969 0.0983 0.3022 100.0%
8 0.495 0.1382 0.0684 0.2456 6.4%
16 0.222 0.1574 0.0349 0.2571 6.0%

1

1 1.025 0.0676 0.0693 0.2256 100.0%
2 1.022 0.0750 0.0766 0.2735 100.0%
4 1.014 0.0968 0.0982 0.3118 100.0%
8 0.521 0.1350 0.0703 0.2626 11.6%
16 0.166 0.2412 0.0400 0.2519 5.9%

10

1 0.487 0.2297 0.1119 0.1886 22.2%
2 0.533 0.2298 0.1226 0.2354 24.8%
4 0.474 0.2372 0.1124 0.2542 15.7%
8 0.372 0.2453 0.0913 0.2376 7.3%
16 0.295 0.2585 0.0763 0.2022 1.0%

Table S9: Directional covariance decay model: The geographic locations zi of the individuals are
simulated by sampling each coordinate according to a Beta(β, β) distribution from the unit square, with
β = 2. The other simulation settings are as described in Table S6.

β = 4

κ α1
RMSE GAP

RMSE PCA
RMSE PCA RMSE GAP τ

Proportion of
distances used

0.1

1 1.024 0.0506 0.0518 0.2161 100.0%
2 1.023 0.0625 0.0640 0.2642 100.0%
4 1.016 0.0765 0.0778 0.2991 100.0%
8 0.750 0.1014 0.0761 0.2512 12.1%
16 0.363 0.1285 0.0467 0.2577 6.9%

1

1 1.023 0.0532 0.0544 0.2188 100.0%
2 1.022 0.0603 0.0616 0.2646 100.0%
4 1.015 0.0776 0.0788 0.2983 100.0%
8 0.751 0.1018 0.0764 0.2480 12.2%
16 0.254 0.1879 0.0477 0.2551 7.2%

10

1 0.553 0.1702 0.0941 0.1944 23.3%
2 0.534 0.1743 0.0930 0.2408 25.8%
4 0.540 0.1757 0.0948 0.2721 23.2%
8 0.491 0.1840 0.0903 0.2726 9.1%
16 0.404 0.1978 0.0800 0.2298 2.1%

Table S10: Directional covariance decay model: The geographic locations zi of the individuals are
simulated by sampling each coordinate according to a Beta(β, β) distribution from the unit square, with
β = 4. The other simulation settings are as described in Table S6.
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1.6 Evaluation on the real datasets
Each of the three real datasets we analyzed (Human Origins, GLOBETROTTER, and POPRES)
contained latitude and longitude coordinates at the subpopulation level. When applying GAP to
each dataset, we used the genotype samples from a random subset of 20% of the subpopulations
along with their true sampling locations in order to pick the local genetic distance threshold τ
and to rescale the inferred locations to latitude-longitude coordinates. Recall from (11) that GAP
infers locations up to translation and the unknown 2 × 2 invertible matrix J . Similarly, when
applying PCA to each dataset, we used the same random subset of subpopulations to estimate the
translation and rescaling of the principal components.3

In particular, let D denote the subpopulations in the full dataset and T ⊂ D the random subset of
training subpopulations, where |D| = m and |T | = m0 = dm/5e. Let Sj ⊂ {1, . . . , n} be the set of
individuals in subpopulation j in the sample, 1 ≤ j ≤ m. Letting the inferred coordinates from GAP
or PCA be denoted by ẑi for individual i, the mean inferred coordinates ŷj for each subpopulation
j is computed by averaging the inferred coordinates over the individuals in the subpopulation,

ŷj =
1

|Sj |
∑
i∈Sj

ẑi .

If the true latitude-longitude sampling coordinates of population j is denoted by yj , we are in-
terested in estimating the 2 × 2 coordinate rescaling matrix A∗ and translation vector b∗ which
minimizes the following objective function measuring reconstruction error,

A∗,b∗ = arg min
A∈R2×2

b∈R2

∑
j∈T

|Sj |
n
‖yj − (Aŷj + b)‖2 . (16)

We can solve (16), for example, via the weighted least squares estimator for linear regression. To
choose the value of the genetic distance parameter τ when applying GAP, we do a grid search
over τ using the leave-one-out cross-validation error over the subpopulations in the training set of
subpopulations T . The RMSE of GAP and PCA on the full dataset is computed by transforming
the inferred subpopulation coordinates using the estimated translation and rescaling in (16),

RMSE =

√√√√∑
j∈D

|Sj |
n
‖yj − (A∗ŷj + b∗)‖2 . (17)

Since the reconstruction error in (17) depends on the training subset T , we performed the above
procedure with 100 randomly drawn subsets of training populations and report some statistics of
the reconstruction RMSE in Table S11.

1.7 Application to the POPRES dataset
The POPRES dataset is an aggregation of 5,918 individuals with self-reported ancestry from several
studies (Nelson et al. 2008; Preisig et al. 2009; Kooner et al. 2008). The dataset we analyzed con-
tained individuals genotyped at 457,297 SNPs. We filtered SNPs deviating from Hardy-Weinberg
equilibrium and thinned SNPs with linkage disequilibrium r2 greater than 10% in sliding windows
of 50 SNPs. This left us with a dataset of 77,678 SNPs. We selected 1,217 individuals from Europe

3From equation (1), we see that we should only have to transform the PC coordinates by a translation and a
2 × 2 rotation/reflection matrix. However, we provide PCA the same degrees of freedom in rescaling locations to
latitude-longitude coordinates as we do for GAP.
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Fig. S3: PCA and GAP visualization of the populations in the GLOBETROTTER dataset. We analyzed 59
populations from Europe, the Middle East, North and East Africa, and Western, Central and South Asia.
(A) True sampling locations, (B) GAP reconstructed locations, (C) PCA reconstructed locations, and (D)
population legends. The diamonds are placed at the sampling locations for each population, while the circles
are placed at the mean inferred location of the samples in each population. PCA tends to localize individuals
from Southern Europe, North Africa, and the Middle East closer together, while GAP is better at separating
them.
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Dataset

RMSE GAP

RMSE PCA
RMSE PCA RMSE GAP

Median 90% CI Median 90% CI Median 90% CI

Human Origins 0.69 (0.28, 0.89) 16.5◦ (14.1◦, 44.2◦) 11.5◦ ( 9.7◦, 14.9◦)
GLOBETROTTER 0.90 (0.65, 1.23) 15.2◦ (13.0◦, 26.1◦) 13.5◦ (11.5◦, 25.8◦)

POPRES 0.44 (0.20, 1.09) 18.0◦ ( 8.6◦, 41.4◦) 7.5◦ ( 5.3◦, 24.4◦)
POPRES (MAF ≥ 10%) 1.09 (0.60, 3.18) 5.2◦ ( 3.6◦, 16.2◦) 6.0◦ ( 4.1◦, 18.2◦)

Table S11: Spatial assignment accuracy of PCA and GAP on the Human Origins, GLOBETROTTER,
and POPRES datasets. The reconstruction RMSE statistics are based on 100 random subsamples of 20%
of the subpopulations in the full datasets. Using the known sampling locations of the subpopulations in the
training sample, we rescaled the inferred coordinates from PCA and GAP in order to learn latitude-longitude
coordinates for each subpopulation in the test set. For the POPRES dataset, we found that both PCA and
GAP performed significantly better at spatial reconstruction if we used only the SNPs with minor allele
frequency at least 10% (also see Figure S4).

who reported all four grandparents belonging to the same country in Europe and whose reported
primary language matched the country of origin of their grandparents. This filtering was performed
to avoid picking individuals that might be recently admixed, and is similar to the filters applied
in previous works analyzing this dataset (Novembre et al. 2008; Yang et al. 2012). Using the
true sampling locations of 20% of the subpopulations to assign spatial coordinates to a test set
of subpopulations, GAP has median RMSE 7.47◦ while PCA has median RMSE of 17.97◦, where
the assignment was performed using 100 random training/test splits of the full dataset. We also
analyzed the data after discarding SNPs with minor allele frequency below 10%. In this setting, the
spatial assignment accuracy of GAP and PCA are quite similar, with median RMSE of 5.99◦ and
5.15◦, respectively. The visualizations produced by PCA and GAP are very similar (Figure S4), and
closely recapitulate the geography of Europe as has been previously observed by Novembre et al.
(2008).
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Fig. S4: PCA and GAP visualization of the POPRES dataset. (A) True sampling locations, (B) GAP
reconstructed locations, (C) PCA reconstructed locations, and (D) population legends.
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2 Association testing procedure

We present a statistical framework for testing associations between genotype and trait (either binary
or quantitative) in the presence of population structure. Ancestry, on account of influencing genetic
variation, can induce correlations between genotypes. Furthermore, ancestry is also correlated with
the phenotype, due to varying trait prevalence with geography, ancestry-biased sampling, etc. In
such cases, association tests can be confounded by population stratification, and the genotype and
trait will be statistically dependent even when there is no genetic basis for the trait.

We correct for population stratification by conditioning the genotype on the confounding variable,
which in our setting are the ancestry coordinates zi. As shown schematically in Song et al. (2015,
Figure 1), this conditioning removes the statistical dependence between genotype xi` and confounder
zi. To be more concrete, we consider a retrospective model to describe the effect of population
structure and the trait on the genotype. For a particular SNP ` and an individual i with trait yi,
genotype xi` is generated according to the following model,

xi` | yi, zi ∼ Binomial(2, θi`)

θi` =
κ`R

yi
` q`(zi)

1− q`(zi) + κ`R
yi
` q`(zi)

, (18)

where R` is the genetic risk factor of the SNP ` on the trait, with the effect of population structure
encoded in the allele frequency q`(zi). Note that for a binary trait yi ∈ {0, 1}, by setting κ` = 1 for
all SNPs, the model reduces to the one studied by Price et al. (2006). Further, with the change of
variables a` = log κ` and b` = logR`, the model (18) can be rewritten as,

xi` | yi, zi ∼ Binomial(2, θi`)

θi` = logit−1(a` + b`yi + logit(q`(zi))) , (19)

with logit(x) = log(x/(1− x)) for 0 < x < 1. This inverse regression model has been put forth by
Song et al. (2015) as a means of correcting for population structure and environmental confounders
under fairly general assumptions. Under model (18), the genotypes xi` depend on the confounder
zi only through the allele frequency q`(zi). Hence, by conditioning on the allele frequencies q`(zi),
the genotype becomes independent of ancestry location, xi` ⊥⊥ zi | q`(zi). This conditioning also
allows us to ignore the dependency between the trait yi and ancestry zi in our model. In practice,
we do not know the underlying allele frequencies q`(zi), and must estimate it by making some
assumptions which we describe shortly.

Given a particular trait of interest, a SNP ` is considered non-associated if R` = 1, and considered
associated otherwise. We are thus interested in testing between the following null and alternate
hypotheses,

H0,` : R` = 1 , (20)

HA,` : R` 6= 1 . (21)

The retrospective model in (18) enjoys both computational and statistical advantages over the
prospective model (main text, equations (4) and (5)). From a statistical point of view, (18) allows
unbiased testing under fairly general assumptions about the phenotype distribution and about the
ancestry and environmental confounding variables (see Theorem 1 of Song et al. (2015)). From a
computational viewpoint, the association tests in (18) for different SNPs can be performed sepa-
rately. This is in contrast to the prospective model where the trait is modeled as a linear combina-
tion of genotypes, environmental effects and random noise variation, and where a principled testing
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procedure might require joint estimation over all SNPs. The retrospective model thus allows con-
ceptually simpler, statistically valid and much more efficient and parallelizable association testing
algorithms than procedures based on prospective models.

We next describe our testing procedure which consists of three steps: (1) estimation of ancestry
coordinates ẑi using GAP; (2) estimation of spatial allele frequencies q`(ẑi); and (3) estimation of
the risk factor R` and intercept term κ`. Below, we elaborate on each of these steps.

Step (1): estimation of ancestry coordinates ẑi. We use our localization algorithm GAP
on the genotype matrix X as described in §1.2 to estimate the ancestry coordinates ẑi for each
individual in the sample. The threshold parameter τ for local distances used in our algorithm GAP
can be chosen using the strategies described in §1.3. As we will see in the next step, we do not
need to rescale the ancestry coordinates by the dilation matrix J of (11).

Step (2): estimation of q`(ẑi). We start with a naive estimate of the allele frequencies and then
apply a kernel to smooth the allele frequencies over space. Using the genotype data, we compute
the initial estimate ξi` of the unknown allele frequency q`(zi) as,

ξi` =
xil
2
. (22)

We then refine these estimates by making the assumption that the allele frequency function q`(z)
vary smoothly over space z. Without such an additional assumption on the allele frequency function,
the estimation problem is not well defined. We smooth the crude estimates of allele frequencies in
(22) via an exponential kernel interpolation to get estimates q̂i` for q`(zi) as follows.

q̂i` =

∑n
j=1 ξj` exp(−1

2‖H−1(ẑi − ẑj)‖2)∑n
j=1 exp(−1

2‖H−1(ẑi − ẑj)‖2)
, (23)

where H is a 2×2 bandwidth matrix. We use Scott’s rule (Scott 1979) for selecting the bandwidth,
where H is chosen so that HHT = n−1/3Σ and Σ is the 2 × 2 covariance matrix of the estimated
locations ẑi. Finally, we threshold q̂i` by one to ensure that they are valid probabilities. Note that
with the choice of the bandwidth matrix in (23), we only need to estimate the ancestry coordinates
ẑ up to the invertible 2× 2 linear transformation J in (11).

Step (3): estimation of R` and κ`. Given an estimate of the allele frequencies q̂i` from Step (2),
we use Newton’s method to estimate the risk factor R` (under the alternate hypothesis HA,`) and
intercept term κ` (under both the null and alternate hypotheses).

Given yi and xi`, the log-likelihood of the model (18), in terms of θi`, is given by

L =

n∑
i=1

xi` log θi` + (2− xi`) log(1− θi`) . (24)

Define the entries of the scaled gradient of the log-likelihood function, F1(R`, κ`) := R`∂L/∂R`,
and F2(κ`, κ`) := κ`∂L/∂κ`.

After some algebraic manipulation we get,

F1(R`, κ`) =
n∑
i=1

(
xi`yi −

2yiqi`κ`R
yi
`

1− qi` + κRyi` qi`

)
, (25)

F2(R`, κ`) =

n∑
i=1

(
xi` −

2κ`R
yi
` qi`

1− qi` + κ`R
yi
` qi`

)
. (26)
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Under the alternate hypothesis HA,`, we obtain the maximum-likelihood estimate of R` by simul-
taneously solving F1(R`, κ`) = F2(R`, κ`) = 0 using Newton’s method. The initial value we used
for Newton’s method is R` = κ` = 1 which corresponds to a non-associated SNP. We similarly
compute the maximum likelihood estimate for κ` under the null hypothesis, and compute a p-value
from the log-likelihood ratio using the χ2

1 distribution.

2.1 Association test simulations
We simulated genotype data for n = 2,000 individuals at p = 50,000 SNPs sampled uniformly
from the unit square using the isotropic and direction-dependent allele frequency covariance decay
models described in §1.5. We used the same set of parameter combinations as we did for the ancestry
localization simulations. We then generated quantitative phenotype data using the following linear
model,

yi = α+

p∑
`=1

β`xi` + λi + εi, (27)

where yi is the phenotype and xi` ∈ {0, 1, 2} is the genotype at SNP ` for individual i, α is
an intercept term, β` is the effect size of SNP `, and λi and εi are the ancestral and random
environmental/noise contributions respectively to the phenotype of individual i. We randomly
selected 10 SNPs to be causal, with the effect sizes β` drawn from a standard normal distribution.
The ancestry contribution λi to the phenotype was set to the first component (x-coordinate) of
the sampling location zi, and the environmental/noise contribution was drawn from a standard
normal distribution. We then rescaled the genotypic (i.e.

∑p
`=1 β`xi`), ancestry (i.e. λi), and

environment/noise contributions (εi) so that they accounted for 20%, 10%, and 70% respectively
of the variance of the phenotype in the sample.

To perform our association test, we first inferred the ancestry coordinates using GAP, where we
used 20% of the data points as anchors with known sampling locations. To choose the threshold
parameter τ for estimating local distances from the genetic distances, we swept over a range of τ
which minimized the localization error over the subset of anchor data points. We then applied our
association test described in the previous section with the inferred locations of all data points. Note
that our association test only needs the ancestry coordinates up to the coordinate transformation
matrix J given in (11), and hence this matrix does not need to be estimated.

We find that for parameter combinations where GAP has lower reconstruction RMSE in infer-
ring ancestry coordinates compared to PCA, there is a concomitant increase in power to detect
associations. Moreover, using the ancestry coordinates inferred from GAP in our association test
performs almost as well as an oracle that has the true ancestry coordinates (Figures S5–S10 and
Tables S12–S13).
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α2 α1 SCGAP
PCA

coordinates
True

coordinates
GCAT
(d = 6)

0.5

1 0.5937 0.5989 0.6031 0.5958
2 0.6266 0.6268 0.6313 0.6233
4 0.6556 0.6535 0.6535 0.6545
8 0.5759 0.5650 0.5788 0.5574
16 0.5867 0.5755 0.5840 0.5833

1

1 0.6139 0.6143 0.6205 0.6066
2 0.6046 0.6045 0.6152 0.6080
4 0.5881 0.5669 0.5929 0.5621
8 0.6100 0.5802 0.6104 0.5568
16 0.6345 0.6015 0.6354 0.5820

1.5

1 0.6345 0.6348 0.6369 0.6310
2 0.5521 0.5474 0.5613 0.5517
4 0.6122 0.5489 0.6117 0.5458
8 0.5841 0.5483 0.5842 0.5250
16 0.6043 0.5446 0.6072 0.5443

Table S12: Association tests on data simulated under the isotropic covariance decay model.
Area under the ROC curve conditional on the FP rate being ≤ 10−3 for SCGAP and for our allele frequency
estimation procedure applied to ancestry coordinates inferred by PCA (column 3) and to the true ancestry
coordinates (column 4). For comparison, we also show the performance of GCAT using d = 6 latent factors
used for estimating the allele frequencies. The genotype data were simulated according to the isotropic
covariance decay model (see Figure S2A for an example) with the same parameter combinations as in
Table S1. Each parameter combination row corresponds to 40 simulated datasets with n = 2,000 individuals
and p = 50,000 SNPs, where 10 SNPs were chosen to have non-zero effects, with their effect sizes drawn from
a standard normal distribution. The genotypic, ancestry, and environmental contribution to the phenotypic
variance were set to 20%, 10% and 70% respectively.
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κ α1 SCGAP
PCA

coordinates
True

coordinates
GCAT
(d = 6)

0.1

1 0.6309 0.6311 0.6318 0.6329
2 0.5968 0.5962 0.6044 0.5974
4 0.5551 0.5477 0.5664 0.5372
8 0.5867 0.5659 0.5863 0.5683
16 0.5931 0.5676 0.5920 0.5569

1

1 0.5920 0.5922 0.5972 0.5995
2 0.6150 0.6158 0.6263 0.6164
4 0.5678 0.5565 0.5800 0.5471
8 0.5970 0.5705 0.6015 0.5467
16 0.5873 0.5679 0.5907 0.5514

10

1 0.6130 0.6097 0.6144 0.6131
2 0.5677 0.5754 0.5732 0.5787
4 0.5825 0.5687 0.5863 0.5780
8 0.5858 0.5807 0.5918 0.5772
16 0.5929 0.5807 0.5920 0.5791

Table S13: Association tests on data simulated under the directional covariance decay model.
Area under the ROC curve conditional on the FP rate being ≤ 10−3 for SCGAP and for our allele frequency
estimation procedure applied to ancestry coordinates inferred by PCA (column 3) and to the true ancestry
coordinates (column 4). For comparison, we also show the performance of GCAT using d = 6 latent factors
used for estimating the allele frequencies. The genotype data were simulated according to the directional
covariance decay model (see Figure S2B for an example) with the same parameter combinations as in
Table S6. Each parameter combination row corresponds to 40 simulated datasets with n = 2,000 individuals
and p = 50,000 SNPs, where 10 SNPs were chosen to have non-zero effects, with their effect sizes drawn from
a standard normal distribution. The genotypic, ancestry, and environmental contribution to the phenotypic
variance were set to 20%, 10% and 70% respectively.
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Fig. S5: Isotropic covariance decay. ROC curves for our association testing procedure with ancestral
locations inferred using GAP, PCA, or using the true locations. We also compared our results with the
GCAT method, which uses a latent factor model with d factors to estimate the allele frequencies for each
individual at each locus. Genotypes were drawn according to the isotropic covariance decay model with
α0 = 1 and α2 = 0.5, with the different choices of α1 given in the panel captions. These are the same
simulation parameters used in Table S1.
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Fig. S6: Same simulation scenario as in Figure S5, with α2 = 1.
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Fig. S7: Same simulation scenario as in Figure S5, with α2 = 1.5.
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Fig. S8: Directional covariance decay. ROC curves for our association testing procedure with ancestral
locations inferred using GAP, PCA, or using the true locations. We also compared our results with the GCAT
method, which uses a latent factor model with d factors to estimate the allele frequencies for each individual
at each locus. Genotypes were drawn according to the directional covariance decay model with α0 = α2 = 1
and κ = 0.1, with the different choices of α1 given in the panel captions. These are the same simulation
parameters used in Table S6.
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Fig. S9: Same simulation scenario as in Figure S8, with κ = 1.
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Fig. S10: Same simulation scenario as in Figure S8, with κ = 10.
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2.2 NFBC dataset
The original dataset contained 364,590 SNPs from 5,402 individuals. After filtering individuals and
SNPs using the same criteria for missing genotypes and deviation from Hardy-Weinberg equilibrium
as described in Song et al. (2015), we were left with 335,143 SNPs and 5,246 individuals. We
added features for known confounders such as sex, oral contraceptive use, pregnancy status, and
fasting status according to the procedure described in the first analysis of this dataset by Sabatti
et al. (2009). We performed a Box-Cox transform on the median 95% of trait values to make the
distribution of traits as close to a normal distribution as possible.

We applied our localization algorithm GAP on the genotype data to estimate two spatial ancestry
coordinates for each individual. Since we did not have the ancestral or birth locations of the
individuals in the sample, we could not optimize the threshold τ for estimating local spatial distances
from the genetic distances as we had done in the simulations. Instead, we picked the threshold τ
as described in §1.3.

Trait Abbreviation SCGAP+GC GCAT+GC LMM+GC PCA+GC Uncorrected+GC

Height Height 1 1 0 0 0
Body mass index BMI 0 0 0 0 0
HDL cholesterol levels HDL 5 4 4 2 4
LDL cholesterol levels LDL 4 4 3 3 3
Triglyceride levels TG 2∗ 2 3 2 2
C-reactive protein CRP 2∗ 2∗ 2 2 2
Glucose levels GLU 3 3 2 2 2
Insulin levels INS 0 0 0 0 0
Diastolic blood pressure DBP 0 0 0 0 0
Systolic blood pressure SBP 0 0 0 0 0

Table S14: Number of significant loci discovered by SCGAP and several other association-testing
approaches on the Northern Finland Birth Cohorts (NFBC) dataset. The log-likelihood ratios from
each method were corrected using genomic control, denoted by “+GC”.The genome-wide significance level
was set to 7.2× 10−8.
*Result when the trait was not transformed using the Box-Cox transformation. Under the transformation, one locus
was significant.
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A B

Phenotype GCIF

Height 1.0794
BMI 1.0521
HDL 1.0527
LDL 1.0515
TG 0.9983
CRP 1.0614
GLU 1.0049
INS 1.0462
SBP 1.0312
DBP 1.0485

Fig. S11: (A) Plot of the observed versus expected log p-values of SCGAP for the 10 metabolic traits in the
Northern Finland Birth Cohorts (NFBC) dataset. See Table S15 for the most significant p-values for each
trait. (B) Genomic control inflaction factor estimated for each of the 10 quantitative traits in the NFBC
dataset using SNPs spaced 250kb apart.
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Height

RSID Chr Pos SCGAP SCGAP+GC

rs2814982 6 34654538 1.697e-08 7.101e-08
rs6719545 2 218160079 7.032e-07 2.147e-06
rs2815005 6 34746825 8.971e-07 2.684e-06
rs2744972 6 34767032 9.203e-07 2.748e-06
rs2814983 6 34699185 9.344e-07 2.786e-06
rs2814993 6 34726871 1.078e-06 3.175e-06
rs2814985 6 34656274 1.197e-06 3.496e-06
rs4911494 20 33435328 1.324e-06 3.833e-06
rs6088813 20 33438595 1.380e-06 3.981e-06
rs6058154 20 33049495 1.892e-06 5.316e-06

HDL cholestorol levels (HDL)

RSID Chr Pos SCGAP SCGAP+GC

rs1532624 16 55562980 0.000e+00 0.000e+00
rs7499892 16 55564091 1.110e-16 2.220e-16
rs1532085 15 56470658 2.351e-12 5.686e-12
rs9989419 16 55542640 8.050e-11 1.723e-10
rs1800961 20 42475778 5.643e-09 1.044e-08
rs7120118 11 47242866 1.882e-08 3.341e-08
rs2167079 11 47226831 2.525e-08 4.436e-08
rs255049 16 66570972 2.759e-08 4.833e-08
rs415799 15 56478046 3.438e-08 5.977e-08
rs255052 16 66582496 5.116e-08 8.774e-08

Triglyceride levels (TG) (untransformed)

RSID Chr Pos SCGAP SCGAP+GC

rs1260326 2 27584444 2.053e-08 2.318e-08
rs10096633 8 19875201 4.597e-08 5.160e-08
rs780094 2 27594741 1.608e-07 1.788e-07
rs5939593 23 92156237 8.433e-07 9.268e-07
rs673548 2 21091049 1.125e-06 1.233e-06
rs676210 2 21085029 1.551e-06 1.697e-06
rs6728178 2 21047434 2.140e-06 2.337e-06
rs3923037 2 21011755 2.592e-06 2.825e-06
rs4825619 23 117987171 3.688e-06 4.010e-06
rs6754295 2 21059688 4.327e-06 4.699e-06

Body mass index (BMI)

RSID Chr Pos SCGAP SCGAP+GC

rs5957365 23 119412593 4.390e-06 6.394e-06
rs6567030 18 54679876 4.476e-06 6.515e-06
rs10247383 7 63536549 6.667e-06 9.579e-06
rs1001729 6 2540477 1.223e-05 1.722e-05
rs12658762 5 18615363 1.263e-05 1.777e-05
rs6638764 23 8171611 1.558e-05 2.177e-05
rs2408165 16 61259627 1.691e-05 2.356e-05
rs4953198 2 45248172 1.792e-05 2.493e-05
rs17207196 7 74939001 1.876e-05 2.606e-05
rs8050136 16 52373776 1.971e-05 2.733e-05

LDL cholestorol levels (LDL)

RSID Chr Pos SCGAP SCGAP+GC

rs646776 1 109620053 1.419e-12 4.361e-12
rs693 2 21085700 2.010e-11 5.512e-11
rs754524 2 21165046 2.477e-09 5.525e-09
rs6754295 2 21059688 1.317e-08 2.734e-08
rs6728178 2 21047434 1.509e-08 3.115e-08
rs207150 1 55579053 2.946e-08 5.910e-08
rs11668477 19 11056030 2.948e-08 5.913e-08
rs3923037 2 21011755 3.078e-08 6.164e-08
rs4844614 1 205941798 4.107e-08 8.123e-08
rs754523 2 21165196 6.584e-08 1.276e-07

C-reactive protein (CRP) (untransformed)

RSID Chr Pos SCGAP SCGAP+GC

rs2794520 1 157945440 4.086e-09 5.607e-09
rs1169300 12 119915608 1.115e-08 1.503e-08
rs2464196 12 119919810 1.131e-08 1.525e-08
rs2592887 1 157919563 1.998e-07 2.563e-07
rs2650000 12 119873345 2.277e-07 2.915e-07
rs2098930 3 153371624 3.664e-07 4.652e-07
rs6624381 23 68197466 5.836e-07 7.349e-07
rs735396 12 119923227 7.723e-07 9.679e-07
rs10035541 5 7592712 2.147e-06 2.644e-06
rs12093699 1 157914612 2.236e-06 2.752e-06

Table S15: The top 10 most significant SNPs found by SCGAP for each of the 10 traits in the Northern
Finland Birth Cohort dataset. We report the p-values both before and after genomic control adjustment.
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Glucose levels (GLU)

RSID Chr Pos SCGAP SCGAP+GC

rs560887 2 169471394 3.279e-11 5.947e-11
rs3847554 11 92308474 1.575e-10 2.742e-10
rs2971671 7 44177862 3.367e-10 5.749e-10
rs2908290 7 44182662 1.306e-08 2.029e-08
rs1387153 11 92313476 2.882e-08 4.387e-08
rs563694 2 169482317 3.188e-08 4.840e-08
rs2166706 11 92331180 9.990e-08 1.473e-07
rs1447352 11 92362409 3.354e-07 4.793e-07
rs7121092 11 92363999 3.982e-07 5.666e-07
rs758989 7 44169531 1.584e-06 2.176e-06

Triglyceride levels (TG)

RSID Chr Pos SCGAP SCGAP+GC

rs1260326 2 27584444 4.484e-09 5.903e-09
rs780094 2 27594741 6.890e-08 8.704e-08
rs10096633 8 19875201 1.174e-07 1.471e-07
rs673548 2 21091049 6.148e-07 7.515e-07
rs676210 2 21085029 7.149e-07 8.719e-07
rs6728178 2 21047434 9.045e-07 1.099e-06
rs2304130 19 19650528 9.208e-07 1.119e-06
rs6754295 2 21059688 1.726e-06 2.077e-06
rs3923037 2 21011755 6.887e-06 8.118e-06
rs12805061 11 116058235 7.972e-06 9.377e-06

Systolic blood pressure (SBP)

RSID Chr Pos SCGAP SCGAP+GC

rs782588 2 55695144 1.916e-07 2.523e-07
rs782586 2 55689669 2.414e-07 3.164e-07
rs782602 2 55702813 4.374e-07 5.669e-07
rs2627759 2 55706845 1.363e-06 1.729e-06
rs10496050 2 55659817 5.122e-06 6.337e-06
rs1754154 1 43243353 6.118e-06 7.544e-06
rs9656787 8 104301120 6.223e-06 7.671e-06
rs782606 2 55740106 6.696e-06 8.243e-06
rs782652 2 55716279 8.643e-06 1.059e-05
rs782637 2 55747751 1.049e-05 1.281e-05

Insulin levels (INS)

RSID Chr Pos SCGAP SCGAP+GC

rs521184 8 41720842 7.293e-06 9.437e-06
rs5985850 23 28409093 9.537e-06 1.226e-05
rs5943445 23 28411095 1.205e-05 1.541e-05
rs6502762 17 3819013 1.257e-05 1.606e-05
rs7241379 18 64306982 2.042e-05 2.579e-05
rs998223 2 64824633 2.260e-05 2.847e-05
rs6126645 20 50745422 2.895e-05 3.626e-05
rs6526679 23 27468439 3.672e-05 4.574e-05
rs932052 12 62081496 3.968e-05 4.934e-05
rs2037206 18 64323734 3.974e-05 4.942e-05

C-reactive protein (CRP)

RSID Chr Pos SCGAP SCGAP+GC

rs2794520 1 157945440 6.284e-14 8.360e-14
rs12093699 1 157914612 8.348e-12 1.058e-11
rs2592887 1 157919563 1.260e-08 1.487e-08
rs1811472 1 157908973 4.596e-08 5.358e-08
rs402681 4 104634397 9.352e-07 1.059e-06
rs7694802 4 104621696 1.973e-06 2.219e-06
rs7178765 15 23672266 4.585e-06 5.114e-06
rs10107791 8 101040128 5.874e-06 6.535e-06
rs340468 4 104637688 7.626e-06 8.464e-06
rs6701469 1 199265442 9.789e-06 1.084e-05

Diastolic blood pressure (DBP)

RSID Chr Pos SCGAP SCGAP+GC

rs5928929 23 35549454 2.031e-06 2.894e-06
rs6942973 7 3134277 2.528e-06 3.580e-06
rs472594 1 226668261 5.430e-06 7.521e-06
rs5927821 23 31656866 5.510e-06 7.629e-06
rs952061 12 100502356 5.948e-06 8.217e-06
rs1079199 11 6384682 6.771e-06 9.320e-06
rs2094147 23 33025497 6.873e-06 9.455e-06
rs7783562 7 106704674 9.493e-06 1.294e-05
rs808127 23 8458979 1.057e-05 1.436e-05
rs4548444 1 204956761 1.381e-05 1.861e-05

Table S15 continued
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Phenotype RSID Chr Pos Nearest gene SCGAP+GC Replication Study

Height rs2814982 6 34654538 C6orf106 7.101e-08 Weedon et al. (2008)*

HDL rs1532624 16 55562980 CETP 0.000e+00 Aulchenko et al. (2009)
HDL rs1532085 15 56470658 LIPC 5.686e-12 Willer et al. (2013)
HDL rs1800961 20 42475778 HNF4A 1.044e-08 Willer et al. (2013)
HDL rs7120118 11 47242866 NR1H3 3.341e-08 —
HDL rs255049 16 66570972 LCAT 4.833e-08 Willer et al. (2013)

TG rs1260326 2 27584444 GCKR 2.318e-08 Willer et al. (2013)
TG rs10096633 8 19875201 LPL 5.160e-08 Aulchenko et al. (2009)

LDL rs646776 1 109620053 CELSR2 4.361e-12 Aulchenko et al. (2009)
LDL rs693 2 21085700 APOB 5.512e-11 Aulchenko et al. (2009)
LDL rs207150 1 55579053 USP24 5.910e-08 —
LDL rs11668477 19 11056030 LDLR 5.913e-08 Willer et al. (2013)

CRP rs2794520 1 157945440 CRP 5.607e-09 Dehghan et al. (2011)
CRP rs1169300 12 119915608 HNF1A 1.503e-08 Dehghan et al. (2011)

GLU rs560887 2 169471394 G6PC2 5.947e-11 Dupuis et al. (2010)
GLU rs3847554 11 92308474 MTNR1B 2.742e-10 Dupuis et al. (2010)
GLU rs2971671 7 44177862 GCK 5.749e-10 Dupuis et al. (2010)

* SNP rs2814993 is reported to be associated with height, and is 72kb from rs2814982 with LD r2 = 0.56 in the
1000 Genomes CEU samples (see also Song et al. (2015)).

Table S16: Most significantly associated SNPs at each locus that were detected by SCGAP with genomic
control, and the replication studies on different datasets which have also reported these associations.
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3 Proofs

3.1 Proof of Theorem 1
We use the shorthand qi` := q`(zi) to lighten the notation. By applying the triangle inequality, for
1 ≤ i < j ≤ n,

|η̂i,j − η(zi − zj)| ≤
∣∣∣∣1p

p∑
`=1

(xi`
2
− µ`

)(xj`
2
− µ`

)
− E[(qi` − µ`)(qj` − µ`)]

∣∣∣∣
+

1

2p

p∑
`=1

(xi` + xj`) |µ̂` − µ`|

+
1

p

p∑
`=1

(µ̂` + µ`)|µ̂` − µ`| .

(28)

Define the following events Ai,j for 1 ≤ i < j ≤ n,

Ai,j :

∣∣∣∣1p
p∑
`=1

(xi`
2
− µ`

)(xj`
2
− µ`

)
− E[(qi` − µ`)(qj` − µ`)]

∣∣∣∣ < t (29)

We note that conditional on qi` and qj`, the genotypes xi` and xj` are independent. Therefore,

E
[ (xi`

2
− µ`

)(xj`
2
− µ`

) ]
= E

[
E
[ (xi`

2
− µ`

)(xj`
2
− µ`

) ∣∣∣qi`, qj`]] = E[(qi` − µ`)(qj` − µ`)] .

Further, the genotypes xi` are independent for different SNPs `. By applying Hoeffding’s inequality,
we obtain P(Aci,j) ≤ 2e−2pt

2
for any fixed pair i and j.

To bound the second term in (28), we write,

1

2p

p∑
`=1

(xi` + xj`)|µ̂` − µ`| ≤
2

p

p∑
`=1

|µ̂` − µ`| (30)

Note that the summands |µ` − µ̂`| are independent. We define the event E as,

E :
1

p

p∑
`=1

|µ` − µ̂`| −
1

p

p∑
`=1

E(|µ` − µ̂`|) < t . (31)

By applying Hoeffding’s inequality, we obtain P(Ec) ≤ e−2pt2 .
We next bound E(|µ` − µ̂`|). For each `, 1 ≤ ` ≤ p, define the events B` and C` as follows,

B` :

∣∣∣∣ 1n
n∑
i=1

(xi`
2
− qi`

) ∣∣∣∣ < t

C` :

∣∣∣∣ 1n
n∑
i=1

qi` − µ`
∣∣∣∣ < t .

Note that conditional on the allele frequencies qi`, the genotypes xi` are independent across index
i. We can apply Hoeffding’s inequality again to get P(Bc` | {qi`}1≤i≤n) ≤ 2e−2nt

2
. Hence, P(Bc`) ≤

2e−2nt
2

as well. Bounding the probability of C` requires more work since the summands qi` are
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dependent. We construct K ∈ Rn×n with Kij = η(zi − zj). Let 1 = (1/
√
n, . . . , 1/

√
n)T, qcen

` =
(q1` − µ`, q2` − µ`, . . . , qn` − µ`)T and set q̃cen

` = K−1/2qcen
` . We write

1

n

n∑
i=1

(qi` − µ`) =
1√
n

1TK1/2q̃cen
` . (32)

Since the coordinates of q̃cen
` are mean zero and are uncorrelated, using Chebyshev’s inequality and

(32), we get

P(Cc` ) ≤ P(|1TK1/2q̃cen
` | > t

√
n) ≤ 1

nt2
(1TK1) .

We are now ready to bound E(|µ` − µ̂`|). Using the notation κ := 1TK1, we have

P
(
|µ̂` − µ`| > 2t

)
≤ P(Bc`) + P(Cc` ) ≤ 2e−2nt

2
+

1

nt2
κ , (33)

where the first inequality follows from triangle inequality. Hence,

E(|µ` − µ̂`|) =

∫ ∞
0

P(|µ` − µ̂`| > t)

≤ s+

∫ ∞
s

(
2e−nt

2/2 +
4κ

nt2

)
dt

≤ s+
2

n
+

4κ

sn
,

for any s > 0. Choosing s = 2
√
κ/n, we arrive at

E(|µ` − µ̂`|) ≤
2

n
+ 4

√
κ

n
. (34)

Using equations (30), (34) and recalling definition (31) we conclude that on event E the following
is true,

1

2p

p∑
`=1

(xi` + xj`)|µ̂` − µ`| < 2t+
4

n
+ 8

√
κ

n
. (35)

By a similar argument, on event E we have the following bound on the third term in equation (28):

1

p

p∑
`=1

(µ̂` + µj`)|µ̂` − µ`| < 2t+
4

n
+ 8

√
κ

n
. (36)

Combining (29), (35), and (36), we obtain that on event Aij ∩ E , the following is true,

|η̂i,j − η(zi − zj)| ≤ 5t+
8

n
+ 16

√
κ

n
. (37)

We next proceed to bound |η̂0− η(0)|. Note that E[x2i`−xi`] = 2E[q2i`]. For 1 ≤ i ≤ n, define the
event Di as,

Di :
1

p

p∑
`=1

(
x2i` − xi`

2
− E[q2i`]

)
< t . (38)
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Recalling that xi` are independent for different `, using Hoeffding’s inequality, we obtain P(Dci ) ≤
2e−2pt

2
. On the event ∩ni=1Di ∩ E , we have,

|η̂0 − η(0)| ≤ 1

n

n∑
i=1

∣∣∣∣1p
p∑
`=1

(x2i` − xi`
2

− E[q2i`]
)∣∣∣∣+

∣∣∣∣1p
p∑
`=1

(µ̂2` − µ2` )
∣∣∣∣

≤ 1

n

n∑
i=1

∣∣∣∣1p
p∑
`=1

(x2i` − xi`
2

− E[q2i`]
)∣∣∣∣+

1

p

p∑
`=1

(µ̂` + µ`) |µ̂` − µ`|

|η̂0 − η(0)| ≤ 3t+
4

n
+ 8

√
κ

n
, (39)

where we used (36) in the last inequality. Finally, by utilizing the union bound over Ai,j , Di, and
E for all 1 ≤ i < j ≤ n, equations (37) and (39) are true with probability at least

1− (n2 − n)e−2pt
2 − 2ne−2pt

2 − e−2pt2 ≥ 1− (n+ 1)2e−2pt
2
. (40)

Choosing t =
√

2 log(n+ 1)/p gives the desired result.
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