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1 Further comparison with ClusterONE

We further compared the performance between our algorithm and ClusterONE under the same eval-
uations proposed in [2], from the website of ClusterONE (http://www.paccanarolab.org /clusterone/).
Nepusz et al. assessed the quality of the predicted complexes mainly by the following three scores: frac-
tion of matched known protein complexes, maximum matching ratio (MMR), and geometric accuracy
measure. The first one is the fraction of the known complexes that match exactly one predicted complex
among all known complexes. The MMR score is defined to be the average edge weight of the maximal
matching in a bipartite graph, in which the two disjoint sets of nodes represent the predicted complexes
and reference (known) complexes, respectively, and each edge between a predicted complex and a ref-
erence complex is associated with a weight defined by their overlapping score. This score reflects how
accurately the predicted complexes match the reference (known) complexes. The third one is defined as
the geometric means of the clustering-wise sensitivity (SN) and the positive predictive value (PPV) [3].
Because the SN score can be inflated by putting every protein in the same predicted complex and the
PPV can be maximized by putting every protein in its own cluster, the two measures are usually bal-
anced by their geometric means, i.e., the geometric accuracy measure. Finally, they used the composite
score, which is the sum of these three scores, to show the overall performance. Readers can refer to the
supplementary of Nepusz et al.’s work [2] for more details of the evaluations.

Tools Fraction of matched MMR | SN | PPV | Accuracy | Composite score
known complexes
Human
NEOComplex 0.30 0.07 | 0.37 | 0.13 0.22 0.58
ClusterONE 0.17 0.04 | 0.31 | 0.20 0.25 0.46
Yeast
NEOComplex 0.28 0.08 0.41 | 0.14 0.24 0.60
ClusterONE 0.20 0.06 | 0.39 | 0.18 0.26 0.53
Fly
NEOComplex 0.19 0.05 0.31 | 0.12 0.20 0.43
ClusterONE 0.15 0.04 0.28 | 0.18 0.22 0.41

Table S1. Comparison between NEOComplex and ClusterONE under our reference set: Calculated by
Nepusz et al.’s evaluation script under our reference set

Table S1 shows the comparison results between our algorithm and ClusterONE in the three species
under our reference set. Our algorithm still outperforms ClusterONE in the composite score for all three
species. In particular, our algorithm derives better fraction of matched known complexes and MMR,
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Tools Fraction of matched MMR | SN | PPV | Accuracy | Composite score
known complexes
Human
NEOComplex 0.31 0.09 0.47 | 0.20 0.31 0.71
ClusterONE 0.19 0.05 0.40 | 0.31 0.35 0.59
Yeast
NEOComplex 0.41 0.15 0.34 | 0.40 0.37 0.93
ClusterONE 0.32 0.15 0.37 | 0.44 0.40 0.88
Table S2. Comparison between NEOComplex and ClusterONE under the MIPS reference set: Calculated

by Nepusz et al.’s evaluation script under the MIPS reference set

while attaining a similar performance in geometric accuracy to that of ClusterONE. This demonstrates
that our predicted complexes can more completely represent the known complexes in the reference set.

Moreover, we also referred to the MIPS data [4], which was used as the reference set in [2]. We
retrieved the data of protein complexes in human and yeast from MIPS [4,5]. Note that there are 1139
and 203 protein complexes for human and yeast, respectively, in the MIPS reference set, where there is
no fly data. Table S2 presents the comparison results under the MIPS reference set. The performance of
our algorithm is stable and still achieves a better composite score than ClusterONE for both human and
yeast.

2 Effect of weighted edge density thresholds

Observe that our algorithm and ClusterONE both used weighted edge density as a threshold to filter out
the proteins that have a weak connection with the other proteins in a candidate complex. Such criteria
can guarantee the quality of predicted complexes; that is, better settings of the threshold may lead to
better performance. Therefore, we investigate the effect of adjusting the parameters on weighted edge
density as follows. Figure S1 illustrates the performance of our algorithm and ClusterONE, i.e., precision,
recall, and F-measure, under different settings of weighted edge density. Note that the weighted edge
density used by our algorithm was defined by NECC (see Section 2.2), but ClusterONE considered the
weighted edge density in a weighted PPI network, where each edge weight may represent the interaction
reliability or probability (ranged from zero to one) between the pair of proteins. For instance, the NECC
weighted edge density of the PPI network for human is 5.61 x e~%, and the weighted edge density used by
ClusterONE is 1.21 x e~2 (for yeast, 2.12 x e~® vs. 3.91 x e=3, and for fly, 1.32 x e 7% vs. 1.13 x e=3). We
thus select parameter values from 0.1 to 0.9 for ClusterONE, and from 0.005 to 0.013 for our algorithm. As
shown in Figure S1, our algorithm maintains good performance even under the variation of the parameter.
Moreover, when the weighted edge density is 0.009, our algorithm can achieve the best F-measure, i.e.,
the best balance between precision and recall for the three species. More importantly, our algorithm has
better F-measure (as well as recall) than that of ClusterONE under its best setting for all three species.
Note that ClusterONE has the best F-measure when its density threshold is set to 0.6. In addition,
when the density threshold is larger than 0.6, the precision of ClusterONE increases, but its recall and
F-measure fall down fast. On the other hand, when the weighted edge density is set to be larger than
0.009 for our algorithm, the recall and F-measure are decreasing slowly, while the precision is increasing.

We remark that Nepusz et al. showed that ClusterONE performs well in weighted PPI networks of
yeast. In contrast, our study focused on unweighted PPI data. Further, when testing on the PPI network
of yeast retrieved from BioGRID used in [2], our algorithm still outperforms ClusterONE in composite
score (1.14 vs. 1.10), fraction of matched known protein complexes (0.50 vs. 0.47), and MMR (0.22 vs.
0.19). Note that the threshold parameter may affect the excution time of our algorithm and ClusterONE,
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although both of them run in polynomial time. Briefly speaking, our algorithm counts the number of the
common neighbors of the common neighbors. That means, for two end nodes u and v, of each edge, it
first calculates the number of the common neighbors between v and v. (The set of the common neighbors
is denoted by S.) Next, it counts the common neighbors between u and each node in S and then the
common neighbors between v and each node in S, respectively. Thus, the theoretical upper bound on
the running time of our algorithm is O(n?), where n is the number of total nodes in a given network.

3 Performance of different functional orthology relationships

As discussed, our algorithm can integrate any type of orthology relationships between multiple species
into protein complex identification. In this study, we used IsoRankN to obtain functional orthology
information across species. To investigate the effect of functional orthology relationships obtained by
different multiple network alignment tools, we used four recent global network aligners: SMETANA,
BEAMS, NetCoffee, and multiMAGNA++ [1,6-8]. SMETANA and BEAMS derive many-to-many align-
ments of multiple networks, while NetCoffee and multiMAGNA++ provide one-to-one MNA mappings.
SMETANA uses a semi-Markov random walk model to compute the node correspondence scores and
output the maximum expected alignment of given networks. BEAMS extracts the cliques of k-partite
graph as seeds based on pairwise sequence similarity, and then iteratively merges these seeds to maximize
the total alignment score of the whole cluster output set. NetCoffee uses simulated annealing on a set of
weighted bipartite graphes to maximize a target function for seeking a global alignment match. multi-
MAGNA++ is a GA-based search method that optimizes both node and edge conservation at the same
time while the alignment is constructed. We conducted the experiments with the following parameter
settings. For SMETANA, we used the recommended setting. For BEAMS, we set alpha to 0.2 and beta
to 0.4. For NetCoffee, we used the recommended setting and set alpha to 0.2. For multiMAGNA-++, we
set alpha to 0.8, population size to 100, number of generation to 10000.

For the results of using the orthology information obtained by IsoRankN, SMETANA, BEAMS,
NetCoffee, and multiMAGNA++, we briefly call the result of IsoRankN, SMETANA, BEAMS, NetCoffee,
and multiMAGNA-++ respectively, for short. Table S3 shows that IsoRankN has better performance than
the other four approaches in precision, recall, and F-measure in the three species. Moreover, IsoRankN
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extracted more sparse complexes; The number of sparse complexes obtained by IsoRankN, SMETANA,
BEAMS are 17, 0, and 11 in human, 49, 7, and 24 in yeast, 43, 18, and 29 in fly, respectively. Moreover, we
note that NetCoffee and multiMAGNA++ which provided one-to-one mappings derived very few sparse
complexes in the three species. The result demonstrates that such sparse protein complexes benefit
from the assistance of the orthology information obtained by IsoRankN. The major difference which
could make IsoRankN more flexible and tolerant to missing interactions is that the tool incorporated
topology similarity information when calculating the functional similarity score of each pair of proteins
between different species, and then used a star aligned approach for multiple alignment. By contrast,
SMETANA and BEAMS considered the topological information while maximizing the overall alignment
score of the whole output cluster set. That is, the edge loss in PPI data may affect their performance.
We remark that, the results obviously shows that the one-to-one MNA algorithms, such as NetCoffee
and multiMAGNA++, are not appropriate for finding protein complexes because their output clusters
contains at most one protein from each species. That is our algorithm cannot construct candidate
complexes based on such few orthology proteins when incorporating their orthology information.

Tools Precision | Recall | F-measure Froparse
complexes
Human
IsoRankN 0.47 0.47 0.47 17
SMETANA 0.46 0.44 0.45 0
BEAMS 0.15 0.20 0.17 11
NetCoffee 0.44 0.45 0.44 0
multiMAGNA++ 0.39 0.45 0.41 0
Yeast
IsoRankN 0.43 0.41 0.42 49
SMETANA 0.43 0.36 0.39 7
BEAMS 0.35 0.41 0.38 24
NetCoffee 0.34 0.35 0.35 3
multiMAGNA ++ 0.29 0.34 0.32 0
Fly

IsoRankN 0.40 0.29 0.33 43
SMETANA 0.38 0.24 0.29 18
BEAMS 0.24 0.20 0.22 29
NetCoffee 0.35 0.23 0.28 0
multiMAGNA++ 0.33 0.23 0.27 0

Table S3. Performance comparison of our algorithm by using different functional orthology relationships
between species: #Sparse complexes represents the number of complexes that can only be found by our
algorithm.

4 Functional enrichment and consistency

In this section, we use p-value which can represent the probability of co-occurrence of proteins with
common GO terms [9] to evaluate the predicted complexes derived by each MNA approach. We use
GOTERMFINDER [10] to calculate the p-value and select significant predicted complexes. We consider
the complexes that have p-value smaller than 0.01 to be significant complexes. Table S4 shows the
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statistics of significant complexes for each MNA approach. At least 43 percent of the complexes derived
by our algorithm are considered significant. Note that MCODE and COACH have a higher proportion
of significant complexes because the former generated a very low number of output protein complexes
(i.e. low recall) and the latter, conversely, derived a large set of predicted complexes with low precision.
Moreover, we used entropy to measure the consistency of GO terms of our predicted complexes and
further compared with MCODE and COACH. The entropy was first exploited in systems biology by Liao
et al. [11]. The entropy of a given complex S} is :
H(S}) = H(py,pa: - pa) = Yoy pilogpi

where p; is the fraction of S} with GO group ID 4. A complex has lower entropy if its GO annotations
are more within-cluster consistent. Table S5 shows the mean entropy of our algorithm, MCODE, and
COACH. The result demonstrates that the complexes derived by our algorithm are more consistent than
what MCODE and COACH derived in GO annotation. Note that we only consider the Biological Process
category of GO terms when we calculate p-value and entropy.

Tools Human (%) | Yeast (%) | Fly (%)
NEOComplex 69.18 43.29 60.96
MCODE 88.75 63.44 100
COACH 93.73 43.20 89.85
CMC 54.60 13.85 37.61
MCL 43.33 16.41 38.55
ClusterONE 66.17 33.49 74.60

Table S4. Percentage of significant complexes: we consider the protein complexes that have p-value
smaller than 0.01 to be significant complexes.

Tools Human | Yeast | Fly
NEOComplex 1.15 1.40 | 1.58
MCODE 2.45 2.65 | 2.47
COACH 2.35 1.80 | 3.14

Table S5. Average entropy of predicted complexes
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