
Web Appendix to “Identification of homophily and preferential

recruitment in respondent-driven sampling”

Web Appendix 1

Unfortunately there are no general closed-form expressions for the extrema of h and p on C(GR,dR,ZR).
The space of compatible subgraphs can be very large, but straightforward optimization techniques
permit finding these bounds quickly. We describe a stochastic optimization algorithm for finding
the global optimum of an arbitrary function J of h and p, based on simulated annealing (1–4).
The approach is similar to a quadratic programming framework introduced by De Paula, Richards-
Shubik, and Tamer (5) for finding the identification set for certain functionals of graphs and vertex
attributes. The optimization routine described here is constructive: it returns the (possibly not
unique) pair (GSU ,ZSU ) ∈ C(GR,dR,ZR) that maximizes a carefully chosen objective function
π(·).

Let J : [−1, 1]2 → R be a function taking arguments h(GSU ,ZSU ) and p(GSU , GR, tR,ZSU )
for (GSU ,ZSU ) ∈ C(GR,dR,ZR). We choose this function, abbreviated J(h, p), so that a desired
feature of C(GR,dR,ZR) coincides with the maximum of J . For example, the maximum of the
function

J(h, p) =
1

1 + ε+ h

on C(GR,dR,ZR) where ε > 0, coincides with the lower identification bound of h. For concrete-
ness in what follows, we will assume J(h, p) has this form; similar definitions can be formulated
individually to find the maximum of h, and the minimum and maximum of p.

For T > 0, define the objective function π(h, p) ∝ exp[J(h, p)/T ]. Our goal is to find (GSU ,ZSU ) ∈
C(GR,dR,ZR) such that π

(
h(GSU ,ZSU ), p(GSU , GR, tR,ZSU )

)
is maximized. Let

K
(
(GSU ,ZSU ), (G∗SU ,Z

∗
SU )
)

be a transition kernel that describes the probability of moving from a state (GSU ,ZSU ) ∈ C(GR,dR,ZR)
to another state (G∗SU ,Z

∗
SU ) ∈ C(GR,dR,ZR). Let Tt be a positive non-decreasing sequence in-

dexed by t, with limt→∞ Tt = 0. We construct an inhomogeneous Markov chain on C(GR,dR,ZR).
At step t, where the current state is (GSU ,ZSU ), we accept the proposed state (G∗SU ,Z

∗
SU ) ∼

K
(
(GSU ,ZSU ), ·

)
with probability

ρt = min

{
1, exp

[
J
(
h(G∗SU ,Z

∗
SU ), p(G∗SU , GR, tR,Z

∗
SU )
)
− J

(
h(GSU ,ZSU ), p(GSU , GR, tR,ZSU )

)
Tt

]}
.

The proposal function is described formally below.
As Tt → 0, the samples (GSU ,ZSU )t become more concentrated around local maxima of π.

Convergence of the sequence (GSU , ZSU )t to a global optimum depends on its ability to escape local
maxima of J . The sequence Tt, called the “cooling schedule”, controls the rate of convergence. Let
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M denote the set of (GSU ,ZSU ) ∈ C(GR,dR,ZR) for which J
(
h(GSU ,ZSU ), p(GSU , GR, tR,ZSU )

)
is equal to the global maximum. Careful choice of Tt ensures that the sequence of samples converges
in probability to an element of M.

Proposition 1. Let the cooling schedule be given by Tt =
(
ε log(t)

)−1
where ε > 0 is a constant.

Then limt→∞ Pr
(
(GSU ,ZSU )t ∈M

)
= 1.

Proof. Let J(h, p) = 1/(1 + ε+ h) for 0 < ε < 1 and let M be the set of (GSU ,ZSU ) that achieve
the global maximum of J on C(GR,dR,ZR). Let the cooling schedule be given by Tt = (ε log(t))−1.
Following Hajek (3), we say that a state (GSU ,ZSU ) ∈ C(GR,dR,ZR) communicates with M at
depth D if there exists a path in C(GR,dR,ZR) that starts at (GSU ,ZSU ) and ends at an element
of M such that the least value of J along the path is J

(
h(GSU ,ZSU ), p(GSU , GR, tR,ZSU )

)
−D.

Let D∗ be the smallest number such that every (GSU ,ZSU ) ∈ C(GR,dR,ZR) communicates with
M at depth D∗. Theorem 1 of Hajek (3) states that if Tt → 0 and

∑∞
t=1 exp[−D∗/Tt] diverges,

then the sequence (GSU ,ZSU )t converges in probability to an element of M.
First, note that since J(h, p) > 0 for all h, D∗ is bounded above by the maximum of J on

C(GR,dR,ZR), and so

D∗ ≤ max
(GSU ,ZSU )∈C(GR,dR,ZR)

J
(
h(GSU ,ZSU ), p(GSU , GR, tR,ZSU )

)
≤ max

(h,p)∈[−1,1]2
J(h, p)

= max
(h,p)∈[−1,1]2

1/(1 + ε+ h)

= 1/ε.

(1)

Now examining the divergence criterion,

∞∑
t=1

exp[−D∗/Tt] =
∞∑
t=1

exp [−D∗ε log(t)]

=
∞∑
t=1

1

tD∗ε

≥
∞∑
t=1

1

t
=∞

(2)

where the inequality is a consequence of D∗ε ≤ 1. Therefore limt→∞ Pr
(
(GSU ,ZSU )t ∈ M

)
= 1,

as claimed.

Web Appendix 2

Suppose (GSU ,ZSU ) ∈ C(GR,dR,ZR) is a compatible augmented subgraph and trait set, and we
wish to propose another compatible pair (G∗SU ,Z

∗
SU ) ∈ C(GR,dR,ZR). We outline two proposal

mechanisms. The first removes or adds an edge in GSU . If necessary, a new unsampled vertex u
is invented, and assigned a trait value Zu. Let U = {u ∈ VSU : u /∈ VR} be the set of unsampled
vertices. Furthermore, let U−k = {u ∈ VSU \ VR : {k, u} /∈ ESU} be the set of unsampled vertices
in U that are not connected to k ∈ VR.

1: Let G∗SU = GSU and Z∗SU = ZSU
2: Randomly choose i ∈ VR and j ∈ VSU with i 6= j.
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3: if {i, j} ∈ ESU and {i, j} /∈ ER then
4: Remove {i, j} from E∗SU
5: B ∼ Bernoulli(1/2)
6: if B < 0.5 and U−i 6= ∅ then
7: Randomly choose u ∈ U−i
8: else
9: Add a new vertex u to V ∗SU

10: Randomly choose a trait Z∗u ∈ {0, 1}
11: end if
12: Add {i, u} to E∗SU
13: if j ∈ VR then
14: B ∼ Bernoulli(1/2)
15: if B < 0.5 and U−j 6= ∅ then
16: Randomly choose u ∈ U−j
17: else
18: Add a new vertex u to V ∗SU
19: Randomly choose a trait Z∗u ∈ {0, 1}
20: end if
21: end if
22: Add {j, u} to E∗SU
23: else if {i, j} /∈ ESU and ∃u1, u2 ∈ U : {i, u1} ∈ ESU and {j, u2} ∈ ESU then
24: Remove {i, u1} and {j, u2} from E∗SU
25: Add {i, j} to E∗SU
26: end if
27: Remove any isolated vertices from V ∗SU
The space C(GR,dR,ZR) is connected via proposals of this type (see 6, for explanation). The
second proposal mechanism accelerates exploration of C(GR,dR,ZR) by switching the trait of an
unsampled vertex:

1: Choose u ∈ {u ∈ VSU : u /∈ VR}.
2: Set Z∗u = 1− Zu.

Together, these proposal mechanisms result in a well-mixing sequence (GSU ,ZSU )t.
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