Web Appendix to "Identification of homophily and preferential recruitment in respondent-driven sampling"

Web Appendix 1

Unfortunately there are no general closed-form expressions for the extrema of h and p on $\mathcal{C}(G_R, \mathbf{d}_R, \mathbf{Z}_R)$. The space of compatible subgraphs can be very large, but straightforward optimization techniques permit finding these bounds quickly. We describe a stochastic optimization algorithm for finding the global optimum of an arbitrary function J of h and p, based on simulated annealing $(1-4)$. The approach is similar to a quadratic programming framework introduced by De Paula, Richards-Shubik, and Tamer (5) for finding the identification set for certain functionals of graphs and vertex attributes. The optimization routine described here is constructive: it returns the (possibly not unique) pair $(G_{SU}, \mathbf{Z}_{SU}) \in \mathcal{C}(G_R, \mathbf{d}_R, \mathbf{Z}_R)$ that maximizes a carefully chosen objective function $\pi(\cdot).$

Let $J : [-1,1]^2 \to \mathbb{R}$ be a function taking arguments $h(G_{SU}, \mathbf{Z}_{SU})$ and $p(G_{SU}, G_R, \mathbf{t}_R, \mathbf{Z}_{SU})$ for $(G_{SU}, \mathbf{Z}_{SU}) \in \mathcal{C}(G_R, \mathbf{d}_R, \mathbf{Z}_R)$. We choose this function, abbreviated $J(h, p)$, so that a desired feature of $\mathcal{C}(G_R, \mathbf{d}_R, \mathbf{Z}_R)$ coincides with the maximum of J. For example, the maximum of the function

$$
J(h, p) = \frac{1}{1 + \epsilon + h}
$$

on $\mathcal{C}(G_R, \mathbf{d}_R, \mathbf{Z}_R)$ where $\epsilon > 0$, coincides with the lower identification bound of h. For concreteness in what follows, we will assume $J(h, p)$ has this form; similar definitions can be formulated individually to find the maximum of h , and the minimum and maximum of p .

For $T > 0$, define the objective function $\pi(h, p) \propto \exp[J(h, p)/T]$. Our goal is to find $(G_{SU}, \mathbf{Z}_{SU}) \in$ $\mathcal{C}(G_R, \mathbf{d}_R, \mathbf{Z}_R)$ such that $\pi(h(G_{SU}, \mathbf{Z}_{SU}), p(G_{SU}, G_R, \mathbf{t}_R, \mathbf{Z}_{SU}))$ is maximized. Let

$$
K\big((G_{SU},\mathbf{Z}_{SU}),(G^*_{SU},\mathbf{Z}^*_{SU})\big)
$$

be a transition kernel that describes the probability of moving from a state $(G_{SU}, \mathbf{Z}_{SU}) \in \mathcal{C}(G_R, \mathbf{d}_R, \mathbf{Z}_R)$ to another state $(G_{SU}^*, \mathbf{Z}_{SU}^*) \in \mathcal{C}(G_R, \mathbf{d}_R, \mathbf{Z}_R)$. Let T_t be a positive non-decreasing sequence indexed by t, with $\lim_{t\to\infty}T_t=0$. We construct an inhomogeneous Markov chain on $\mathcal{C}(G_R, \mathbf{d}_R, \mathbf{Z}_R)$. At step t, where the current state is $(G_{SU}, \mathbf{Z}_{SU})$, we accept the proposed state $(G_{SU}^*, \mathbf{Z}_{SU}^*) \sim$ $K\big((G_{SU},\mathbf{Z}_{SU}),\cdot\big)$ with probability

$$
\rho_t = \min\left\{1, \exp\left[\frac{J\big(h(G_{SU}^*, \mathbf{Z}_{SU}^*), p(G_{SU}^*, G_R, \mathbf{t}_R, \mathbf{Z}_{SU}^*)\big) - J\big(h(G_{SU}, \mathbf{Z}_{SU}), p(G_{SU}, G_R, \mathbf{t}_R, \mathbf{Z}_{SU})\big)}{T_t}\right]\right\}.
$$

The proposal function is described formally below.

As $T_t \to 0$, the samples $(G_{SU}, \mathbf{Z}_{SU})_t$ become more concentrated around local maxima of π . Convergence of the sequence $(G_{SU}, Z_{SU})_t$ to a global optimum depends on its ability to escape local maxima of J. The sequence T_t , called the "cooling schedule", controls the rate of convergence. Let

M denote the set of $(G_{SU}, \mathbf{Z}_{SU}) \in \mathcal{C}(G_R, \mathbf{d}_R, \mathbf{Z}_R)$ for which $J(h(G_{SU}, \mathbf{Z}_{SU}), p(G_{SU}, G_R, \mathbf{t}_R, \mathbf{Z}_{SU}))$ is equal to the global maximum. Careful choice of T_t ensures that the sequence of samples converges in probability to an element of \mathcal{M} .

Proposition 1. Let the cooling schedule be given by $T_t = (\epsilon \log(t))^{-1}$ where $\epsilon > 0$ is a constant. Then $\lim_{t\to\infty} \Pr\left((G_{SU}, \mathbf{Z}_{SU})_t \in \mathcal{M}\right) = 1.$

Proof. Let $J(h, p) = 1/(1 + \epsilon + h)$ for $0 < \epsilon < 1$ and let M be the set of $(G_{SU}, \mathbf{Z}_{SU})$ that achieve the global maximum of J on $\mathcal{C}(G_R, \mathbf{d}_R, \mathbf{Z}_R)$. Let the cooling schedule be given by $T_t = (\epsilon \log(t))^{-1}$. Following Hajek (3), we say that a state $(G_{SU}, \mathbf{Z}_{SU}) \in \mathcal{C}(G_R, \mathbf{d}_R, \mathbf{Z}_R)$ communicates with M at depth D if there exists a path in $\mathcal{C}(G_R, \mathbf{d}_R, \mathbf{Z}_R)$ that starts at $(G_{SU}, \mathbf{Z}_{SU})$ and ends at an element of M such that the least value of J along the path is $J(h(G_{SU}, \mathbf{Z}_{SU}), p(G_{SU}, G_R, \mathbf{t}_R, \mathbf{Z}_{SU})) - D$. Let D^* be the smallest number such that every $(G_{SU}, \mathbb{Z}_{SU}) \in \mathcal{C}(G_R, \mathbf{d}_R, \mathbb{Z}_R)$ communicates with M at depth D^{*}. Theorem 1 of Hajek (3) states that if $T_t \to 0$ and $\sum_{t=1}^{\infty} \exp[-D^*/T_t]$ diverges, then the sequence $(G_{SU}, \mathbf{Z}_{SU})_t$ converges in probability to an element of M.

First, note that since $J(h, p) > 0$ for all h, D^* is bounded above by the maximum of J on $\mathcal{C}(G_R, \mathbf{d}_R, \mathbf{Z}_R)$, and so

$$
D^* \leq \max_{(G_{SU}, \mathbf{Z}_{SU}) \in \mathcal{C}(G_R, \mathbf{d}_R, \mathbf{Z}_R)} J(h(G_{SU}, \mathbf{Z}_{SU}), p(G_{SU}, G_R, \mathbf{t}_R, \mathbf{Z}_{SU}))
$$

\n
$$
\leq \max_{(h,p)\in [-1,1]^2} J(h,p)
$$

\n
$$
= \max_{(h,p)\in [-1,1]^2} 1/(1+\epsilon+h)
$$

\n
$$
= 1/\epsilon.
$$
 (1)

Now examining the divergence criterion,

$$
\sum_{t=1}^{\infty} \exp[-D^*/T_t] = \sum_{t=1}^{\infty} \exp[-D^*\epsilon \log(t)]
$$

$$
= \sum_{t=1}^{\infty} \frac{1}{t^{D^*\epsilon}}
$$

$$
\geq \sum_{t=1}^{\infty} \frac{1}{t} = \infty
$$
 (2)

where the inequality is a consequence of $D^*\epsilon \leq 1$. Therefore $\lim_{t\to\infty} \Pr((G_{SU}, \mathbf{Z}_{SU})_t \in \mathcal{M}) = 1$, as claimed. \Box

Web Appendix 2

Suppose $(G_{SU}, \mathbf{Z}_{SU}) \in \mathcal{C}(G_R, \mathbf{d}_R, \mathbf{Z}_R)$ is a compatible augmented subgraph and trait set, and we wish to propose another compatible pair $(G_{SU}^*, \mathbb{Z}_{SU}^*) \in \mathcal{C}(G_R, \mathbf{d}_R, \mathbb{Z}_R)$. We outline two proposal mechanisms. The first removes or adds an edge in G_{SU} . If necessary, a new unsampled vertex u is invented, and assigned a trait value Z_u . Let $U = \{u \in V_{SU} : u \notin V_R\}$ be the set of unsampled vertices. Furthermore, let $U_{-k} = \{u \in V_{SU} \setminus V_R : \{k, u\} \notin E_{SU}\}\)$ be the set of unsampled vertices in U that are *not* connected to $k \in V_R$.

- 1: Let $G_{SU}^* = G_{SU}$ and $\mathbf{Z}_{SU}^* = \mathbf{Z}_{SU}$
- 2: Randomly choose $i \in V_R$ and $j \in V_{SU}$ with $i \neq j$.

3: if $\{i, j\} \in E_{SU}$ and $\{i, j\} \notin E_R$ then 4: Remove $\{i, j\}$ from E^*_{SU} 5: $B \sim \text{Bernoulli}(1/2)$ 6: if $B < 0.5$ and $U_{-i} \neq \emptyset$ then 7: Randomly choose $u \in U_{-i}$ 8: else 9: Add a new vertex u to V_{SU}^* 10: Randomly choose a trait $Z_u^* \in \{0, 1\}$ 11: end if 12: Add $\{i, u\}$ to E^*_{SU} 13: if $j \in V_R$ then 14: $B \sim \text{Bernoulli}(1/2)$ 15: if $B < 0.5$ and $U_{-i} \neq \emptyset$ then 16: Randomly choose $u \in U_{-i}$ 17: else 18: Add a new vertex u to V_{SU}^* 19: Randomly choose a trait $Z_u^* \in \{0,1\}$ 20: end if 21: end if 22: Add $\{j, u\}$ to E^*_{SU} 23: else if $\{i, j\} \notin E_{SU}$ and $\exists u_1, u_2 \in U : \{i, u_1\} \in E_{SU}$ and $\{j, u_2\} \in E_{SU}$ then 24: Remove $\{i, u_1\}$ and $\{j, u_2\}$ from E^*_{SU} 25: Add $\{i, j\}$ to E^*_{SU} 26: end if 27: Remove any isolated vertices from V_{SU}^*

The space $\mathcal{C}(G_R, \mathbf{d}_R, \mathbf{Z}_R)$ is connected via proposals of this type (see 6, for explanation). The second proposal mechanism accelerates exploration of $\mathcal{C}(G_R, \mathbf{d}_R, \mathbf{Z}_R)$ by switching the trait of an unsampled vertex:

1: Choose $u \in \{u \in V_{SU} : u \notin V_R\}.$

2: Set
$$
Z_u^* = 1 - Z_u
$$
.

Together, these proposal mechanisms result in a well-mixing sequence $(G_{SU}, \mathbf{Z}_{SU})_t$.

References

- [1] Kirkpatrick C. D., Vecchi M. P.. Optimization by simmulated annealing Science. 1983;220:671– 680.
- [2] Cernỳ Vladimír. Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm Journal of Optimization Theory and Applications. 1985;45:41–51.
- [3] Hajek Bruce. Cooling schedules for optimal annealing Mathematics of Operations Research. 1988;13:311–329.
- [4] Bertsimas Dimitris, Tsitsiklis John. Simulated annealing Statistical Science. 1993;8:10–15.
- [5] De Paula Aureo, Richards-Shubik Seth, Tamer Elie T. Identification of Preferences in Network Formation Games SSRN 2577410. 2014.
- [6] Crawford Forrest W.. The graphical structure of respondent-driven sampling Sociol Methodol. 2016;46:187–211.