Web Appendix to "Identification of homophily and preferential recruitment in respondent-driven sampling"

Web Appendix 1

Unfortunately there are no general closed-form expressions for the extrema of h and p on $\mathcal{C}(G_R, \mathbf{d}_R, \mathbf{Z}_R)$. The space of compatible subgraphs can be very large, but straightforward optimization techniques permit finding these bounds quickly. We describe a stochastic optimization algorithm for finding the global optimum of an arbitrary function J of h and p, based on simulated annealing (1–4). The approach is similar to a quadratic programming framework introduced by De Paula, Richards-Shubik, and Tamer (5) for finding the identification set for certain functionals of graphs and vertex attributes. The optimization routine described here is constructive: it returns the (possibly not unique) pair $(G_{SU}, \mathbf{Z}_{SU}) \in \mathcal{C}(G_R, \mathbf{d}_R, \mathbf{Z}_R)$ that maximizes a carefully chosen objective function $\pi(\cdot)$.

Let $J : [-1,1]^2 \to \mathbb{R}$ be a function taking arguments $h(G_{SU}, \mathbf{Z}_{SU})$ and $p(G_{SU}, G_R, \mathbf{t}_R, \mathbf{Z}_{SU})$ for $(G_{SU}, \mathbf{Z}_{SU}) \in \mathcal{C}(G_R, \mathbf{d}_R, \mathbf{Z}_R)$. We choose this function, abbreviated J(h, p), so that a desired feature of $\mathcal{C}(G_R, \mathbf{d}_R, \mathbf{Z}_R)$ coincides with the maximum of J. For example, the maximum of the function

$$J(h,p) = \frac{1}{1+\epsilon+h}$$

on $\mathcal{C}(G_R, \mathbf{d}_R, \mathbf{Z}_R)$ where $\epsilon > 0$, coincides with the lower identification bound of h. For concreteness in what follows, we will assume J(h, p) has this form; similar definitions can be formulated individually to find the maximum of h, and the minimum and maximum of p.

For T > 0, define the objective function $\pi(h, p) \propto \exp[J(h, p)/T]$. Our goal is to find $(G_{SU}, \mathbf{Z}_{SU}) \in \mathcal{C}(G_R, \mathbf{d}_R, \mathbf{Z}_R)$ such that $\pi(h(G_{SU}, \mathbf{Z}_{SU}), p(G_{SU}, G_R, \mathbf{t}_R, \mathbf{Z}_{SU}))$ is maximized. Let

$$K((G_{SU}, \mathbf{Z}_{SU}), (G_{SU}^*, \mathbf{Z}_{SU}^*))$$

be a transition kernel that describes the probability of moving from a state $(G_{SU}, \mathbf{Z}_{SU}) \in \mathcal{C}(G_R, \mathbf{d}_R, \mathbf{Z}_R)$ to another state $(G_{SU}^*, \mathbf{Z}_{SU}^*) \in \mathcal{C}(G_R, \mathbf{d}_R, \mathbf{Z}_R)$. Let T_t be a positive non-decreasing sequence indexed by t, with $\lim_{t\to\infty} T_t = 0$. We construct an inhomogeneous Markov chain on $\mathcal{C}(G_R, \mathbf{d}_R, \mathbf{Z}_R)$. At step t, where the current state is $(G_{SU}, \mathbf{Z}_{SU})$, we accept the proposed state $(G_{SU}^*, \mathbf{Z}_{SU}^*) \sim K((G_{SU}, \mathbf{Z}_{SU}), \cdot)$ with probability

$$\rho_t = \min\left\{1, \exp\left[\frac{J(h(G_{SU}^*, \mathbf{Z}_{SU}^*), p(G_{SU}^*, G_R, \mathbf{t}_R, \mathbf{Z}_{SU}^*)) - J(h(G_{SU}, \mathbf{Z}_{SU}), p(G_{SU}, G_R, \mathbf{t}_R, \mathbf{Z}_{SU}))}{T_t}\right]\right\}.$$

The proposal function is described formally below.

As $T_t \to 0$, the samples $(G_{SU}, \mathbf{Z}_{SU})_t$ become more concentrated around local maxima of π . Convergence of the sequence $(G_{SU}, Z_{SU})_t$ to a global optimum depends on its ability to escape local maxima of J. The sequence T_t , called the "cooling schedule", controls the rate of convergence. Let \mathcal{M} denote the set of $(G_{SU}, \mathbf{Z}_{SU}) \in \mathcal{C}(G_R, \mathbf{d}_R, \mathbf{Z}_R)$ for which $J(h(G_{SU}, \mathbf{Z}_{SU}), p(G_{SU}, G_R, \mathbf{t}_R, \mathbf{Z}_{SU}))$ is equal to the global maximum. Careful choice of T_t ensures that the sequence of samples converges in probability to an element of \mathcal{M} .

Proposition 1. Let the cooling schedule be given by $T_t = (\epsilon \log(t))^{-1}$ where $\epsilon > 0$ is a constant. Then $\lim_{t\to\infty} \Pr((G_{SU}, \mathbf{Z}_{SU})_t \in \mathcal{M}) = 1$.

Proof. Let $J(h, p) = 1/(1 + \epsilon + h)$ for $0 < \epsilon < 1$ and let \mathcal{M} be the set of $(G_{SU}, \mathbf{Z}_{SU})$ that achieve the global maximum of J on $\mathcal{C}(G_R, \mathbf{d}_R, \mathbf{Z}_R)$. Let the cooling schedule be given by $T_t = (\epsilon \log(t))^{-1}$. Following Hajek (3), we say that a state $(G_{SU}, \mathbf{Z}_{SU}) \in \mathcal{C}(G_R, \mathbf{d}_R, \mathbf{Z}_R)$ communicates with \mathcal{M} at depth D if there exists a path in $\mathcal{C}(G_R, \mathbf{d}_R, \mathbf{Z}_R)$ that starts at $(G_{SU}, \mathbf{Z}_{SU})$ and ends at an element of \mathcal{M} such that the least value of J along the path is $J(h(G_{SU}, \mathbf{Z}_{SU}), p(G_{SU}, G_R, \mathbf{t}_R, \mathbf{Z}_{SU})) - D$. Let D^* be the smallest number such that every $(G_{SU}, \mathbf{Z}_{SU}) \in \mathcal{C}(G_R, \mathbf{d}_R, \mathbf{Z}_R)$ communicates with \mathcal{M} at depth D^* . Theorem 1 of Hajek (3) states that if $T_t \to 0$ and $\sum_{t=1}^{\infty} \exp[-D^*/T_t]$ diverges, then the sequence $(G_{SU}, \mathbf{Z}_{SU})_t$ converges in probability to an element of \mathcal{M} .

First, note that since J(h,p) > 0 for all h, D^* is bounded above by the maximum of J on $\mathcal{C}(G_R, \mathbf{d}_R, \mathbf{Z}_R)$, and so

$$D^* \leq \max_{\substack{(G_{SU}, \mathbf{Z}_{SU}) \in \mathcal{C}(G_R, \mathbf{d}_R, \mathbf{Z}_R)}} J(h(G_{SU}, \mathbf{Z}_{SU}), p(G_{SU}, G_R, \mathbf{t}_R, \mathbf{Z}_{SU}))$$

$$\leq \max_{\substack{(h, p) \in [-1, 1]^2}} J(h, p)$$

$$= \max_{\substack{(h, p) \in [-1, 1]^2}} 1/(1 + \epsilon + h)$$

$$= 1/\epsilon.$$
(1)

Now examining the divergence criterion,

$$\sum_{t=1}^{\infty} \exp[-D^*/T_t] = \sum_{t=1}^{\infty} \exp\left[-D^*\epsilon \log(t)\right]$$
$$= \sum_{t=1}^{\infty} \frac{1}{t^{D^*\epsilon}}$$
$$\geq \sum_{t=1}^{\infty} \frac{1}{t} = \infty$$
(2)

where the inequality is a consequence of $D^* \epsilon \leq 1$. Therefore $\lim_{t\to\infty} \Pr\left((G_{SU}, \mathbf{Z}_{SU})_t \in \mathcal{M}\right) = 1$, as claimed.

Web Appendix 2

Suppose $(G_{SU}, \mathbf{Z}_{SU}) \in \mathcal{C}(G_R, \mathbf{d}_R, \mathbf{Z}_R)$ is a compatible augmented subgraph and trait set, and we wish to propose another compatible pair $(G_{SU}^*, \mathbf{Z}_{SU}^*) \in \mathcal{C}(G_R, \mathbf{d}_R, \mathbf{Z}_R)$. We outline two proposal mechanisms. The first removes or adds an edge in G_{SU} . If necessary, a new unsampled vertex u is invented, and assigned a trait value Z_u . Let $U = \{u \in V_{SU} : u \notin V_R\}$ be the set of unsampled vertices. Furthermore, let $U_{-k} = \{u \in V_{SU} \setminus V_R : \{k, u\} \notin E_{SU}\}$ be the set of unsampled vertices in U that are *not* connected to $k \in V_R$.

- 1: Let $G_{SU}^* = G_{SU}$ and $\mathbf{Z}_{SU}^* = \mathbf{Z}_{SU}$
- 2: Randomly choose $i \in V_R$ and $j \in V_{SU}$ with $i \neq j$.

3: if $\{i, j\} \in E_{SU}$ and $\{i, j\} \notin E_R$ then Remove $\{i, j\}$ from E_{SU}^* 4: $B \sim \text{Bernoulli}(1/2)$ 5:if B < 0.5 and $U_{-i} \neq \emptyset$ then 6: Randomly choose $u \in U_{-i}$ 7: 8: else Add a new vertex u to V_{SU}^* 9: Randomly choose a trait $Z_u^* \in \{0, 1\}$ 10: end if 11: Add $\{i, u\}$ to E_{SU}^* 12:if $j \in V_R$ then 13: $B \sim \text{Bernoulli}(1/2)$ 14: if B < 0.5 and $U_{-i} \neq \emptyset$ then 15:Randomly choose $u \in U_{-i}$ 16:17:else Add a new vertex u to V_{SU}^* 18:Randomly choose a trait $Z_u^* \in \{0, 1\}$ 19:end if 20: end if 21: Add $\{j, u\}$ to E_{SU}^* 22:else if $\{i, j\} \notin E_{SU}$ and $\exists u_1, u_2 \in U : \{i, u_1\} \in E_{SU}$ and $\{j, u_2\} \in E_{SU}$ then 23:Remove $\{i, u_1\}$ and $\{j, u_2\}$ from E_{SU}^* 24:25:Add $\{i, j\}$ to E_{SU}^* 26: end if 27: Remove any isolated vertices from V_{SU}^*

The space $\mathcal{C}(G_R, \mathbf{d}_R, \mathbf{Z}_R)$ is connected via proposals of this type (see 6, for explanation). The second proposal mechanism accelerates exploration of $\mathcal{C}(G_R, \mathbf{d}_R, \mathbf{Z}_R)$ by switching the trait of an unsampled vertex:

1: Choose $u \in \{u \in V_{SU} : u \notin V_R\}$.

2: Set
$$Z_u^* = 1 - Z_u$$
.

Together, these proposal mechanisms result in a well-mixing sequence $(G_{SU}, \mathbf{Z}_{SU})_t$.

References

- Kirkpatrick C. D., Vecchi M. P., Optimization by simmulated annealing Science. 1983;220:671– 680.
- [2] Černý Vladimír. Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm *Journal of Optimization Theory and Applications*. 1985;45:41–51.
- [3] Hajek Bruce. Cooling schedules for optimal annealing *Mathematics of Operations Research*. 1988;13:311–329.
- [4] Bertsimas Dimitris, Tsitsiklis John. Simulated annealing Statistical Science. 1993;8:10–15.
- [5] De Paula Aureo, Richards-Shubik Seth, Tamer Elie T. Identification of Preferences in Network Formation Games SSRN 2577410. 2014.
- [6] Crawford Forrest W.. The graphical structure of respondent-driven sampling Sociol Methodol. 2016;46:187–211.