Supplementary Information

Engineering protein stability with atomic precision in a monomeric miniprotein

Emily G. Baker,^{1*} Christopher Williams,^{1,2,\$} Kieran L. Hudson,^{1,†,\$} Gail J. Bartlett,¹ Jack W. Heal,¹ Kathryn L. Porter Goff,¹ Richard B. Sessions,^{2,3} Matthew P. Crump^{1,2} and Derek N. Woolfson^{1,2,3*}

¹School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK ²BrisSynBio, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ, UK

³School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK

[†]Current address: Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada

*Corresponding authors: EGB (<u>emily.baker@bristol.ac.uk</u>) and DNW (<u>D.N.Woolfson@bristol.ac.uk</u>) *Contributed equally to this work.

Supplementary Results

Supplementary Figure 1: Examples of natural proteins with unusual polyproline-II-helix–α-helix **conformation. A:** A3VP1 of Ag I/II of *Streptococcus mutans* (PDB: 3IOX). **B:** Avian pancreatic polypeptide of *Meleagris gallopavo* (turkey) (PDB: 2BF9).

Supplementary Figure 2: Characterizations of the peptides in this study. A-H Analytical HPLC trace (left, monitored at 220 nm, blue and 280 nm, red) and MALDI-TOF mass spectrum (right) of A: PP α -Tyr, B: PP α -Trp, C: PP α -Phe, D: PP α - ϕ NH₂, E: PP α - ϕ CH₃, F: PP α - ϕ CH₃, G: PP α - ϕ F, H: PP α - ϕ CN, and I: PP α - ϕ NO₂. In I the raw mass spectrum is shown centre and the deconvoluted spectrum, right. Conditions:

PPα-Tyr:	HPLC gradient = 10-60% buffer B. [M+H] ⁺ _{calc} = 3819.282 Da	ΡΡα-φCΗ₃:	HPLC gradient = 20-60% buffer B. [M+H] ⁺ _{calc} = 3813.365 Da
PPα-Trp:	HPLC gradient = 10-60% buffer B. [M+H] ⁺ _{calc} = 3888.383 Da	ΡΡα-φΕ:	HPLC gradient = 20-60% buffer B. [M+H] ⁺ _{calc} = 3525.254 Da
PPα-Phe:	HPLC gradient = 10-60% buffer B. [M+H] ⁺ _{calc} = 3771.284 Da	ΡΡα-φCΝ:	HPLC gradient = 20-60% buffer B. [M+H] ⁺ _{calc} = 3846.314 Da
ΡΡα-φΝΗ2:	HPLC gradient = 20-60% buffer B. [M+H] ⁺ _{calc} = 3816.329 Da	ΡΡα-φΝΟ2:	HPLC gradient = 10-60% buffer B. [M] _{calc} = 3902.969 Da
ΡΡα-φΟϹΗ₃:	HPLC gradient = 10-60% buffer B. [M+H] ⁺ _{calc} = 3861.362 Da		

Supplementary Figure 3: Determinations of extinction coefficients for *para*-substituted phenylalanine amino acids. A: *p*-amino-Phe. B: *p*-methoxy-Phe. C: *p*-methyl-Phe. D: *p*-fluoro-Phe. E: *p*-cyano-Phe. F: *p*-nitro-Phe. Conditions:

Amino acid	Pathlength (mm)	Wavelength (nm)	Extinction coefficient (M ⁻¹ cm ⁻¹)*	Solvent
<i>p</i> -amino-Phe	1	280	1015 ± 29	PBS
<i>p</i> -methoxy-Phe	1	280	1078 ± 9	H ₂ O
<i>p</i> -methyl-Phe	0.1	214	8573 ± 85	H ₂ O
<i>p</i> -fluoro-Phe	0.1	214	4151 ± 31	H ₂ O
<i>p</i> -cyano-Phe	1	280	494 ± 5	H ₂ O
<i>p</i> -nitro-Phe	0.1	280	8673 ± 235	H ₂ O:DMSO (1:1 vol%)

* Mean \pm 1 standard deviation of 3 experiments

S8

Supplementary Figure 4: Additional CD spectra and thermal denaturation profiles for peptides in this study. CD spectra recorded at 5 °C (A, C, E, G, I), and thermal denaturation curves (solid lines) and refolding profiles (dashed lines) monitored at 222 nm (B, D, F&H) and at 275.5 nm (J) for PP α -Trp (blue circles) and α -Trp (black line), A&B; PP α -Phe (gray crosses) and α -Phe (black line), C&D; PP α -His (lilac diamonds) and α -His (black line), E&F; PP α -Tyr (red squares) and α -Tyr (black line), G&H and PP α -Tyr measured in the near UV region, I&J. The T_M of PP α -Tyr when measured through the aromatic CD signal at 275.5 nm is 40 °C. Conditions: 100 μ M peptide in PBS, pH 7.4, 1 mm path length. Near UV spectra were recorded with a 1 cm path length. The identities and purities (>98 %) of α -Tyr, α -Trp, α -Phe and α -His were confirmed by MALDI-TOF mass spectrometry and analytical HPLC respectively (data not shown). Analytical ultracentrifugation sedimentation equilibrium experiments (data not shown) revealed α -Tyr was 1.2 x its calculated monomer mass (99% confidence limits = 2975–3015) and α -Trp was 1.3 x its calculated monomer mass (99% confidence limits = 3297–3402). The fits for α -Phe to a single ideal species were not suitable for the experimental data and indicated aggregation. α -His was not measured. For the Tyr-, Trp- and Phe-containing peptides the full-length PP α miniprotein has significantly more thermal stability than the α -helix and α -His are not well folded, consistent with an electron-poor His ring. K&L: An example of the thermal-denaturation curve-fitting procedure. K: Thermal-denaturation profile of PP α -Tyr (red circles) and the fitted data (black, solid line), see Materials and Methods for fitting equations. The calculated upper (green) and lower (blue) baselines are also shown. Note, we cannot access the fully folded state of PP α -Tyr experimentally. The lower baseline represents the theoretical CD signal of the fully folded state of the miniprotein and t

Supplementary Figure 5: Additional AUC data for peptides in this study. Sedimentation equilibrium AUC data (circles, upper panels) and fits to single ideal species (lines, upper panels) with residuals to the fits (lower panels) for PP α peptides. A: PP α -Tyr (280 nm). B: PP α -Trp (298 nm). C: PP α -Phe (235 nm). D: PP α - ϕ NH₂ (280 nm). E: PP α - ϕ OCH₃ (280 nm). F: PP α - ϕ CH₃ (235 nm). G: PP α - ϕ F (235 nm). H: PP α - ϕ CN (280 nm). I: PP α - ϕ NO₂ (325 nm). Conditions: 130 µM peptide in PBS, pH 7.4. Color key: 40 krpm (dark blue), 44 krpm (light blue), 48 krpm (green), 52 krpm (yellow), 56 krpm (orange) and 60 krpm (red). The fits returned the following masses: PP α -Tyr, 3613 Da, (0.9 x monomer mass), 99% confidence limits = 3585–3642 Da; PP α - ϕ CH₃, 3767 (0.9 x monomer mass), 99% confidence limits = 3521–3727 Da; PP α - ϕ OCH₃, 3701 Da (1.0 x monomer mass), 99% confidence limits = 3647–3756 Da; PP α - ϕ CH₃, 4183 Da (1.1 x monomer mass), 99% confidence limits = 4024–4975; PP α - ϕ F, 3661 (1.0 x monomer mass); PP α -CN, 4134 Da (1.1 x monomer mass); 99% confidence limits = 4107–4267.

Supplementary Figure 6: NMR ensemble structures and secondary structure assignment of PP α peptides. A-C: NMR ensemble structures of A: PP α -Tyr, B: PP α - ϕ OCH₃, and C: PP α - ϕ CH₃. Chemical shift assignments, structure calculation and validation statistics are given in Table S1. D-G: secondary structure assignment of PP α structures. D: PP α -Tyr *in silico* after 100 ns of MD simulation, E: PP α -Tyr, F: PP α - ϕ OCH₃ and G: PP α - ϕ CH₃. Key D-G: Polyproline-II, burgundy; bend, yellow; hydrogen-bonded turn (3, 4 or 5 turn), yellow; 3₁₀-helix (min. length 3 residues), light blue; and α -helix (min. length 4 residues), dark blue. N.B. Residue 0 = *N*-terminal acetyl cap.

Supplementary Figure 7: Propensities for amino acid side chains to be in close contact. Normalized propensities of side chains to be within 3 Å vs. a random distribution from our high resolution dataset (\leq 1 Å) of X-ray crystal structures from the PDB.

S14

Supplementary Figure 8: Analysis of CH– π interactions in a sub-1 Å dataset and SH3, WW, EVH1 and Profilin binding domains from the PDB. A: Definition of a CH– π interaction parameters. CH– π distance (between the CH proton to center of the aromatic ring, i.e. H–X) \leq 3.5 Å. CH– π angle (between the vector of the C–H bond and the normal to the plane of the aromatic ring) $\theta \leq 55^{\circ}$. C-projection distance (between the projection of the CH carbon to the plane of the aromatic ring and the center of the ring) \leq 1.6 Å for the 5-membered TrpA ring and \leq 2.0 Å for 6-membered rings (Phe, Tyr and TrpB). B-D: Distribution of parameters of CH– π interactions identified in our non-redundant high resolution (\leq 1 Å) dataset of protein X-ray crystal structures from the PDB. B: CH– π distance, C: CH– π angle, D: CH-projection distance (corrected by 1/r). E-G: Acceptor identities for all CH– π interactions in the same dataset as B-D. E: Frequency of aromatic rings acting as CH– π acceptors, F: Frequency of aromatic rings as acceptors for all interactions in the dataset. Dark green bars for TrpA and TrpB represent residues where both rings participate in interactions. H&I: Residues that participate in CH– π interactions in SH3, WW, EVH1 and Profilin. H: Average participation in CH– π interactions as CH donor with binding-domain π -acceptors for Pro CH protons in bound ligands and I: Identity of CH– π acceptor residues involved in CH– π interactions of Pro residues in bound ligands.

Supplementary Figure 9: Electrostatic surface potentials (ESPs) of interfacial residues in PP α variants. A: ESPs of Phe, Tyr, and Trp side chains. Tyr and Trp are shown as hydrogen-bond donors to a water molecule to best represent their solvated state. B: ESP of Pro and for comparison, C: Val. Both are capped at the *N*- and *C*-terminus with acetyl and amide groups respectively. Note the side chain of Pro is more electropositive than Val. D: ESPs for *para*-substituted benzene side chains from electron-rich phenol (side chain of Tyr) through electron poor-nitrobenzene (side chain of *para*-nitro-Phe). Scale: \leq -130 kJ mol⁻¹ (electropositive, blue) through \geq 130 kJ mol⁻¹ (electronegative, red).

Supplementary Figure 10: Van't Hoff analyses of PP α miniproteins. Enthalpy of unfolding, $\Delta H_{unf, 5^{\circ}C}$ (blue, squares), entropy of unfolding, $\Delta S_{unf, 5^{\circ}C}$ (red, circles) and free energy of unfolding $\Delta G_{unf, 5^{\circ}C}$ (diamonds, purple) at 5°C (where most of the peptides are fully folded) vs. Hammett σ_p constant of *para*-substituents for the PP α peptides. These values were obtained from curve fitting of the thermal denaturation curves obtained by CD spectroscopy. See Materials and Methods for fitting equations. Linear fits of the data are shown by the dotted lines.

A Validation statistics

NMR distance and dihedral constraints Distance constraints Total NOE 583 561 597 Intra-residue 245 235 224 Inter-residue 245 235 224 Sequential $(i-j =1)$ 103 98 114 Medium-range $(i-j < 4)$ 67 66 81 Long-range $(i-j > 5)$ 35 45 44 Ambiguous 133 117 134 Hydrogen bonds 0 0 0 Total dihedral angle restraints		PPα-Tyr	ΡΡα-φCΗ3	ΡΡα-φΟCΗ3
constraints Distance constraints Total NOE 583 561 597 Intra-residue 245 235 224 Inter-residue 35 224 Sequential $(i - j = 1)$ 103 98 114 Medium-range $(i - j < 4)$ 67 66 81 Long-range $(i - j > 5)$ 35 45 44 Ambiguous 133 117 134 Hydrogen bonds 0 0 0 Total dihedral angle restraints ϕ 34 36 33 ψ 21 22 22 22 Structure statistics $Violations (mean and s.d.)$ 0.055 ± 0.016 0.057 ± 0.009 0.022 ± 0.001 Distance constraints (Å) 0.025 ± 0.016 0.057 ± 0.009 0.022 ± 0.001 Dividations (mean and s.d.) 0 0 0 0 Max. distance constraints (Å) $0.0027 (\pm 0.0036)$ $0.44 (\pm 0.071)$ $0.34 (\pm 0.109)$ Max. distance constraint violation (°) <t< td=""><td>NMR distance and dihedral</td><td></td><td></td><td></td></t<>	NMR distance and dihedral			
Distance constraints Total NOE 583 561 597 Intra-residue 245 235 224 Inter-residue 583 561 597 Sequential $([i-j]=1)$ 103 98 114 Medium-range $([i-j] < 4)$ 67 66 81 Long-range $([i-j] > 5)$ 35 45 44 Ambiguous 133 117 134 Hydrogen bonds 0 0 0 Total dihedral angle restraints	constraints			
Total NOE 583 561 597 Intra-residue 245 235 224 Inter-residue Sequential $(i-j =1)$ 103 98 114 Medium-range $(i-j < 4)$ 67 66 81 Long-range $(i-j > 5)$ 35 45 44	Distance constraints			
Intra-residue 245 255 224 Inter-residue 5equential $(i-j =1)$ 103 98 114 Medium-range $(i-j < 4)$ 67 66 81 Long-range $(i-j > 5)$ 35 45 44 Ambiguous 133 117 134 Hydrogen bonds 0 0 0 Total dihedral angle restraints ϕ 34 36 33 ψ 21 22 22 22 Structure statistics Violations (mean and s.d.) 0.055 ± 0.016 0.057 ± 0.009 0.022 ± 0.001 Distance constraints (Å) 0.055 ± 0.016 0.057 ± 0.009 0.022 ± 0.001 Max. dihedral angle violation (°) 0 0 0 0 Max. dihedral angle violation (°) 0 0 0 0 Max. dihedral angle violation (°) 0 0 0 0 Max. distance constraint violation (°) 0 0 0 0 0 0 0 0 0 0<	Iotal NOE	583	561	597
Inter-residueSequential $(i - j = 1)$ 10398114Medium-range $(i - j > 5)$ 354544Ambiguous133117134Hydrogen bonds000Total dihedral angle restraints000 ϕ 343633 ψ 212222Structure statisticsViolations (mean and s.d.)Distance constraints (Å)0.055 ± 0.0160.057 ± 0.0090.022 ± 0.001Dihedral angle constraints (°)0.03 (± 0.036)0.44 (± 0.071)0.34 (± 0.109)Max. distance constraint violation (°)000Max. distance constraint violation5.65 (± 1.52)6.20 (± 1.57)0.00 (± 0.00)(> 0.3Å)0.0027 (± 0.0001)0.0026 (± 0.001)0.0031 (± 0.0001)Bond lengths (Å)0.0027 (± 0.0001)0.0434 (± - 0.015)0.462 (± 0.015)Impropers (°)0.429 (± 0.010)0.434 (± - 0.015)0.462 (± 0.015)Impropers (°)0.306 (± 0.085)0.299 (± 0.100)0.310 (± 0.066)Heavy atoms (2° structure)0.306 (± 0.085)0.299 (± 0.100)0.310 (± 0.066)Heavy atoms (2° structure)0.673 (± 0.105)0.693 (± 0.087)0.700 (± 0.063)Backbone, all residues0.514 (± 0.121)0.520 (± 0.146)0.474 (± 0.107)Heavy atoms, all residues0.825 (± 0.122)0.828 (± 0.120)0.821 (± 0.100)	Intra-residue	245	235	224
Sequential $(r-j = 1)$ 103 98 114 Medium-range $(i-j < 4)$ 67 66 81 Long-range $(i-j > 5)$ 35 45 44 Ambiguous 133 117 134 Hydrogen bonds 0 0 0 Total dihedral angle restraints 0 0 0 ϕ 34 36 33 ψ 21 22 22 ψ 21 22 22 ψ 0.03 (± 0.036) 0.44 (± 0.071) 0.34 (± 0.109) Distance constraints (Å) 0.055 ± 0.016 0.057 ± 0.009 0.022 ± 0.001 Dihedral angle constraints (°) 0.03 (± 0.036) 0.44 (± 0.071) 0.34 (± 0.109) Max. distance constraint violation (°) 0 0 0 Max. distance constraint violation 5.65 (± 1.52) 6.20 (± 1.57) 0.0 (± 0.001) ($\geq 0.3Å$) 0.0027 (± 0.0001) 0.0026 (± 0.001) 0.0031 (± 0.0001) Deviations from idealized geometry Bond lengths (Å) 0.0027 (± 0.0001) 0.462 (± 0.015) Bond angles (°)	Inter-residue	102	0.0	114
Medulm-range $(i-j < 4)$ 67 66 81 Long-range $(i-j > 5)$ 35 45 44 Ambiguous 133 117 134 Hydrogen bonds 0 0 0 Total dihedral angle restraints 0 0 0 ϕ 34 36 33 ψ 21 22 22 Structure statistics Violations (mean and s.d.) 0.055 ± 0.016 0.057 ± 0.009 0.022 ± 0.001 Distance constraints (Å) 0.005 ± 0.016 0.057 ± 0.009 0.022 ± 0.001 Max. dihedral angle violation (°) 0 0 0 0 Max. distance constraint violation (°) 0 0 0 0 Max. distance constraint violation (°) 0.0027 (± 0.0001) 0.0026 (± 0.0001) 0.0031 (± 0.0001) Peviations from idealized geometry Bond lengths (Å) 0.0027 (± 0.0001) 0.0026 (± 0.005) 0.462 (± 0.015) Bond lengths (Å) 0.0027 (± 0.0001) 0.434 (± - 0.015) 0.462 (± 0.015) 1.044 (± 0.144) Average pairwise r.m.s. deviation** (Å) 0.529 (± 0.100)	Sequential $(l-j = 1)$	103	98	114
Long-range $(I - J > 5)$ 35 45 44 Ambiguous 133 117 134 Hydrogen bonds 0 0 0 Total dihedral angle restraints ϕ 34 36 33 ψ 21 22 22 Structure statistics Violations (mean and s.d.) Distance constraints (Å) 0.055 ± 0.016 0.057 ± 0.009 0.022 ± 0.001 Dihedral angle constraints (°) 0.03 (± 0.036) 0.44 (± 0.071) 0.34 (± 0.109) Max. dihedral angle violation (°) 0 0 0 0 Max. distance constraint violation (°) 0 0 0 0 Max. distance constraint violation (°) 0 0 0 0 Max. distance constraint violation (°) 0 0.0026 (± 0.0001) 0.0031 (± 0.0001) (> 0.3Å) 0.0027 (± 0.0001) 0.0026 (± 0.0001) 0.0031 (± 0.0001) Deviations from idealized geometry Bond lengths (Å) 0.0027 (± 0.0001) 0.0026 (± 0.0051) 0.462 (± 0.015) Impropers (°) 0.320 (± 0.084) 1.056 (± 0.089) 1.144 (± 0.144)	$\frac{\text{Medium-range}(l-j < 4)}{\text{Lense range}(l-j < 5)}$	0/	66	81
Ambiguous133117134Hydrogen bonds000Total dihedral angle restraints ϕ 343633 ψ 212222Structure statisticsViolations (mean and s.d.)Distance constraints (Å) 0.055 ± 0.016 0.057 ± 0.009 0.022 ± 0.001 Dihedral angle constraints (°) $0.03 (\pm 0.036)$ $0.44 (\pm 0.071)$ $0.34 (\pm 0.109)$ Max. dihedral angle violation (°)000Max. distance constraint violation $5.65 (\pm 1.52)$ $6.20 (\pm 1.57)$ $0.00 (\pm 0.00)$ $(> 0.3Å)$ 0.0027 (± 0.0001) $0.0026 (\pm 0.001)$ $0.0031 (\pm 0.0001)$ Bond lengths (Å) $0.0027 (\pm 0.0001)$ $0.026 (\pm 0.005)$ $1.144 (\pm 0.144)$ Average pairwise r.m.s. deviation** $(Å)$ $0.299 (\pm 0.100)$ $0.310 (\pm 0.066)$ Heavy atoms (2° structure) $0.673 (\pm 0.105)$ $0.693 (\pm 0.087)$ $0.700 (\pm 0.063)$ Backbone, all residues $0.514 (\pm 0.121)$ $0.520 (\pm 0.146)$ $0.474 (\pm 0.107)$	Long-range $(l-j > 5)$	35	45	44
Hydrogen bonds 0 0 0 Total dihedral angle restraints 34 36 33 ψ 21 22 22 Structure statistics Violations (mean and s.d.) Distance constraints (Å) 0.055 ± 0.016 0.057 ± 0.009 0.022 ± 0.001 Dihedral angle constraints (°) $0.03 (\pm 0.036)$ $0.44 (\pm 0.071)$ $0.34 (\pm 0.109)$ Max. dihedral angle violation (°) 0 0 0 Max. distance constraint violation (°) 0 0 0 Deviations from idealized geometry Bond lengths (Å) $0.0027 (\pm 0.0001)$ $0.0026 (\pm 0.0001)$ $0.0031 (\pm 0.0001)$ Bond angles (°) $0.429 (\pm 0.010)$ $0.442 (\pm 0.015)$ $0.462 (\pm 0.015)$ Impropers (°) $0.932 (\pm 0.084)$ $1.056 (\pm 0.089)$ $1.144 (\pm 0.144)$ Average pairwise r.m.s. deviation** (Å) $0.299 (\pm 0.100)$ $0.310 (\pm 0.066)$ Heavy atoms (2° structure) $0.673 (\pm 0.105)$ $0.693 (\pm 0.087)$ $0.700 (\pm 0.063)$ Backbone, all residues $0.514 (\pm 0.121)$ $0.520 (\pm 0.146)$ <	Ambiguous	133	117	134
Total dihedral angle restraints ϕ 34 36 33 ψ 21 22 22 Structure statistics Violations (mean and s.d.) 0.055 \pm 0.016 0.057 \pm 0.009 0.022 \pm 0.001 Distance constraints (Å) 0.055 \pm 0.016 0.057 \pm 0.009 0.022 \pm 0.001 Dihedral angle constraints (°) 0.03 (\pm 0.036) 0.44 (\pm 0.071) 0.34 (\pm 0.109) Max. dihedral angle violation (°) 0 0 0 0 Max. distance constraint violation (°) 0 0.020 (\pm 1.57) 0.0 (\pm 0.00) (> 0.3Å) 0.0027 (\pm 0.0001) 0.0026 (\pm 0.0001) 0.0031 (\pm 0.0001) Deviations from idealized geometry Bond lengths (Å) 0.0027 (\pm 0.0001) 0.434 (\pm - 0.015) 0.462 (\pm 0.015) Impropers (°) 0.429 (\pm 0.010) 0.434 (\pm - 0.015) 0.462 (\pm 0.015) Impropers (°) 0.306 (\pm 0.085) 0.299 (\pm 0.100) 0.310 (\pm 0.066) Heavy atoms (2° structure) 0.673 (\pm 0.105) 0.693 (\pm 0.087) 0.700 (\pm 0.063) Backbone, all residues 0.514 (\pm 0.121) 0.520 (\pm 0.146) 0.474 (\pm 0.107)<	Hydrogen bonds	0	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Total dihedral angle restraints			
ψ 212222Structure statisticsViolations (mean and s.d.)Distance constraints (Å) 0.055 ± 0.016 0.057 ± 0.009 0.022 ± 0.001 Dihedral angle constraints (°) $0.03 (\pm 0.036)$ $0.44 (\pm 0.071)$ $0.34 (\pm 0.109)$ Max. dihedral angle violation (°) 0 0 0 Max. distance constraint violation $5.65 (\pm 1.52)$ $6.20 (\pm 1.57)$ $0.0 (\pm 0.00)$ (> 0.3Å) $0.0027 (\pm 0.0001)$ $0.0026 (\pm 0.0001)$ $0.0031 (\pm 0.0001)$ Deviations from idealized geometryBond lengths (Å) $0.0027 (\pm 0.0001)$ $0.0026 (\pm 0.0001)$ $0.0031 (\pm 0.0001)$ Bond angles (°) $0.429 (\pm 0.010)$ $0.434 (\pm - 0.015)$ $0.462 (\pm 0.015)$ Impropers (°) $0.932 (\pm 0.084)$ $1.056 (\pm 0.089)$ $1.144 (\pm 0.144)$ Average pairwise r.m.s. deviation** $(Å)$ $0.299 (\pm 0.100)$ $0.310 (\pm 0.066)$ Heavy atoms (2° structure) $0.673 (\pm 0.105)$ $0.693 (\pm 0.087)$ $0.700 (\pm 0.063)$ Backbone, all residues $0.514 (\pm 0.121)$ $0.520 (\pm 0.146)$ $0.474 (\pm 0.107)$ Heavy atoms, all residues $0.825 (\pm 0.122)$ $0.828 (\pm 0.120)$ $0.821 (\pm 0.100)$	φ	34	36	33
Structure statisticsViolations (mean and s.d.)Distance constraints (Å) 0.055 ± 0.016 0.057 ± 0.009 0.022 ± 0.001 Dihedral angle constraints (°) $0.03 (\pm 0.036)$ $0.44 (\pm 0.071)$ $0.34 (\pm 0.109)$ Max. dihedral angle violation (°) 0 0 0 Max. distance constraint violation $5.65 (\pm 1.52)$ $6.20 (\pm 1.57)$ $0.0 (\pm 0.00)$ (> 0.3 Å) $0.0027 (\pm 0.0001)$ $0.0026 (\pm 0.0001)$ $0.0031 (\pm 0.0001)$ Deviations from idealized geometryBond lengths (Å) $0.0027 (\pm 0.0001)$ $0.0026 (\pm 0.0001)$ $0.0031 (\pm 0.0001)$ Bond angles (°) $0.429 (\pm 0.010)$ $0.434 (\pm - 0.015)$ $0.462 (\pm 0.015)$ Impropers (°) $0.932 (\pm 0.084)$ $1.056 (\pm 0.089)$ $1.144 (\pm 0.144)$ Average pairwise r.m.s. deviation** $(Å)$ $0.299 (\pm 0.100)$ $0.310 (\pm 0.066)$ Heavy atoms (2° structure) $0.673 (\pm 0.105)$ $0.693 (\pm 0.087)$ $0.700 (\pm 0.063)$ Backbone, all residues $0.514 (\pm 0.121)$ $0.520 (\pm 0.146)$ $0.474 (\pm 0.107)$ Heavy atoms, all residues $0.825 (\pm 0.122)$ $0.828 (\pm 0.120)$ $0.821 (\pm 0.100)$	Ψ	21	22	22
Violations (mean and s.d.)Distance constraints (Å) 0.055 ± 0.016 0.057 ± 0.009 0.022 ± 0.001 Dihedral angle constraints (°) $0.03 (\pm 0.036)$ $0.44 (\pm 0.071)$ $0.34 (\pm 0.109)$ Max. dihedral angle violation (°) 0 0 0 Max. distance constraint violation $5.65 (\pm 1.52)$ $6.20 (\pm 1.57)$ $0.0 (\pm 0.00)$ (> 0.3Å) $0.0027 (\pm 0.001)$ $0.0026 (\pm 0.0001)$ $0.0031 (\pm 0.0001)$ Deviations from idealized geometry $0.0027 (\pm 0.0001)$ $0.0026 (\pm 0.0001)$ $0.0031 (\pm 0.0001)$ Bond lengths (Å) $0.0027 (\pm 0.0001)$ $0.0026 (\pm 0.0001)$ $0.0031 (\pm 0.0001)$ Bond angles (°) $0.429 (\pm 0.010)$ $0.434 (\pm - 0.015)$ $0.462 (\pm 0.015)$ Impropers (°) $0.932 (\pm 0.084)$ $1.056 (\pm 0.089)$ $1.144 (\pm 0.144)$ Average pairwise r.m.s. deviation** $(Å)$ $0.299 (\pm 0.100)$ $0.310 (\pm 0.066)$ Heavy atoms (2° structure) $0.673 (\pm 0.105)$ $0.693 (\pm 0.087)$ $0.700 (\pm 0.063)$ Backbone, all residues $0.514 (\pm 0.121)$ $0.520 (\pm 0.146)$ $0.474 (\pm 0.107)$ Heavy atoms, all residues $0.825 (\pm 0.122)$ $0.828 (\pm 0.120)$ $0.821 (\pm 0.100)$	Structure statistics			
Distance constraints (Å) 0.055 ± 0.016 0.057 ± 0.009 0.022 ± 0.001 Dihedral angle constraints (°) $0.03 (\pm 0.036)$ $0.44 (\pm 0.071)$ $0.34 (\pm 0.109)$ Max. dihedral angle violation (°) 0 0 0 Max. distance constraint violation $5.65 (\pm 1.52)$ $6.20 (\pm 1.57)$ $0.0 (\pm 0.00)$ (> $0.3 Å$) $0.0027 (\pm 0.001)$ $0.0026 (\pm 0.001)$ $0.0031 (\pm 0.0001)$ Deviations from idealized geometry $0.0027 (\pm 0.0001)$ $0.0026 (\pm 0.0001)$ $0.0031 (\pm 0.0001)$ Bond lengths (Å) $0.0027 (\pm 0.0001)$ $0.0026 (\pm 0.0001)$ $0.0031 (\pm 0.0001)$ Bond angles (°) $0.429 (\pm 0.010)$ $0.434 (\pm - 0.015)$ $0.462 (\pm 0.015)$ Impropers (°) $0.932 (\pm 0.084)$ $1.056 (\pm 0.089)$ $1.144 (\pm 0.144)$ Average pairwise r.m.s. deviation** $(Å)$ $0.306 (\pm 0.085)$ $0.299 (\pm 0.100)$ $0.310 (\pm 0.066)$ Heavy atoms (2° structure) $0.673 (\pm 0.105)$ $0.693 (\pm 0.087)$ $0.700 (\pm 0.063)$ Backbone, all residues $0.514 (\pm 0.121)$ $0.520 (\pm 0.146)$ $0.474 (\pm 0.107)$ Heavy atoms, all residues $0.825 (\pm 0.122)$ $0.828 (\pm 0.120)$ $0.821 (\pm 0.100)$	Violations (mean and s.d.)			
Dihedral angle constraints (°) $0.03 (\pm 0.036)$ $0.44 (\pm 0.071)$ $0.34 (\pm 0.109)$ Max. dihedral angle violation (°)000Max. distance constraint violation $5.65 (\pm 1.52)$ $6.20 (\pm 1.57)$ $0.0 (\pm 0.00)$ (> $0.3 Å$)0.0027 (± 0.0001) $0.0026 (\pm 0.0001)$ $0.0031 (\pm 0.0001)$ Deviations from idealized geometry0.429 (± 0.010) $0.434 (\pm - 0.015)$ $0.462 (\pm 0.015)$ Bond lengths (Å) $0.932 (\pm 0.084)$ $1.056 (\pm 0.089)$ $1.144 (\pm 0.144)$ Average pairwise r.m.s. deviation**(Å) $0.306 (\pm 0.085)$ $0.299 (\pm 0.100)$ $0.310 (\pm 0.066)$ Heavy atoms (2° structure) $0.673 (\pm 0.105)$ $0.693 (\pm 0.087)$ $0.700 (\pm 0.063)$ Backbone, all residues $0.514 (\pm 0.121)$ $0.520 (\pm 0.146)$ $0.474 (\pm 0.107)$ Heavy atoms, all residues $0.825 (\pm 0.122)$ $0.828 (\pm 0.120)$ $0.821 (\pm 0.100)$	Distance constraints (Å)	0.055 ± 0.016	0.057 ± 0.009	0.022 ± 0.001
Max. dihedral angle violation (°)000Max. distance constraint violation (> 0.3Å) $5.65 (\pm 1.52)$ $6.20 (\pm 1.57)$ $0.0 (\pm 0.00)$ Deviations from idealized geometryBond lengths (Å) $0.0027 (\pm 0.0001)$ $0.0026 (\pm 0.0001)$ $0.0031 (\pm 0.0001)$ Bond angles (°) $0.429 (\pm 0.010)$ $0.434 (\pm - 0.015)$ $0.462 (\pm 0.015)$ Impropers (°) $0.932 (\pm 0.084)$ $1.056 (\pm 0.089)$ $1.144 (\pm 0.144)$ Average pairwise r.m.s. deviation** (Å) $0.306 (\pm 0.085)$ $0.299 (\pm 0.100)$ $0.310 (\pm 0.066)$ Heavy atoms (2° structure) $0.673 (\pm 0.105)$ $0.693 (\pm 0.087)$ $0.700 (\pm 0.063)$ Backbone, all residues $0.514 (\pm 0.121)$ $0.520 (\pm 0.146)$ $0.474 (\pm 0.107)$ Heavy atoms, all residues $0.825 (\pm 0.122)$ $0.828 (\pm 0.120)$ $0.821 (\pm 0.100)$	Dihedral angle constraints (°)	0.03 (± 0.036)	0.44 (± 0.071)	0.34 (± 0.109)
Max. distance constraint violation (> 0.3Å) $5.65 (\pm 1.52)$ $6.20 (\pm 1.57)$ $0.0 (\pm 0.00)$ Deviations from idealized geometryBond lengths (Å) $0.0027 (\pm 0.0001)$ $0.0026 (\pm 0.0001)$ $0.0031 (\pm 0.0001)$ Bond angles (°) $0.429 (\pm 0.010)$ $0.434 (\pm - 0.015)$ $0.462 (\pm 0.015)$ Impropers (°) $0.932 (\pm 0.084)$ $1.056 (\pm 0.089)$ $1.144 (\pm 0.144)$ Average pairwise r.m.s. deviation** (Å) $0.306 (\pm 0.085)$ $0.299 (\pm 0.100)$ $0.310 (\pm 0.066)$ Heavy atoms (2° structure) $0.673 (\pm 0.105)$ $0.693 (\pm 0.087)$ $0.700 (\pm 0.063)$ Backbone, all residues $0.514 (\pm 0.121)$ $0.520 (\pm 0.146)$ $0.474 (\pm 0.107)$ Heavy atoms, all residues $0.825 (\pm 0.122)$ $0.828 (\pm 0.120)$ $0.821 (\pm 0.100)$	Max. dihedral angle violation (°)	0	0	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Max. distance constraint violation	5.65 (± 1.52)	6.20 (± 1.57)	0.0 (± 0.00)
Deviations from idealized geometryBond lengths (Å) $0.0027 (\pm 0.0001)$ $0.0026 (\pm 0.0001)$ $0.0031 (\pm 0.0001)$ Bond angles (°) $0.429 (\pm 0.010)$ $0.434 (\pm - 0.015)$ $0.462 (\pm 0.015)$ Impropers (°) $0.932 (\pm 0.084)$ $1.056 (\pm 0.089)$ $1.144 (\pm 0.144)$ Average pairwise r.m.s. deviation** $(Å)$ $$	(> 0.3Å)	. ,		
Bond lengths (Å) $0.0027 (\pm 0.0001)$ $0.0026 (\pm 0.0001)$ $0.0031 (\pm 0.0001)$ Bond angles (°) $0.429 (\pm 0.010)$ $0.434 (\pm - 0.015)$ $0.462 (\pm 0.015)$ Impropers (°) $0.932 (\pm 0.084)$ $1.056 (\pm 0.089)$ $1.144 (\pm 0.144)$ Average pairwise r.m.s. deviation** $(Å)$ $$	Deviations from idealized geometry			
Bond angles (°) $0.429 (\pm 0.010)$ $0.434 (\pm -0.015)$ $0.462 (\pm 0.015)$ Impropers (°) $0.932 (\pm 0.084)$ $1.056 (\pm 0.089)$ $1.144 (\pm 0.144)$ Average pairwise r.m.s. deviation** (Å)backbone (2° structure) $0.306 (\pm 0.085)$ $0.299 (\pm 0.100)$ $0.310 (\pm 0.066)$ Heavy atoms (2° structure) $0.673 (\pm 0.105)$ $0.693 (\pm 0.087)$ $0.700 (\pm 0.063)$ Backbone, all residues $0.514 (\pm 0.121)$ $0.520 (\pm 0.146)$ $0.474 (\pm 0.107)$ Heavy atoms, all residues $0.825 (\pm 0.122)$ $0.828 (\pm 0.120)$ $0.821 (\pm 0.100)$	Bond lengths (Å)	0.0027 (± 0.0001)	0.0026 (± 0.0001)	0.0031 (± 0.0001)
Impropers (°) $0.932 (\pm 0.084)$ $1.056 (\pm 0.089)$ $1.144 (\pm 0.144)$ Average pairwise r.m.s. deviation** (Å) $0.306 (\pm 0.085)$ $0.299 (\pm 0.100)$ $0.310 (\pm 0.066)$ backbone (2° structure) $0.306 (\pm 0.085)$ $0.299 (\pm 0.100)$ $0.310 (\pm 0.066)$ Heavy atoms (2° structure) $0.673 (\pm 0.105)$ $0.693 (\pm 0.087)$ $0.700 (\pm 0.063)$ Backbone, all residues $0.514 (\pm 0.121)$ $0.520 (\pm 0.146)$ $0.474 (\pm 0.107)$ Heavy atoms, all residues $0.825 (\pm 0.122)$ $0.828 (\pm 0.120)$ $0.821 (\pm 0.100)$	Bond angles (°)	0.429 (± 0.010)	0.434 (± - 0.015)	0.462 (± 0.015)
Average pairwise r.m.s. deviation** (Å) $0.306 (\pm 0.085)$ $0.299 (\pm 0.100)$ $0.310 (\pm 0.066)$ backbone (2° structure) $0.673 (\pm 0.105)$ $0.693 (\pm 0.087)$ $0.700 (\pm 0.063)$ Heavy atoms (2° structure) $0.514 (\pm 0.121)$ $0.520 (\pm 0.146)$ $0.474 (\pm 0.107)$ Backbone, all residues $0.825 (\pm 0.122)$ $0.828 (\pm 0.120)$ $0.821 (\pm 0.100)$	Impropers (°)	0.932 (± 0.084)	1.056 (± 0.089)	1.144 (± 0.144)
backbone (2° structure) $0.306 (\pm 0.085)$ $0.299 (\pm 0.100)$ $0.310 (\pm 0.066)$ Heavy atoms (2° structure) $0.673 (\pm 0.105)$ $0.693 (\pm 0.087)$ $0.700 (\pm 0.063)$ Backbone, all residues $0.514 (\pm 0.121)$ $0.520 (\pm 0.146)$ $0.474 (\pm 0.107)$ Heavy atoms, all residues $0.825 (\pm 0.122)$ $0.828 (\pm 0.120)$ $0.821 (\pm 0.100)$	Average pairwise r.m.s. deviation** (Å)			
Heavy atoms (2° structure) $0.673 (\pm 0.105)$ $0.693 (\pm 0.087)$ $0.700 (\pm 0.063)$ Backbone, all residues $0.514 (\pm 0.121)$ $0.520 (\pm 0.146)$ $0.474 (\pm 0.107)$ Heavy atoms, all residues $0.825 (\pm 0.122)$ $0.828 (\pm 0.120)$ $0.821 (\pm 0.100)$	backbone (2° structure)	0.306 (± 0.085)	0.299 (± 0.100)	0.310 (± 0.066)
Backbone, all residues $0.514 (\pm 0.121)$ $0.520 (\pm 0.146)$ $0.474 (\pm 0.107)$ Heavy atoms, all residues $0.825 (\pm 0.122)$ $0.828 (\pm 0.120)$ $0.821 (\pm 0.100)$	Heavy atoms (2° structure)	0.673 (± 0.105)	0.693 (± 0.087)	0.700 (± 0.063)
Heavy atoms, all residues $0.825 (\pm 0.122)$ $0.828 (\pm 0.120)$ $0.821 (\pm 0.100)$	Backbone, all residues	0.514 (± 0.121)	0.520 (± 0.146)	0.474 (± 0.107)
	Heavy atoms, all residues	0.825 (± 0.122)	0.828 (± 0.120)	0.821 (± 0.100)

** Pairwise r.m.s. deviation was calculated among 20 refined structures.

100% of each peptide was in allowed regions of Ramachandran space.

В рра-Туг

Residue	н	Ν	НА	CA	СВ	Other
Acetyl cap	-	-	-	26.03	-	2.095:H*
Pro1	-	-	3.396	62.42	-	1.708:HB2 1.889:HB3 1.880:HG2 1.935:HG3 3.504:HD2 3.568:HD3 53.21:CD
Pro2	-	-	4.538	64.43	-	2.101:HB2 2.365:HB3 1.638:HG2 1.725:HG3 3.166:HD2 3.216:HD3
Thr3	8.869	116.48	4.279	63.88	71.91	3.926:HB 1.132:HG2* 23.57:CG2
Lys4	8.78	129.22	3.074	56.56	-	1.264:HB2 1.461:HB3 1.215:HG2 1.550:HG3 0.711:HD2 1.269:HD3 2.972:HE2 2.972:HE3 26.45:CD
Pro5	-	-	4.511	64.43	71.91	2.036:HB2 2.400:HB3 1.596:HG2 1.718:HG3 3.072:HD2 3.470:HD3 52.34:CD
Thr6	8.802	118.00	4.126	64.36	-	3.936:HB 1.177:HG2* 23.77:CG2
Lys7	8.727	128.05	3.476	56.99	-	1.520:HB2 1.583:HB3 1.018:HG2 1.340:HG3 1.569:HD2 1.569:HD3 2.810:HE2 2.946:HE3
Pro8	-	-	4.363	64.62	-	1.782:HB2 2.163:HB3 1.692:HG2 1.694:HG3 2.810:HD2 3.050:HD3 52.29:CD
Gly9	8.372	106.63	4.036, 3.867	46.27	-	
Asp10	8.543	117.58	4.337	58.11	-	2.527:HB2 2.603:HB3
Asn11	8.642	114.64	4.677	54.78	ĺ	2.860:HB2 2.860:HB3 7.027:HD21 7.729:HD22 112.00:ND2
Ala12	7.437	120.78	4.297	54.50	21.95	1.397:HB*
Thr13	7.735	110.03	4.572	-	70.31	4.830:HB 1.454:HG2* 24.58:CG
Pro14	-	-	4.248	67.78	-	1.974:HB2 2.089:HB3 2.260:HG2 2.430:HG3 3.924:HD2 3.984:HD3 52.41:CD
Glu15	9.072	116.53	4.162	62.14	-	1.970:HB2 2.137:HB3 2.330:HG2 2.399:HG3 38.62:CG
Lys16	7.868	120.85	4.175	-	-	1.832:HB2 2.069:HB3
Leu17	8.415	120.51	4.145	-	-	1.647:HB2 1.872:HB3 0.865:HD1* 0.889:HD2*
Ala18	8.421	121.15	4.250	-	-	1.515:HB*
Lys19	8.015	119.80	4.208	-	-	1.967:HB2 2.024:HB3
Tyr20	7.948	117.80	4.563	61.73	-	3.132:HB2 3.221:HB3 7.157:HD* 6.813:HE* 135.30:CD* 120.23:CE*
Gln21	8.105	115.18	3.670	60.00	-	2.167:HB2 2.204:HB3 2.621:HG2 2.621:HG3 7.096:HE21 7.749:HE22 35.72:CG 110.99:NE2
Ala22	7.928	121.99	4.246	-	-	1.563:HB*
Asp23	9.182	121.15	4.418	-	-	2.448:HB2 2.856:HB3
Leu24	9.211	123.85	3.943	59.90	-	1.404:HB2 1.567:HB3 0.829:HD1* 0.974:HD2*
Ala25	7.771	120.51	4.203	-	-	1.518:HB*
Lys26	7.896	118.68	4.114	-	-	1.930:HB2 2.002:HB3
Tyr27	8.260	119.01	4.428	-	-	3.225:HB2 3.276:HB3 7.033:HD* 6.629:HE* 135.50:CD* 119.79:CE*
Gln28	8.407	115.37	3.616	60.87	-	2.044:HB2 2.193:HB3 2.576:HG2 2.701:HG3 7.028:HE21 7.507:HE22 109.30:NE2
Lys29	7.601	120.36	4.106	-	-	1.911:HB2 2.057:HB3
Asp30	8.988	119.70	4.327	-	-	2.510:HB2 2.744:HB3
Leu31	8.986	121.19	3.825	59.77	-	1.379:HB2 1.498:HB3 0.820:HD1* 0.964:HD2*
Ala32	7.584	121.27	4.109	-	-	1.522:HB*
Asp33	8.152	116.23	4.424	-	-	2.707:HB2 2.707:HB3
Tyr34	7.957	120.25	4.164	60.96	-	3.033:HB2 3.221:HB3 7.162:HD* 6.766:HE* 135.30:CD* 120.08:CE*

C ppa- ϕ OCH3

Residue	н	Ν	НА	CA	СВ	Other
Acetyl cap	-	-	-	25.99	-	2.087:H*
Pro1	-	-	3.496	62.47	-	1.700:HB2
Pro2	-	-	4.515	64.48	-	2.081:HB2 2.442:HB3 1.612:HG2 1.613:HG3 3.077:HD2 3.477:HD3
Thr3	8.676	117.15	4.112	64.28	72.15	3.939:HB 1.194:HG2* 23.79:CG2
Lys4	8.804	129.17	2.949	56.67	-	1.076:HB2 1.140:HB3 1.196:HG2 1.197:HG3 0.603:HD2 1.517:HD3 2.836:HE2 2.836:HE3
Pro5	-	-	4.542	64.54	-	2.116:HB2 2.390:HB3 1.701:HG2 1.739:HG3 3.157:HD2 3.259:HD3
Thr6	8.768	115.78	4.299	63.55		3.941:HB 1.140:HG2*
Lys7	8.780	127.65	3.324	56.97	-	1.552:HB2 0.992:HG2 0.992:HG3 1.307:HD2 1.411:HD3 2.938:HE2 2.939:HE3
Pro8	-	-	4.361	64.66	-	1.778:HB2 2.158:HB3 1.687:HG2 1.688:HG3 2.819:HD2 2.975:HD3
Gly9	8.373	107.12	3.883, 4.017	46.23	-	
Asp10	8.547	118.15	4.335	-	-	2.523:HB2 2.654:HB3
Asn11	8.649	115.11	4.672	54.76	39.57	2.862:HB2 2.862:HB3 7.026:HD21 7.725:HD22 112.47:ND2
Ala12	7.444	121.22	4.291	54.60	21.87	1.394:HB*
Thr13	7.723	110.54	4.575	61.79	70.43	4.830:HB 1.454:HG2*
Pro14	-	-	4.253	67.80	-	1.977:HB2 1.978:HB3 2.091:HG2 2.261:HG3 3.925:HD2 3.983:HD3 52.38:CD
Glu15	9.071	117.01	4.162	62.01	-	1.970:HB2 2.140:HB3 2.339:HG2 2.418:HG3 38.68:CG
Lys16	7.873	121.32	4.180	-	-	1.837:HB2 2.077:HB3
Leu17	8.407	121.05	4.145	-	-	1.658:HB2 1.878:HB3 0.867:HD1* 0.891:HD2*
Ala18	8.426	121.61	4.249	-	-	1.517:HB*
Lys19	8.036	120.28	4.207	-	-	1.970:HB2 2.036:HB3
φOCH₃20	7.942	118.29	4.591	63.14	-	3.193:HB2 3.264:HB3 7.254:HD* 6.716:HE* 135.19:CD* 118.29:CE* 3.768:HM* 59.82:CM
Gln21	8.092	115.76	3.661	60.75	-	2.171:HB2 2.204:HB3 2.624:HG2 2.624:HG3 7.097:HE21 7.761:HE22 111.41:NE2
Ala22	7.985	122.59	4.236	-	19.95	1.563:HB*
Asp23	9.223	121.50	4.426	-	-	2.465:HB2 2.850:HB3
Leu24	9.145	124.36	3.916	59.79	ĺ	1.424:HB2 1.597:HB3 0.788:HD1* 0.867:HD2*
Ala25	7.799	121.06	4.202	-	-	1.517:HB*
Lys26	7.933	119.22	4.106	-	-	1.929:HB2 2.014:HB3 1.520:HG2 1.520:HG3
φOCH₃27	8.234	119.39	4.429	62.80	-	3.256:HB2
Gln28	8.376	115.97	3.606	60.78	-	2.204:HB2 2.204:HB3 2.575:HG2 2.705:HG3 7.017:HE21 7.531:HE22 109.67:NE2
Lys29	7.658	120.92	4.101	-	-	1.911:HB2 2.052:HB3 1.513:HG2 1.514:HG3
Asp30	9.001	120.00	4.322	-	-	2.519:HB2 2.747:HB3
Leu31	8.846	121.34	3.830	-	-	0.896:HB2 1.509:HB3 0.752:HD1* 0.791:HD2*
Ala32	7.595	121.67	4.110	-	-	1.519:HB*
Asp33	8.136	116.62	4.430	-	-	2.696:HB2 2.696:HB3
φOCH₃34	7.948	120.60	4.185	-	-	3.085:HB2 3.221:HB3 7.249:HD* 6.912:HE* 135.32:CD* 118.71:CE* 3.801:HM* 59.88:CM

D ppa- ϕ CH₃

Residue	н	N	НА	CA	СВ	Other
Acetyl cap	-	-	-	26.03	-	2.098:H*
Pro1	-	-	3.664	62.59	-	1.757:HB2 1.896:HB3 1.758:HG2 1.897:HG3 3.496:HD2 3.573:HD3
Pro2	-	-	4.549	64.49	-	2.103:HB2 2.372:HB3 1.708:HG2 1.760:HG3 3.207:HD2 3.302:HD3
Thr3	8.672	114.57	4.33	63.31	72.23	3.937:HB 1.147:HG2* 23.56:CG2
Lys4	8.686	128.41	2.870	56.50	-	1.370:HB2 1.425:HB3 0.647:HG2 1.122:HG3 1.370:HD2 1.370:HD3 2.864:HE2 2.903:HE3
Pro5	-	-	4.495	64.49	-	2.398:HB2 1.561:HG2 1.664:HG3 3.101:HD2 3.421:HD3
Thr6	8.584	115.87	4.126	64.29	72.25	3.946:HB 1.192:HG2* 23.76:CG2
Lys7	8.640	127.25	3.258	56.7	-	1.539:HB* 0.952:HG2 0.952:HG3 1.334:HD2 1.451:HD3 2.929:HE2 2.929:HE3
Pro8	-	-	4.354	64.75	-	1.777:HB2 2.181:HB3 1.696:HG2 1.704:HG3 2.849:HD2 3.006:HD3
Gly9	8.366	106.69	3.866, 4.009	46.37	-	
Asp10	8.536	117.72	4.344	-	-	2.530:HB2 2.654:HB3
Asn11	8.644	114.75	4.670	54.81	39.59	2.862:HB2 2.863:HB3 7.028:HD21 7.726:HD21 111.99:ND2
Ala12	7.489	120.87	4.288	54.71	21.87	1.397:HB*
Thr13	7.700	110.06	4.579	-	70.31	4.827:HB 1.454:HG2* 24.48:CG2
Pro14	-	-	4.257	67.77	-	1.980:HB2 1.982:HB3 2.091:HG2 2.261:HG3 3.925:HD2 3.985:HD3
Glu15	9.074	116.64	4.167	-	-	1.973:HB2 2.141:HB3 2.345:HG2 2.420:HG3
Lys16	7.882	120.75	4.179	-	-	1.830:HB2 2.076:HB3
Leu17	8.398	120.61	4.157	-	-	1.653:HB2 1.893:HB3 0.863:HD1* 0.892:HD2* 25.00:CD1 26.96:CD2
Ala18	8.427	121.39	4.261	-	-	1.521:HB*
Lys19	8.045	119.95	4.210	-	-	1.972:HB2 2.045:HB3 1.523:HG2 1.526:HG3
φCH₃20	7.965	118.00	4.588	61.71	-	2.289:HM* 3.174:HB2 3.249:HB3 7.194:HD* 6.974:HE* 25.15:CM 133.98:CD* 134.19:CE*
Gln21	8.019	114.88	3.705	60.68	-	2.180:HB2 2.193:HB3 2.620:HG2 2.688:HG3 7.092:HE21 7.773:HE22 111.27:NE2
Ala22	7.974	122.20	4.235	-	19.96	1.563:HB*
Asp23	9.186	121.25	4.427	-	-	2.475:HB2 2.845:HB3
Leu24	9.086	123.89	3.916	59.71	-	0.931:HB2 1.571:HB3 0.807:HD1* 0.809:HD2*
Ala25	7.811	120.62	4.200	-	-	1.522:HB*
Lys26	7.931	118.77	4.108	-	-	1.928:HB2 2.018:HB3 1.520:HG2 1.521:HG3
φCH₃27	8.198	119.12	4.444	-	-	2.338:HM* 3.249:HB2 3.317:HB3 7.066:HD* 7.038:HE* 25.85:CM 133.97:CD* 134.24:CE1
Gln28	8.321	115.08	3.641	60.73	-	2.050:HB2 2.184:HB3 2.561:HG2 2.681:HG3 6.997:HE21 7.490:HE22 109.32:NE2
Lys29	7.708	120.48	4.099	-	-	1.906:HB2 2.046:HB3
Asp30	8.935	119.62	4.325	-	-	2.525:HB2 2.756:HB3
Leu31	8.709	120.71	3.840	59.49	-	1.381:HB2 1.481:HB3 0.762:HD1* 1.013:HD2*
Ala32	7.600	121.11	4.111	-	-	1.509:HB*
Asp33	8.161	116.32	4.433	-	-	2.677:HB2 2.679:HB3
φCH₃34	7.976	119.99	4.235	-	-	2.285:HM* 3.092:HB2 3.197:HB3 7.186:HD* 7.168:HE* 25.27:CM 134.08:CD* 134.03:CE1

E PPα-φPhe

Residue	н	Ν	HA	CA	СВ	Other
Acetyl cap	-	-	-	26.06	-	2.094:H*
Pro1	-	-	3.693	62.50	-	1.746:HB2 1.939:HB3 1.921:HG2 1.921:HG3 3.545:HD2 3.558:HD3
Pro2	-	-	4.557	64.55	-	2.357:HB* 1.741:HG2 1.830:HG3 3.273:HD2 3.385:HD3
Thr3	8.697	114.94	4.307	63.68	72.20	3.959:HB 1.148:HG2*
Lys4	8.611	128.10	3.067	-	-	1.219:HG2 1.556:HG3 0.705:HD2 1.222:HD3 2.929:HE2 2.929:HE3
Pro5	-	-	4.508	64.75	-	2.070:HB2 2.393:HB3 1.767:HG2 3.140:HD2 3.492:HD3
Thr6	8.618	116.15	4.138	64.21	71.84	3.960:HB 1.181:HG2*
Lys7	8.580	127.18	3.334	-	-	1.458:HB2 1.513:HB3 1.181:HG2 1.181:HG3
Pro8	-	-	4.364	64.88	-	2.202:HB2 2.545:HB3 1.751:HG2 1.817:HG3 2.904:HD2 3.129:HD3
Gly9	8.390	106.74	3.880, 4.012	46.53	-	
Asp10	8.506	117.77	4.361	-	-	2.544:HB2 2.660:HB3
Asn11	8.624	114.91	4.673	-	39.72	2.856:HB2 2.856:HB3 7.024:HD21 7.724:HD22 111.98:ND2
Ala12	7.569	121.04	4.304	-	-	1.398:HB*
Thr13	7.764	110.34	4.585	61.74	-	4.787:HB 1.439:HG2*
Pro14	-	-	4.266	67.55	-	1.976:HB2 2.423:HB3 2.087:HG2 2.250:HG3 3.916:HD2 3.973:HD3
Glu15	9.048	116.77	4.166	61.85	-	1.977:HB2 2.133:HB3 2.343:HG2 2.399:HG3 38.61:CG
Lys16	7.919	120.78	4.183	-	-	1.844:HB2 2.052:HB3
Leu17	8.401	120.60	4.176	-	-	1.667:HB2 1.856:HB3 0.884:HD1* 0.907:HD2*
Ala18	8.418	121.21	4.257	-	-	1.511:HB*
Lys19	8.043	119.64	4.210	-	-	1.963:HB2 2.023:HB3
Phe20	7.998	117.94	4.298	61.36	-	3.146:HB2 3.217:HB3 7.299:HD*
Gln21	8.150	115.71	3.686	60.76	-	2.156:HB2 2.202:HB3 2.617:HG2 2.617:HG3 7.086:HE21 7.746:HE22 110.91:NE2
Ala22	7.983	122.05	4.224	-	-	1.549:HB*
Asp23	9.083	120.80	4.430	-	-	2.483:HB2 2.833:HB3
Leu24	9.021	123.51	3.945	-	-	1.520:HB2 1.521:HB3 0.834:HD1* 0.942:HD2*
Ala25	7.802	120.39	4.191	-	-	1.511:HB*
Lys26	7.923	118.47	4.116	-	-	1.916:HB2 1.989:HB3 1.503:HG2 1.506:HG3
Phe27	8.222	118.87	4.439	-	-	3.302:HB2 3.315:HB3 7.182:HD* 133.93:CD*
Gln28	8.379	115.72	3.675	60.69	-	2.050:HB2 2.184:HB3 2.566:HG2 2.685:HG3 7.011:HE21 7.540:HE22 109.47:NE2
Lys29	7.725	120.39	4.104	-	-	1.900:HB2 2.026:HB3 1.491:HG2 1.494:HG3
Asp30	8.825	119.43	4.339	-	-	2.541:HB2 2.724:HB3
Leu31	8.646	120.68	3.883	59.63	-	1.449:HB2 1.449:HB3 0.813:HD1* 1.023:HD2*
Ala32	7.649	121.18	4.116	-	-	1.499:HB*
Asp33	8.191	116.42	4.437	-	-	2.654:HB2 2.654:HB3
Phe34	7.999	119.83	4.586	-	-	3.214:HB2 3.309:HB3 7.294:HD*

Γ ΡΡα-φF

Residue	н	Ν	НА	CA	СВ	Other
Acetyl cap	-	-	-	26.04	-	2.102:H*
Pro1	-	-	3.554	62.57	-	1.958:HB2 1.958:HB3 1.769:HG2 1.769:HG3 3.548:HD2 3.588:HD3
Pro2	-	-	4.535	64.73	-	2.384:HB* 1.762:HG2 1.762:HG3 3.239:HD2 3.342:HD3
Thr3	8.641	114.79	4.300	63.49	72.20	3.962:HB 1.159:HG2*
Lys4	8.727	127.48	2.983	59.60	-	1.281:HB2 1.470:HB3 0.795:HG2 1.282:HG3 1.592:HD2 1.592:HD3 2.946:HE2 2.946:HE3
Pro5	-	-	4.497	64.64	-	2.015:HB2 2.407:HB3 1.644:HG2 1.740:HG3 3.118:HD2 3.454:HD3
Thr6	8.593	116.44	4.109	61.09	-	3.958:HB 1.198:HG2*
Lys7	8.656	126.78	3.406	56.80	-	1.492:HB2 1.572:HB3
Pro8	-	-	4.374	64.76	-	1.811:HB2 2.188:HB3 1.739:HG2 1.740:HG3 2.933:HD2 3.068:HD3
Gly9	8.377	106.67	3.897, 4.008	46.50	-	
Asp10	8.517	117.72	4.359	-	-	2.543:HB2 2.656:HB3
Asn11	8.643	114.72	4.666	54.84	39.74	2.856:HB2 2.856:HB3 7.729:HD22 7.026:HD21 112.01:ND2
Ala12	7.527	120.91	4.301	54.70	-	1.393:HB*
Thr13	7.744	110.22	4.579	-	-	4.800:HB 1.440:HG2* 24.61:CG2
Pro14	-	-	4.256	67.92	-	1.975:HB2 2.427:HB3 2.090:HG2 2.253:HG3 3.916:HD2 3.978:HD3
Glu15	9.059	116.69	4.164	62.04	-	1.974:HB2 2.134:HB3 2.336:HG2 2.398:HG3 38.71:CG
Lys16	7.900	120.77	4.181	-	-	1.835:HB2 2.065:HB3
Leu17	8.421	120.61	4.155	-	-	1.653:HB2 1.873:HB3 0.876:HD1* 0.893:HD2*
Ala18	8.430	121.39	4.264	-	-	1.509:HB*
Lys19	8.057	119.76	4.211	-	-	1.964:HB2 2.018:HB3
φF20	8.000	117.58	4.579	61.91	-	3.208:HB2 3.282:HB3 7.331:HD* 6.962:HE* 135.91:CD* 120.44:CE*
Gln21	8.121	115.82	3.710	60.71	-	2.170:HB2 2.212:HB3 2.606:HG2 2.606:HG3 7.086:HE21 7.767:HE22 35.80:CG 111.02:NE2
Ala22	7.965	122.13	4.233	-	19.95	1.552:HB*
Asp23	9.115	120.76	4.426	-	-	2.472:HB2 2.815:HB3
Leu24	9.018	123.45	3.938	-	-	1.416:HB2 1.574:HB3 0.832:HD1* 1.002:HD2*
Ala25	7.803	120.51	4.203	-	-	1.512:HB*
Lys26	7.932	118.65	4.121	-	-	1.927:HB2 1.994:HB3
φF27	8.203	118.50	4.455	-	-	3.281:HB2
Gln28	8.373	115.92	3.651	60.82	-	2.052:HB2 2.189:HB3 2.564:HG2 2.663:HG3 7.012:HE21 7.562:HE22 109.52:NE2
Lys29	7.677	120.38	4.103	-	-	1.889:HB2 2.036:HB3
Asp30	8.681	120.51	3.860	-	-	2.550:HB2 2.723:HB3
Leu31	8.681	120.51	3.860	59.76	-	1.386:HB2 1.474:HB3 0.792:HD1* 1.046:HD2*
Ala32	7.637	121.22	4.120	-	19.90	1.498:HB*
Asp33	8.218	116.38	4.436	-	42.82	2.676:HB2 2.676:HB3
φF34	7.961	119.69	4.238	-	-	3.138:HB2 3.221:HB3 7.318:HD* 7.071:HE* 135.73:CD* 120.18:CE*

$G_{\text{PP}\alpha\text{-}\phi\text{CN}}$

Residue	н	Ν	НА	CA	СВ	Other
Acetyl cap	-	-	-	26.04	-	2.141:H*
Pro1	-	-	3.648	62.40	-	1.818:HB2 1.818:HB3 1.967:HG2 2.027:HG3 3.623:HD2 3.624:HD3 53.19:CD
Pro2	-	-	4.539	64.49	-	2.018:HB2 2.389:HB3 1.757:HG2 1.757:HG3 3.241:HD2 3.278:HD3
Thr3	8.673	115.05	4.312	63.42	72.02	3.989:HB 1.181:HG2*
Lys4	8.812	126.95	3.001	56.29	-	1.272:HB2 1.544:HB3
Pro5	-	-	4.503	64.41	-	2.001:HB2 2.392:HB3 3.105:HD2 3.408:HD3
Thr6	8.588	116.47	4.113	64.22	71.92	3.983:HB 1.208:HG2* 23.64:CG2
Lys7	8.757	126.14	3.430	56.97	-	1.559:HB2 1.633:HB3
Pro8	-	-	4.373	64.75	-	1.815:HB2 2.167:HB3 1.389:HG2 1.705:HG3 2.928:HD2 3.427:HD3
Gly9	8.389	106.88	3.914, 3.994	46.24	-	
Asp10	8.515	117.84	4.366	-	-	2.560:HB2 2.655:HB3
Asn11	8.651	115.06	4.671	54.66	-	2.852:HB2 2.853:HB3 112.03:Nd 2 7.026:HD21 7.728:HD22
Ala12	7.531	120.98	4.306	54.48	-	1.394:HB*
Thr13	7.741	110.33	4.580	61.72	70.40	4.796:HB 1.445:HG2*
Pro14	-	-	4.260	67.54	-	1.976:HB2 2.428:HB3 2.090:HG2 2.252:HG3 3.917:HD2 3.982:HD3 52.29:CD
Glu15	9.055	116.78	4.166	61.69	-	1.978:HB2 2.137:HB3 2.344:HG2 2.397:HG3 38.50:CG
Lys16	7.905	120.84	4.178	-	-	1.844:HB2 2.068:HB3
Leu17	8.442	120.69	4.133	-	-	1.652:HB2 1.892:HB3 0.868:HD1* 0.895:HD2*
Ala18	8.436	121.57	4.263	-	-	1.521:HB*
Lys19	8.093	119.77	4.221	-	-	1.975:HB2 2.023:HB3
φ CN 20	8.091	117.11	4.633	62.57	-	3.315:HB2
Gln21	8.159	116.30	3.753	60.62	-	2.193:HB2 2.239:HB3 2.606:HG2 2.606:HG3 7.094:HE21 7.789:HE22 111.11:NE2
Ala22	7.993	122.38	4.233	-	-	1.561:HB*
Asp23	9.092	120.46	4.439	-	-	2.478:HB2 2.769:HB3
Leu24	8.847	123.30	3.927	59.73	-	1.424:HB2 1.609:HB3 0.868:HD1* 0.933:HD2*
Ala25	7.856	120.87	4.212	-	-	1.521:HB*
Lys26	7.973	118.67	4.129	-	-	1.934:HB2 1.990:HB3
φCN27	8.209	117.94	4.541	61.88	-	3.380:HB2
Gln28	8.403	116.43	3.683	60.45	-	2.066:HB2 2.205:HB3 2.550:HG2 2.646:HG3 7.012:HE21 7.596:HE22 35.77:CG 109.59:NE2
Lys29	7.728	120.62	4.102	-	-	1.897:HB2 2.035:HB3
Asp30	8.846	119.17	4.330	-	-	2.527:HB2 2.698:HB3
Leu31	8.473	120.14	3.852	59.41	-	1.388:HB2 1.494:HB3 0.805:HD1* 1.010:HD2*
Ala32	7.651	121.27	4.117	-	-	1.498:HB*
Asp33	8.247	116.40	4.437	-	42.60	2.674:HB2 2.675:HB3
φCN34	8.023	119.10	4.350	60.54		3.245:HB2 3.314:HB3 7.505:HD* 7.740:HE* 134.73:CD* 137.40:CE*

Supplementary Table 1: NMR structure calculation and validation statistics, and chemical shift assignments. A: NMR structure calculation and validation statistics for PP α -Tyr, PP α - ϕ OCH₃ and PP α - ϕ CH₃. B-G: NMR chemical shift assignments for B: PP α -Tyr, C: PP α - ϕ OCH₃, D: PP α - ϕ CH₃, E: PP α - ϕ Phe, F: PP α - ϕ F and G: PP α - ϕ CN. * = equivalent nuclei. CM = methyl C.

$A_{PP\alpha\text{-}Tyr}$

45 CH– π interactions (2.25 \pm 0.91 per ensemble structu

Model	CH donor	CH acceptor
1	Prol CA-HA	Tyr34
	Pro5 CG-HG2	Tyr20
2	Prol CA-HA	Tvr34
	Pro2 CG-HG2	Tyr27
	Lys4 CG-HG2	Tyr27
3	Lvs4 CA-HA	Tvr27
	Lvs4 CG-HG2	Tvr27
	Leu24 CB-HB2	Tvr20
	Leu31 CB-HB2	Tvr27
4	Prol CA-HA	Tvr34
	Pro5 CB-HB2	Tvr20
	Pro5 CG-HG2	Tvr20
5	Prol CA-HA	Tyr34
Ŭ	Pro8 CA-HA	Tyr20
6	Prol CA-HA	Tur34
7		Tyr27
1		$1 \text{ y} \perp 27$ Twp 27
	Lys4 CA-IIA	$1 y \perp 2 /$ Tyr 20
Q		Tyr27
0	Lys4 CA-HA	
9	Proz CG-HGZ	Tyrz7
10	Lys4 CA-HA	
10	Prol CA-HA	Tyr34
	Proz CG-HGZ	Tyr27
	Leuz4 CB-HBZ	Tyr20
11	Pro2 CG-HG2	Tyr27
40	Lys4 CA-HA	Tyr27
12	Prol CA-HA	Tyr34
	Pro5 CG-HG2	Tyr20
13	Lys4 CA-HA	Tyr27
14	Prol CA-HA	Tyr34
	Lys4 CA-HA	Tyr27
	Gly9 CA-HA2	Tyr20
	Leu31 CB-HB2	Tyr27
15	Prol CA-HA	Tyr34
	Lys4 CA-HA	Tyr27
	Lys4 CG-HG2	Tyr27
16	Prol CA-HA	Tyr34
	Lys4 CA-HA	Tyr27
17	Prol CA-HA	Tyr34
	Lys4 CA-HA	Tyr27
18	Pro2 CB-HB2	Tyr27
19	Prol CA-HA	Tyr34
	Lys4 CG-HG2	Tyr27
20	Prol CA-HA	Tyr34
	Lys4 CG-HG2	Tyr27

Pro donor total = 24 i.e. 1.2 CH $-\pi$ interactions per structure. Leu donor total = 4 i.e. 0.2 CH $-\pi$ interactions per structure. Lys donor total = 15 i.e. 0.75 CH $-\pi$ interactions per structure. Gly donor total = 2 i.e. 0.1 CH $-\pi$ interactions per structure.

$B_{PP\alpha-\phi OCH_3}$

54 CH– π interactions (2.7 \pm 0.86 per ensemble structure)

Model	CH donor	CH acceptor
1	Pro1 CA-HA	4-OCH ₃ -Phe34
	Lys4 CA-HA	4-OCH ₃ -Phe27
	Leu24 CD2-HD23	4-OCH ₃ -Phe20
	Leu31 CB-HB2	$4-OCH_3-Phe27$
2	Lys4 CA-HA	4-OCH ₃ -Phe27
	Leu24 CD1-HD12	4-OCH ₃ -Phe20
3	Prol CA-HA	4-OCH ₃ -Phe34
	Leu24 CG-HG	$4-OCH_3-Phe20$
	Leu24 CD1-HD11	4-OCH ₃ -Phe20
4	Prol CA-HA	$4-OCH_3-Phe34$
	Lys4 CA-HA	$4-OCH_3-Phe27$
	Leu31 CB-HB2	4-OCH ₃ -Phe27
	Leu31 CG-HG	4-OCH ₃ -Phe27
5	Prol CA-HA	4-OCH ₃ -Phe34
	Lys4 CA-HA	$4 - OCH_3 - Phe 27$
	Leu24 CDI-HDI3	$4-OCH_3-Phe20$
6	Prol CA-HA	$4 - OCH_3 - Phe 34$
	Leuz4 CDI-HDIZ	$4 - OCH_3 - Phe 20$
(Prol CA-HA	$4-OCH_3-Phe34$
	Lys4 CA-HA	$4 - OCH_3 - Pne27$
0	Leusi CDZ-HDZZ	$4 - OCH_3 - PHeZ/$
8	Proi CA-HA	$4-0CH_3-Phe34$
	Lys4 CA-HA	$4 - 0CH_3 - PHe 27$
	Leu24 CDI-HDI2 Leu31 CD2-HD22	$4 - 0CH_3 - PHe 20$
0		4-0CH2-Pho34
9	LVSA CD-HD	$4 - 0CH_3 - Phe 27$
	Leu31 CB2-HB2	$4 - OCH_3 - Phe 27$
10	Prol CA-HA	$4-OCH_2-Phe34$
10	Lvs4 CA-HA	$4 - OCH_3 - Phe 27$
	Leu24 CD2-HD21	$4-OCH_3-Phe20$
11	Lys4 CA-HA	4-OCH ₃ -Phe27
12	Lys4 CA-HA	4-OCH ₃ -Phe27
	Leu31 CB-HB2	$4-OCH_3-Phe27$
13	Lys4 CA-HA	4-OCH ₃ -Phe27
	Leu31 CB-HB2	4-OCH ₃ -Phe27
	Leu31 CG-HG	4-OCH ₃ -Phe27
14	Leu24 CD1-HD11	4-OCH ₃ -Phe20
15	Lys4 CA-HA	4-OCH ₃ -Phe27
	Leu24 CD1-HD11	4-OCH ₃ -Phe20
	Leu31 CB-HB2	4-OCH ₃ -Phe27
16	Pro1 CA-HA	4-OCH ₃ -Phe34
	Lys4 CA-HA	$4-OCH_3-Phe27$
	Leu24 CD2-HD22	4-OCH ₃ -Phe20
17	Prol CA-HA	$4-OCH_3-Phe34$
	Leu24 CD2-HD23	4-OCH ₃ -Phe20
18	Prol CA-HA	$4-OCH_3-Phe34$
	Lys4 CA-HA	$4-OCH_3-Phe27$
40	Leu31 CB-HB2	4-OCH ₃ -Phe27
19	Prol CA-HA	$4-OCH_3-Phe34$
	Lys4 CA-HA	4-0CH ₃ -Phe27
20	Lys4 CA-HA	4-OCH ₃ -Phe27

Leu31 CB-HB2	4-OCH ₃ -Phe27
Leu31 CG-HG	$4-OCH_3-Phe27$

Pro donor total = 13 i.e. $0.65 \text{ CH}-\pi$ interactions per structure. Leu donor total = 25 i.e. $1.25 \text{ CH}-\pi$ interactions per structure. Lys donor total = 16 i.e. $0.8 \text{ CH}-\pi$ interactions per structure.

$c_{\text{PP}\alpha\text{-}\phi\text{CH}_3}$

50 CH– π interactions (2.5 \pm 0.76 per ensemble structure)

Model	CH donor	CH acceptor
1	Prol CA-HA	4-CH ₃ -Phe34
	Leu24 CD2-HD21	4-CH ₃ -Phe20
2	Lys4 CA-HA	4-CH ₃ -Phe27
	Leu24 CD2-HD21	4-CH ₃ -Phe20
3	Prol CA-HA	4-CH ₃ -Phe34
	Lys4 CA-HA	4-CH ₃ -Phe27
	Leu24 CD2-HD22	4-CH ₃ -Phe20
4	Lys4 CA-HA	4-CH ₃ -Phe27
	Leu24 CD2-HD22	4-CH ₃ -Phe20
5	Prol CA-HA	4-CH ₃ -Phe34
	Lys4 CA-HA	4-CH ₃ -Phe27
	Leu24 CD2-HD23	4-CH ₃ -Phe20
	Leu31 CB2-HB2	4-CH ₃ -Phe27
6	Leu24 CD2-HD22	4-CH ₃ -Phe20
7	Lys4 CA-HA	4-CH ₃ -Phe27
	Leu24 CD2-HD23	4-CH ₃ -Phe20
8	Pro2 CD-HD2	4-CH ₃ -Phe34
	Lys4 CA-HA	$4-CH_3-Phe27$
	Leu24 CD2-HD23	4-CH ₃ -Phe20
9	Pro2 CD-HD2	4-CH ₃ -Phe34
	Lys4 CA-HA	4-CH ₃ -Phe27
	Leu24 CD2-HD21	4-CH ₃ -Phe20
10	Lys4 CA-HA	4-CH ₃ -Phe27
	Leu24 CD2-HD21	4-CH ₃ -Phe20
11	Lys4 CA-HA	4-CH ₃ -Phe27
	Leu24 CG-HG	4-CH ₃ -Phe20
12	Lys4 CA-HA	4-CH ₃ -Phe27
	Leu24 CD2-HD23	4-CH ₃ -Phe20
13	Pro2 CD-HD2	4-CH ₃ -Phe34
	Lys4 CA-HA	4-CH ₃ -Phe27
	Leu24 CD2-HD22	$4-CH_3-Phe20$
14	Lys4 CA-HA	4-CH ₃ -Phe27
	Leu24 CD2-HD22	$4-CH_3-Phe20$
15	Pro2 CD-HD2	4-CH ₃ -Phe34
	Leu24 CD2-HD23	$4-CH_3-Phe20$
16	Prol CA-HA	4-CH ₃ -Phe34
	Pro2 CD-HD2	4-CH ₃ -Phe34
	Lys4 CA-HA	4-CH ₃ -Phe27
	Leu24 CG-HG	4-CH ₃ -Phe20
17	Lys4 CA-HA	4-CH ₃ -Phe27
	Leu24 CD2-HD22	4-CH ₃ -Phe20
18	Lys4 CA-HA	4-CH ₃ -Phe27

	Leu24 CD2-HD22	4-CH ₃ -Phe20
	Leu32 CD2-HD23	$4-CH_3-Phe27$
19	Pro2 CD-HD2	4-CH ₃ -Phe34
	Lys4 CA-HA	4-CH ₃ -Phe27
	Leu24 CD2-HD23	4-CH ₃ -Phe20
20	Prol CA-HA	4-CH ₃ -Phe34
	Lys4 CA-HA	4-CH ₃ -Phe27
	Leu24 CD2-HD21	4-CH ₃ -Phe20

Pro donor total = 11 i.e. $0.55 \text{ CH}-\pi$ interactions per structure. Leu donor total = 22 i.e. 1.1 CH $-\pi$ interactions per structure. Lys donor total = 17 i.e. $0.85 \text{ CH}-\pi$ interactions per structure.

Supplementary Table 2: CH– π interactions detected in the NMR structural ensembles of. A: PP α -Tyr, B: PP α - ϕ OCH₃ and C: PP α - ϕ CH₃. Potential CH– π interactions were assigned using an operational description adapted from previous studies.^{1,2}

Δ	Total	No. CH–π	Average	R	Cor	tacts v	with C	Η-π TVD	C	Prop	ortion	with C	H–π TVP	П	Propo	ortion x	Prope	ensity
	Iotal	as donor	CH–π		нıз	PHE	IRP	IIR		HIS	PHE	IRP	IIK		HIS	PHE	IRP	IIK
ALA	664	39	0.06	ALA	3	12	9	11	ALA	0.16	0.14	0.24	0.14	ALA	0.13	0.14	0.25	0.15
ARG	310	40	0.13	ARG	3	10	10	7	ARG	0.14	0.20	0.26	0.13	ARG	0.17	0.15	0.36	0.12
ASN	346	11	0.03	ASN	0	4	1	6	ASN	0.00	0.18	0.08	0.16	ASN	0.00	0.09	0.05	0.15
ASP	432	5	0.01	ASP	1	4	0	0	ASP	0.03	0.11	0.00	0.00	ASP	0.06	0.07	0.00	0.00
CYS	162	21	0.13	CYS	1	6	5	5	CYS	0.20	0.17	0.71	0.24	CYS	0.13	0.21	0.41	0.20
GLN	299	22	0.07	GLN	0	5	8	6	GLN	0.00	0.19	0.35	0.17	GLN	0.00	0.10	0.40	0.15
GLU	355	11	0.03	GLU	3	2	4	0	GLU	0.11	0.05	0.21	0.00	GLU	0.20	0.04	0.18	0.00
GLY	682	27	0.04	GLY	2	8	11	6	GLY	0.17	0.14	0.38	0.10	GLY	0.13	0.15	0.48	0.13
HIS	140	13	0.09	HIS	1	4	4	2	HIS	0.04	0.17	0.36	0.07	HIS	0.13	0.14	0.33	0.08
ILE	371	61	0.16	ILE	3	20	10	18	ILE	0.14	0.14	0.22	0.18	ILE	0.09	0.16	0.19	0.16
LEU	575	105	0.18	LEU	10	35	13	25	LEU	0.33	0.16	0.19	0.16	LEU	0.19	0.18	0.16	0.15
LYS	378	60	0.16	LYS	3	15	11	13	LYS	0.20	0.38	0.42	0.29	LYS	0.20	0.27	0.48	0.28
MET	123	28	0.23	MET	2	12	5	5	MET	0.22	0.22	0.20	0.13	MET	0.20	0.33	0.32	0.16
PHE	283	71	0.25	PHE	7	28	9	16	PHE	0.30	0.19	0.18	0.16	PHE	0.25	0.27	0.21	0.18
PRO	356	58	0.16	PRO	5	13	10	19	PRO	0.26	0.27	0.30	0.31	PRO	0.34	0.25	0.45	0.42
SER	541	17	0.03	SER	1	4	6	3	SER	0.04	0.07	0.29	0.06	SER	0.06	0.06	0.22	0.05
THR	547	20	0.04	THR	3	9	3	3	THR	0.09	0.11	0.09	0.05	THR	0.12	0.10	0.08	0.04
TRP	102	29	0.28	TRP	3	9	5	8	TRP	0.27	0.18	0.25	0.19	TRP	0.25	0.21	0.27	0.21
TYR	254	36	0.14	TYR	3	14	4	11	TYR	0.11	0.14	0.10	0.13	TYR	0.12	0.16	0.11	0.14
VAL	500	67	0.10	VAL	2	17	14	17	VAL	0.09	0.11	0.22	0.15	VAL	0.05	0.12	0.23	0.14

Supplementary Table 3: Distribution of CH– π interactions in our sub-1 Å dataset from the PDB. A: Composition of dataset showing numbers of CH– π donors, and average numbers of CH– π interactions per donor residue. B: Numbers of close-contact side-chain – side-chain interactions that involve at least one CH– π interaction (CH donor residues, vertical and aromatic π -acceptor residues, horizontal). C: Proportion of close contact side-chain – side-chain interactions that involve CH– π interactions. D: Proportion of CH– π interactions in C normalized for propensity (*i.e.*, multiplied by propensity) of the residues to be in close contact.

Peptide	T _M (°C)	T _M (°C)	ΔH_{unf}	ΔS_{unf}	ΔG_{unf}	ΔC_p
	from first derivative	from curve fitting	(kJ mol⁻¹)	(kJ K ⁻¹ mol ⁻¹)	(kJ mol ⁻¹)	(kJ K ⁻¹ mol ⁻¹)
$PP\alpha ext{-}Tyr$	40	36.82	103.4	0.3457	6.136	-0.4598
	39	36.90	103.9	0.3476	6.184	-0.4612
	39	36.92	104.4	0.3484	6.325	-0.3856
	39	35.82	103.0	0.3466	5.509	-0.6224
	39.25	36.62	103.7	0.3471	6.039	-0.4822
	(0.5)	(0.5)	(0.59)	(0.0011)	(0.3617)	(0.0999)
ΡΡα-φΟCΗ₃	38	33.65	100.9	0.3415	4.938	-0.6221
	37	34.26	104.8	0.3516	5.066	-0.6882
	38	33.49	102.1	0.3458	4.878	-0.5832
	37.67 (0.58)	33.80 (0.4060)	102.6 (1.969)	0.3463 (0.0051)	4.960 (0.0962)	-0.6312 (0.0531)
ΡΡα-φCΗ3	31	28.57	106.9	0.3622	4.474	-1.010
'	31	28.90	105.7	0.3599	4.772	-0.6337
	32	28.81	105.9	0.3602	4.680	-0.6631
	31.33	28.76	106.2	0.3608	4.642	-0.7688
	(0.58)	(0.1709)	(0.6509)	(0.0013)	(0.1525)	(0.2091)
$PP\alpha$ -Phe	20	17.20	107.5	0.3765	2.383	-0.9764
	20	17.73	108.4	0.3781	2.621	-0.8855
	20	17.63	106.6	0.3732	2.514	-0.9329
	20	17.56	107.5	0.3757	2.439	-1.037
	20	17.53	107.5	0.3759	2.489	-0.9580
	(0.0)	(0.2298)	(0.7034)	(0.0021)	(0.1029)	(0.0645)
ΡΡα-Ε	26	23.85	105.6	0.3638	3.763	-0.6980
	26	23.73	106.1	0.3652	3.935	-0.6536
	26	23.89	106.9	0.3678	3.921	-0.7440
	26 (0.0)	23.82	106.2	0.3656	3.873 (0.0952)	-0.6986 (0.0452)
	22	21.26	100.0	0.3746	2 271	0.8708
TT a-ON	22	21.00	103.0	0.3697	3 200	-0.0700
	22	21.00	107.1	0.3697	3.200	-0.7352
	22 33	21.47	107.5	0.3708	3 257	-0.7101
	(0.58)	(0.2076)	(1.311)	(0.0034)	(0.0996)	(0.0848)
ΡΡα-ΝΟ2	17	17.12	114.1	0.3922	2.632	-0.8275
	18	17.34	114.9	0.3944	2.709	-0.7264
	17	17.17	113.9	0.3912	2.651	-0.8894
	17.33	17.21	114.3	0.3926	2.664	-0.8144
	(0.58)	(0.1169)	(0.5401)	(0.0016)	(0.0402)	(0.0823)

Supplementary Table 4: Van't Hoff analyses of PP α miniproteins. Thermodynamic parameters of unfolding were obtained by curve fitting of the thermal denaturation profiles (see Materials and Methods). Averages are given in bold typeface and standard deviations in parenthesis. The values for ΔH_{unf} , ΔS_{unf} , ΔG_{unf} are stated for 5°C where all of the peptides are close to fully folded.

Domain	PDB ID	Expt.	Resolution (Å)	Domain Chain	Length (residues)	Bound Chain	Length (residues)	No. of CH–π	Length of longest contiguous polyproline II helix (residues)
SH3	1CKA	XRAY	1.50	А	57	В	10	4	5
EVH1	1DDV	XRAY	1.90	Α	111	В	6	5	3
WW	1EG4	XRAY	2.00	Α	261	Р	15	4	5
EVH1	1EVH	XRAY	1.80	Α	112	В	7	3	3
SH3	1GBQ	NMR	NA	Α	74	В	12	1	3
WW	1K9Q	NMR	NA	Α	40	В	6	1	3
SH3	10V3	XRAY	1.80	Α	138	С	18	7	4
WW	1PIN	XRAY	1.35	Α	163	В	155	0	3
SH3	1SEM	XRAY	2.00	Α	58	С	10	1	3
SH3	1SSH	XRAY	1.40	Α	60	В	12	4	8
SH3	1UTI	XRAY	1.50	Α	58	D	16	3	6
SH3	1W70	XRAY	1.46	В	60	D	14	2	6
WW	1YWI	NMR	NA	A	41	В	10	6	4
SH3	1YWO	XRAY	1.81	A	64	Р	10	3	8
SH3	1ZUK	XRAY	1.90	A	68	С	11	3	8
SH3	2DRM	XRAY	1.35	A	58	E	18	2	4
SH3	2J06	XRAY	1.80	A	65	В	60	0	3
Profilin	2JKG	XRAY	1.89	A	179	Р	8	7	6
SH3	2K79	NMR	NA	A	63	В	110	0	3
SH3	2KNB	NMR	NA	В	71	А	81	3	3
ww	2KQ0	NMR	NA	A	49	В	12	1	3
SH3	2LZ6	NMR	NA	В	64	A	76	0	3
ww	2MPT	NMR	NA	A	48	В	14	2	6
Profilin	2PBD	XRAY	1.50	Р	139	V	10	8	8
SH3	2ROL	NMR	NA	A	64	В	12	0	3
SH3	2V1R	XRAY	2.10	В	80	Р	15	0	4
Profilin	2V8F	XRAY	1.10	A	140	С	21	9	7
SH3	2VKN	XRAY	2.05	A	70	С	12	2	6
SH3		XRAY	1.58	A	58	В	15	5	4
SH3	31HK		1.70	В	73		10	2	3
SH3	3UA7	XRAY	1.50	A	64	E	12	2	6
SH3	4007	XRAY	1.97	IVI	67	N	12	1	5
	4E5R		1.90	A	56	В	56	1	4
5113	41100		0.98	A	10 60	В	13	ა ი	5
SHJ	4190		1.05	A	63 60	В	11	9	6 7
5113			1.00	A	00 47	в	14	4	1
СП3 ЛАЛА			2.03		47 180		14	4	3
งกง	40300		00.1	D	100	А	149 Total	ى 100	3
							Total	129	177
							structure	3.39	4.66

2.64

Stdev

1.72

Β

	Total within 4 Å of bound polypeptide	No. CH–π as donor	Average $CH-\pi$
ALA	25	4	0.16
ARG	35	8	0.23
ASN	6	0	0.00
ASP	5	0	0.00
CYS	1	0	0.00
GLN	10	0	0.00
GLU	12	0	0.00
GLY	17	0	0.00
HIS	7	0	0.00
ILE	13	3	0.23
LEU	32	13	0.41
LYS	20	8	0.40
MET	4	1	0.25
PHE	9	1	0.11
PRO	149	82	0.55
SER	12	0	0.00
THR	11	0	0.00
TRP	6	0	0.00
TYR	12	0	0.00
VAL	21	1	0.10

С

	Donor				Acceptor	
Component	Residue	С	Н	Component	Residue	π –System
1CKA						
PRO	2	CA	HA	PHE	141	PHE
PRO	3	CD	HD3	PHE	141	PHE
LYS	8	CG	HG2	TRP	169	TRPA
LYS	8	CE	HE3	TRP	169	TRPB
1EG4						
PRO	9	СВ	HB3	TRP	83	TRPA
PRO	9	СВ	HB3	TRP	83	TRPB
PRO	9	CA	HA	TRP	83	TRPB
PRO	10	CD	HD2	TYR	72	TYR
1GBQ						
PRO	2	CA	HA	TYR	7	TYR
1UTI						
PRO	7	CG	HG2	TRP	36	TRPA
LYS	12	CG	HG2	TRP	36	TRPA
LYS	12	CD	HD3	TRP	36	TRPB
1W70						
PRO	363	CD	HD3	PHE	179	PHE
PRO	369	CD	HD3	TRP	207	TRPA
1YWI						
PRO	6	СВ	HB3	TYR	30	TYR
LEU	8	CD1	HD12	TYR	28	TYR
LEU	8	CA	HA	TYR	28	TYR
LEU	8	CD1	HD13	TRP	39	TRPB
PRO	9	CG	HG2	TRP	39	TRPA
PRO	9	CD	HD2	TRP	39	TRPB
1YWO						
PRO	2	CA	HA	PHE	11	PHE
PRO	3	CD	HD3	PHE	11	PHE

ARG	8	CD	HD2	TRP	39	TRPB
2K79 2MPT						
IFU	926	CB	HB3	TRP	505	TRPA
LEU	928	CD2	HD22	TRP	505	TRPA
2LZ6						
2VKN						
LEU	5	CD2	HD23	TRP	40	TRPA
PRO	9	CD	HD2	TYR	11	TYR
4ROF						
PRO	331	CD	HD3	TRP	466	TRPA
PRO	331	СВ	HB3	TRP	466	TRPB
PRO	331	CA	HA	TRP	466	TRPB
PRO	332	CD	HD2	TYR	455	TYR
4CC7						
PRO	2	CA	HA	TYR	1522	TYR
PRO	3	CD	HD2	TYR	1570	TYR
PRO	3	CD	HD3	TYR	1522	TYR
PRO	6	CG	HG2	TRP	1554	TRPA
PRO	6	CG	HG2	TRP	1554	TRPB
PRO	10	CB	HB3		1554	TRPA
PRU	10	CD	HD3	IRP	1554	IRPB
	76	CD	ЦПЭ	TVD	126	TVD
PRO	70				130	
ARG	81			TPD	118	TPDA
2V1R	01	CD	TID5		110	
2PBD						
PRO	203	СВ	HB3	TRP	31	TRPA
PRO	204	CD	HD2	TRP	31	TRPB
ALA	206	CB	HB2	TRP	3	TRPA
ALA	206	СВ	HB2	TRP	3	TRPB
PRO	207	CD	HD3	TYR	139	TYR
LEU	209	CD2	HD23	TYR	6	TYR
PRO	210	CG	HG3	HIS	133	HIS
PRO	210	CD	HD3	HIS	133	HIS
1ZUK						
PRO	5	CA	HA	PHE	14	PHE
PRO	6	CD	HD2	PHE	63	PHE
ARG	11	CD	HD2	TYR	20	TYR
2JKG						
PRO	1	СВ	HB3	TYR	35	TYR
PRO	4	CB	HB3	TRP	7	TRPA
PRO	4	CA	HA	TRP	7	TRPB
PRO	5	CD	HD2	TYR	10	TYR
PRO	5	CG	HG2	TYR	10	TPPP
PRO	5		HD3		/ E	
	/	CG	пGэ	ITK	5	ITK
	74	C A	ЦЛ	TVP	10	TVD
PRO	74			TVP	12	TVP
2K00	75	CD	11D2		12	
PRO	115	CG	HG2	PHF	28	PHF
1K9Q	115	03	102		20	1116
PRO	5	CG	HG3	TYR	28	TYR
2J06	Ŭ				_0	
10V3						
PRO	151	CA	HA	TRP	204	TRPA
PRO	151	СВ	HB3	TRP	204	TRPB
PRO	151	CA	HA	TRP	204	TRPB
PRO	152	CD	HD3	TRP	204	TRPA

ARG ARG	158 158	CD CD	HD2 HD2	TRP TRP	263 263	TRPA TRPB
PRO	160	CG	HG3	PHE	209	PHE
1EVH						
PRO	1002	CG	HG3	TYR	16	TYR
PRO	1002	CB	HB2	TYR	16	TYR
PRO	1005	CD	HD3	PHE	77	PHE
4LN2						
PRO	860	CD	HD2	TYR	922	TYR
PRO	860	CD	HD3	PHE	876	PHE
I FU	865	CD2	HD23	TRP	904	TRPB
PRO	866	CD	HD3	TRP	904	TRPA
	000	00	TID5	TTXI	504	
1000						
	F	00		TVD	10	TVD
PRO	5		HD3	TIR	10	TTR
MEI	1	CE	HE2	IYR	56	IYR
ARG	10	CA	HA	TRP	40	TRPA
ARG	10	CG	HG2	TRP	40	TRPB
4J9C						
ALA	1	CA	HA	TRP	110	TRPA
ALA	1	CB	HB3	TRP	110	TRPB
PRO	2	CD	HD2	TRP	99	TRPA
PRO	2	CD	HD2	TRP	99	TRPB
PRO	2	00	HG2	TRP	99	TRPR
DRO	6				00	
PRO	0				99	
PRO	6	CB	HB3	TRP	99	IRPB
PRO	10	CD	HD2	IYR	70	IYR
PRO	10	CG	HG2	TYR	70	TYR
2ROL						
2V8F						
ILE	1	CG2	HG21	TRP	31	TRPA
ILE	1	СВ	HB	TRP	31	TRPB
PRO	2	CD	HD2	TRP	31	TRPB
PRO	4	CD	HD3	TRP	3	TRPA
PRO	4	CB	HB3	TRP	3	TRPB
PRO	5		нрз	DHE	130	DHE
	5	00			155	
LEU	7	00			0	
LEU	7	CD2	HD21	IYR	6	IYR
LEU	7	CD1	HD11	IYR	6	IYR
4E5R						
VAL	329	CB	HB	TYR	335	TYR
2KNB						
ILE	44	CG2	HG21	TYR	299	TYR
PRO	73	CG	HG2	TRP	327	TRPB
ARG	75	CD	HD2	PHE	338	PHE
1SEM						
PRO	2	CA	НА	PHF	163	PHF
4H\/W	-	•				
	3	CB	<u>цв</u> 2	TVD	121	TVP
	11	00			131	
LEU	11				130	
PRO	12	CD	HD2	ITR	90	ITR
3UA7						
PRO	6	CB	HB3	TYR	91	TYR
PRO	7	CD	HD2	TYR	91	TYR
2DRM						
LYS	3	CA	HA	TYR	11	TYR
PRO	4	CD	HD2	TYR	11	TYR
2VWF						
PRO	3	CA	HA	PHF	7	PHF
PRO	4	CD	HD2	TYR	51	TYR
176	11	CA	ΗΔ	TPP	25	TPDA
LIU	11	04	11/4	TIM.	55	IN A

LYS	11	CG	HG2	TRP	35	TRPA
LYS	11	ĊĠ	HG2	IRP	35	IRPB
1DDV						
PRO	1002	СВ	HB3	PHE	74	PHE
PRO	1003	CD	HD3	TRP	24	TRPA
PRO	1003	CG	HG2	PHE	14	PHE
PRO	1003	CD	HD2	PHE	74	PHE
PHE	1006	CZ	HZ	HIS	12	HIS

Supplementary Table 5: Structural data and CH– π interactions in binding of SH3, WW, Profilin and EVH1 domains from the PDB. A: Identities of binding domain and bound polypeptide in the dataset. B: Total number of CH– π interactions, and average number of CH– π interactions per residue within 4 Å of the bound polypeptide chain. C: Identities of CH– π donors and acceptors between domain and bound polypeptide.

- 1 Brandl, M., Weiss, M.S., Jabs, A., Sühnel, J. & Hilgenfeld, R. C-H \cdots π -Interactions in Proteins. *J. Mol. Biol.* **307**, 357-377 (2001).
- 2 Hudson, K.L. *et al.* Carbohydrate-Aromatic Interactions in Proteins. *J. Am. Chem. Soc.* **137**, 15152-15160 (2015).