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Methods: 

Backbone conformational sampling 

Conformations of 7- to 14-residue polyglycine backbones were sampled using the previously-
described Rosetta simple_cycpep_prediction application(15), with key modifications.  Unlike 
the Rosetta ab initio method used for protein structure prediction(25), simple_cycpep_predict 
does not make use of fragments of proteins of known structure, since such fragments poorly 
cover the conformational space accessible to chains of mixtures of L- and D-amino acids. 
Instead, it uses an efficient kinematic closure-based algorithm(17, 26) that samples only closed 
conformations to limit the search space.  Briefly, the sampling process consisted of the following 
steps: first, a linear chain of glycine residues was constructed, one residue of which was 
selected randomly to be the “anchor” residue for subsequent loop closure steps.  The N- and C-
terminal residues were excluded from being the anchor residue.  This residue’s mainchain φ 
and ᴪ dihedral values were drawn randomly from a flat, symmetric Ramachandran distribution 
based on the glycine Ramachandran map (fig. S1A-B).  Second, a bond was declared between 
the nitrogen of the N-terminal residue and the carbonyl carbon of the  C-terminal residue, and 
the Rosetta generalized kinematic closure (GenKIC) module was invoked to close the loop 
consisting of all residues but the anchor residue.  During this process, the φ and ᴪ dihedral 
values of all but three residues in the loop were randomized, biased by the same flat, symmetric 
distribution used to randomize the anchor residue, and the φ and ᴪ dihedral values for the 
remaining three residues were determined algebraically to ensure loop closure with ideal 
peptide bond geometry at the cutpoint (the bond between the first and last residues).  In 
preliminary design calculations, we found that unique low-energy structures with energy gaps 
greater than ~10 kBT (~6 kcal/mol) could only be obtained for macrocycles containing at least 
N/3 backbone hydrogen bonds; therefore, in subsequent sampling calculations, of the many 
closure solutions found, those with mainchain hydrogen bond counts below the threshold value 
were discarded.  Third, the cyclic backbone was relaxed with the Rosetta FastRelax 
protocol(27) using the all-atom Rosetta energy function “ref2015”(28,29), with the rama_prepro 
and p_aa_pp mainchain potentials made symmetric, as described previously(15).  Up to 108 
samples were attempted, not all of which yielded closed solutions with the desired minimum 
number of hydrogen bonds. 

Sampling was carried out on the “Mira” Blue Gene/Q supercomputer (Argonne labs) or Amazon 
Web Service (AWS) .  For efficiency, a new multi-level hierarchical job distribution and data 
reduction scheme was implemented for use on massively parallel architecture.  In performance 
benchmarks, this yielded linear performance scaling up to at least 250,000 CPUs.  A sample 
command line for backbone enumeration is shown below.  Note that this and all other Rosetta 
command lines provided here were tested with Rosetta Git SHA 
f44f45d89d204553bd7074af9b580e3c9c214c12 (Friday, 23 October 2017). 

Listing S1: Sample command line for sampling polyglycine backbones with the 
simple_cycpep_predict Rosetta application 

 

https://paperpile.com/c/hrIaP1/rXcu5
https://paperpile.com/c/hrIaP1/rXcu5
https://paperpile.com/c/hrIaP1/rXcu5
https://paperpile.com/c/hrIaP1/CVzqi
https://paperpile.com/c/hrIaP1/CVzqi
https://paperpile.com/c/hrIaP1/CVzqi
https://paperpile.com/c/hrIaP1/s5kWL+xBtM5
https://paperpile.com/c/hrIaP1/s5kWL+xBtM5
https://paperpile.com/c/hrIaP1/s5kWL+xBtM5
https://paperpile.com/c/hrIaP1/s5kWL+xBtM5
https://paperpile.com/c/hrIaP1/s5kWL+xBtM5
https://paperpile.com/c/hrIaP1/AzyxO+tJFKw
https://paperpile.com/c/hrIaP1/AzyxO+tJFKw
https://paperpile.com/c/hrIaP1/rXcu5
https://paperpile.com/c/hrIaP1/rXcu5
https://paperpile.com/c/hrIaP1/rXcu5
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mpirun -np <processes count> <path to binary>/simple_cycpep_predict.mpi.linuxgccrelease / 
  -database <path to database> @rosetta.flags 

 
 
In the above, <processes count> must be replaced with the number of parallel instances of 
simple_cycpep_predict to run, and <path to binary> and <path to database> must be 
replaced with the paths to the Rosetta/main/source/bin/ and Rosetta/main/database/ 
directories, respectively.  Rosetta must first be compiled for Message Passing Interface (MPI) 
execution.  The mpirun command shown may need to replaced with a parallel execution 
command specific for the hardware of the cluster on which the run is carried out.  Options for 
the run are contained in the file rosetta.flags.  The example file shown below is for a 1 hour 
run (with sampling halted after 45 minutes, with the remaining time available for data collection 
and output), using a flattened symmetric proline Ramachandran table for sampling, on 131,072 
CPUs on the Blue Gene/Q architecture, with the lowest-energy 1% of samples written to disk. 

Listing S2:  File rosetta.flags containing command-line options for sampling conformations of a 
7-residue polyglycine cyclic backbone 

 
-nstruct 10000000 
-cyclic_peptide:MPI_stop_after_time 2700 
-out:file:silent out.silent 
-MPI_batchsize_by_level 100 1 
-MPI_processes_by_level 1 361 130710 
-cyclic_peptide:MPI_output_fraction 0.01 
-cyclic_peptide:MPI_choose_highest false 
-cyclic_peptide:MPI_sort_by energy 
-cyclic_peptide:sequence_file inputs/seq.txt 
-score:symmetric_gly_tables true 
-cyclic_peptide:genkic_closure_attempts 250 
-cyclic_peptide:genkic_min_solution_count 1 
-cyclic_peptide:use_rama_filter true 
-cyclic_peptide:rama_cutoff 3.0 
-cyclic_peptide:default_rama_sampling_table flat_symm_pro_ramatable 
-cyclic_peptide:min_genkic_hbonds 2 
-cyclic_peptide:min_final_hbonds 2 
-mute all 
-unmute protocols.cyclic_peptide_predict.SimpleCycpepPredictApplication_MPI_summary 

 
 
A polyglycine input sequence was also provided.  The number of glycine residues determined 
the size of the macrocycle.  A sample input file for a 7-residue macrocycle is shown below: 

Listing S3:  Sample sequence file seq.txt specifying a 7-residue polyglycine macrocycle 
 

GLY GLY GLY GLY GLY GLY GLY 

 
 
Energy-based clustering and data reduction 
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The sampling described above yields up to millions of backbones, making the problem of 
identifying repeatedly-sampled conformations a difficult problem in data reduction.  While many 
algorithms for clustering large datasets have been developed(30–32), this particular problem 
has an interesting feature: Rosetta’s energy calculations can be used to establish a rank order 
for the degree to which elements in the dataset are “interesting”, providing a useful means of 
selecting cluster centers without performing a prohibitively expensive all-to-all RMSD 
calculation. 

We developed a simple energy-based clustering algorithm for this problem: first, the energy of 
each input structure is scored using the Rosetta all-atom energy function (ref2015), and minimal 
backbone information for every structure is stored in an unclustered pool.  Second, the lowest-
energy structure in the unclustered pool is selected as the center of the first cluster.  This 
structure is moved from the unclustered pool into the first cluster, and the backbone RMSD 
between this structure and every circular permutation of every structure remaining in the 
unclustered pool is calculated.  Those structures for which at least one circular permutation lies 
within a threshold RMSD from the current cluster center are also removed from the unclustered 
pool and added to the new cluster.  For our purposes, we typically used an RMSD threshold of 
1.25 Å.  Third, the lowest-energy structure remaining in the unclustered pool is selected as the 
center of the next cluster, and the second step is repeated.  This process continues for 
subsequent clusters until no structures remain in the unclustered pool.  Note that, unlike Voronoi 
clustering schemes, this “cookie-cutter” approach deliberately gives precedence to lower-energy 
clusters.  Although simple, we found that this approach worked well for our large datasets, 
yielding lower-energy clusters that were particularly easy to stabilize with suitable amino acid 
sequences. 

The algorithm described above is implemented in the Rosetta software suite as the 
energy_based_clustering application.  A sample command line for clustering a large dataset 
stored in the Rosetta binary structure file dataset.silent is shown below: 

Listing S4: Sample command line for clustering a large dataset of macrocycle backbones 
 

<path to binary>/energy_based_clustering.default.linuxgccrelease @clustering.flags 

 
 
In the above, <path to binary> must be replaced with a suitable path to the 
Rosetta/main/source/bin directory, and linuxgccrelease must be replaced with the 
particular operating system, compiler, and compilation mode for the version of Rosetta used.  
(For example, on a Macintosh system on which Rosetta was compiled using the clang compiler, 
the string would be macosclangrelease.)  The file clustering.flags, shown below, contains 
settings that guide the clustering process: 

Listing S5:  File clustering.flags, containing command-line flags used to control the 
clustering process 

 

https://paperpile.com/c/hrIaP1/fGXT2+RESuF+PakqV
https://paperpile.com/c/hrIaP1/fGXT2+RESuF+PakqV
https://paperpile.com/c/hrIaP1/fGXT2+RESuF+PakqV
https://paperpile.com/c/hrIaP1/fGXT2+RESuF+PakqV
https://paperpile.com/c/hrIaP1/fGXT2+RESuF+PakqV


 
 

4 
 

-in:file:silent dataset.silent 
-in:file:fullatom 
-symmetric_gly_tables true 
-cluster:energy_based_clustering:cyclic true 
-cluster:energy_based_clustering:cluster_cyclic_permutations true 
-cluster:energy_based_clustering:cluster_radius 1.25 
-cluster:energy_based_clustering:limit_structures_per_cluster 10 
-cluster:energy_based_clustering:use_CB false 

 
 
Torsion bin-based clustering 

We developed a custom PyRosetta Python script (provided in the file 
torsion_bin_clustering.py) for re-clustering the cluster centers from the previous, RMSD-
based clustering step.  Briefly, this script assigns a torsion bin string to each input structure, 
sorting all circular permutations in both chiralities of the bin string alphabetically and selecting 
the first in order to allow structures with different circular permutations to be compared easily.  A 
string representing a hydrogen bonding pattern is also assigned to each input structure, 
circularly permuted to match the circular permutation of the torsion bin string.  The structure is 
then assigned to a cluster with the same torsion bin string and hydrogen bonding pattern, or, if 
no such cluster has yet been encountered, a new cluster is created and the structure is 
assigned to that new cluster.  The process is repeated until all input structures have been 
assigned to clusters. 

A sample command line for running this script is shown below: 

Listing S6:  Command line for running the torsion bin clustering script 
 

python torsion_bin_clustering dataset.silent 

 
 
Computational sequence design 

The Rosetta FastDesign module was used for sequence design.  FastDesign performs 
alternating rounds of side-chain identity and rotamer optimization (using the Rosetta Packer 
module) and torsion-space energy minimization (using the Rosetta  Minimizer module), with 
the repulsive term of the Rosetta energy function, fa_rep, ramped from 2% of its normal value 
to 100% of its normal value from round to round. 

FastDesign seeks to minimize the energy of a designed structure.  However, there were 
additional requirements that we wished to impose during the design process.  Some such 
requirements were intended to limit the conformational flexibility of the designs produced, and to 
maximize the chances of the designed structure representing a unique low-energy 
conformation.  To this end, we wished to require a minimum L- or D-proline content, for 
example.  Other requirements were practical needs for synthesis (e.g. the need for at least one 
L-aspartate or L-glutamate in the sequence to allow resin tethering during cyclization), or for 
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characterization (e.g. the need for at least one positively-charged residue to facilitate mass 
spectrometry). 

To this end, we implemented a non-pairwise-decomposable term, called aa_composition, 
which allowed users to define a nonlinearly-ramping penalty for deviation from a desired amino 
acid composition to guide the Packer to find sequences with desired compositions.  This 
allowed us to require a minimum proline count, and at least one L-aspartate or L-glutamate and 
one positively charged residue per design.  The Packer required significant modifications to be 
compatible with non-pairwise decomposable score terms.  These will be described elsewhere. 

We also implemented two new residue selectors, called the PhiSelector and BinSelector, to 
provide additional control over the Packer.  We used these to require that the Packer consider 
only L-amino acid residues at positions with a mainchain φ value less than zero, and only D-
amino acid residues at positions with a mainchain φ value greater than zero.  These tools, and 
their RosettaScripts(33) interface, are described fully in the Rosetta online documentation wiki 
(https://www.rosettacommons.org/docs/latest/Home). 

During early design runs, we found that Rosetta’s normally pairwise-decomposable scoring 
function would erroneously favor structures in which more than two hydrogen bond donors 
made bonds to a single acceptor.  Since it is difficult to change the hydrogen bonding 
architecture to give favourable scores to a maximum of two donors binding to an oxygen 
acceptor (since such scoring would necessarily be non-pairwise-decomposable), we instead 
implemented a filter, called the OversaturatedHbondAcceptorFilter, to discard designs with 
this pathology. 

A sample RosettaScripts script used for design is shown below. 

Listing S7: Sample RosettaScripts script used for flexible-backbone sequence design. 
 

<ROSETTASCRIPTS> 
# The SCOREFXNS section defines scoring functions that will be used later in the script: 
<SCOREFXNS> 

# The current Rosetta default scorefunction: 
<ScoreFunction name="ref" weights="ref2015" /> 
# The default scorefunction with increased hydrogen bond weights, and  
# with the aa_composition, aspartimide_penalty, and constraint score  
# terms activated. 
<ScoreFunction name="ref_highhbond" weights="ref2015" > 

<Reweight scoretype="hbond_lr_bb" weight="5.0" /> 
<Reweight scoretype="hbond_sr_bb" weight="5.0" /> 
<Reweight scoretype="atom_pair_constraint" weight="1.0" /> 
<Reweight scoretype="dihedral_constraint" weight="1.0" /> 
<Reweight scoretype="angle_constraint" weight="1.0" /> 
<Reweight scoretype="aa_composition" weight="1.0" /> 
<Reweight scoretype="aspartimide_penalty" weight="1.0" /> 

</ScoreFunction> 
</SCOREFXNS> 
# The RESIDUE_SELECTORS section allows users to configure tools to select  
# residues,which are used when setting up other Rosetta modules. 
<RESIDUE_SELECTORS> 

https://paperpile.com/c/hrIaP1/u13ST
https://paperpile.com/c/hrIaP1/u13ST
https://www.rosettacommons.org/docs/latest/Home
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# Select residues with mainchain phi torsion values greater than zero.   
# These positions will be restricted to becoming D-amino acids during  
# design: 
<Phi name="posPhi" select_positive_phi="true" /> 
# Select residues with mainchain phi torsion values less than zero.   
# These positions will be restricted to becoming L-amino acids during  
# design: 
<Phi name="negPhi" select_positive_phi="false" /> 

</RESIDUE_SELECTORS> 
# The FILTERS section allows users to configure filters.  These measure  
# properties of a structure and make decisions, based on the measured  
# properties, about whether to discard the current structure. 
<FILTERS> 

# Filter to avoid score function artifact of having more than two  
# hydrogen bonds to carbonyls: 
<OversaturatedHbondAcceptorFilter name="oversat" scorefxn="ref" 
  max_allowed_oversaturated="0" consider_mainchain_only="false"/> 

</FILTERS> 
# The TASKOPERATIONS section allows users to configure task operations, which  
# are Rosetta modules that control the behavior of Rosetta's "Packer" module.   
# The Packer,in turn, is used for side-chain identity and rotamer optimization.  
# (As such, it is the primary tool used for sequence design.): 
<TASKOPERATIONS> 

# Task operation to read a resfile defining the D-amino acids, which will  
# be used for design at positions with mainchain phi torsion values  
# greater than zero: 
<ReadResfile name="d_res" filename="inputs/d_res.txt" selector="posPhi"/> 
# Task operation to read a resfile defining the L-amino acids, which will  
# be used for design at positions with mainchain phi torsion values less  
# than zero: 
<ReadResfile name="l_res" filename="inputs/l_res.txt" selector="negPhi"/> 

</TASKOPERATIONS> 
# The MOVERS section allows users to define movers, which are Rosetta modules  
# that modify a structure in some way: 
<MOVERS> 

# A mover to declare a bond connecting the termini (i.e. to cyclize the  
# peptide). In the context of Rosetta, declaring a bond tells Rosetta  
# that two atoms should 
# not have van der Waals interactions computed, but does not constrain  
#the bond geometry in any way.  Note that the variable %%Nres%%,  
# specified on the command line, is used to specify the index of the C- 
# terminal residue: 
<DeclareBond name="peptide_bond1" res1="1" atom1="N" atom2="C" res2="%%Nres%%" 

add_termini="true" /> 
# The following three movers are used to set up torsion, angle, and #  
# length constraints for the terminal peptide bond, ensuring that good  
# bond geometry is preserved during relaxation.  Again, the command-line  
# variable %%Nres%% is used to specify the index of the C-terminal  
# residue: 
<CreateTorsionConstraint name="peptide_torsion_constraint"> 

<Add res1="%%Nres%%" res2="%%Nres%%" res3="1" res4="1" atom1="CA" 
  atom2="C" atom3="N" atom4="CA" 
  cst_func="CIRCULARHARMONIC 3.141592654 0.005" /> 

</CreateTorsionConstraint> 
<CreateAngleConstraint name="peptide_angle_constraints"> 

<Add res1="%%Nres%%" atom1="CA" res_center="%%Nres%%" atom_center="C" 
  res2="1" atom2="N" cst_func="CIRCULARHARMONIC 2.02807247 0.005" /> 
<Add res1="%%Nres%%" atom1="C" res_center="1" atom_center="N" res2="1" 
  atom2="CA" cst_func="CIRCULARHARMONIC 2.12406565 0.005" /> 
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</CreateAngleConstraint> 
<CreateDistanceConstraint name="N_To_C_dist_cst"> 

<Add res1="%%Nres%%" res2="1" atom1="C" atom2="N" 
  cst_func="HARMONIC 1.32865 0.01" /> 

</CreateDistanceConstraint> 
# Composition constraints are used with the aa_composition score term in  
# order to add a nonlinearly-ramping penalty for deviation from a desired  
# amino acid composition.  In this case, we use them to require at least  
# two proline residues (L- or D-), at least one L-aspartate or L- 
# glutamate, and at least one positively-charged residue. 
<AddCompositionConstraintMover name="addcompcsts" 

filename="inputs/desired_makeup.comp" /> 
# The FastDesign mover performs alternating rounds of sequence design and 
# torsion-space energy minimization, while ramping the repulsive term in  
# the scorefunction (fa_rep).  We use it here with a modified  
# scorefunction with constraints and aa_composition energy terms  
# activated: 
<FastDesign name="fdes" scorefxn="ref_highhbond" repeats="3" 
  task_operations="d_res,l_res" ramp_down_constraints="false" > 

# A MoveMap is used to specify which degrees of freedom can move  
# and which are fixed during energy minimization.  Here, we  
# indicate that all mainchain torsions (bb) and all sidechain  
# torsions (chi) can move: 
<MoveMap name="fdes_mm" > 

<Chain number="1" chi="true" bb="true" /> 
</MoveMap> 

</FastDesign> 
 

</MOVERS> 
# The PROTOCOLS section is the section in which the user invokes the modules  
# defined above in linear sequence to define a protocol: 
<PROTOCOLS> 
<Add mover="peptide_bond1" /> 
<Add mover="peptide_torsion_constraint" /> 
<Add mover="peptide_angle_constraints" /> 
<Add mover="N_To_C_dist_cst" /> 
<Add mover="addcompcsts"/> 
<Add mover="fdes" /> 

    # A side-effect of the DeclareBond mover is the correction of positions  
# of H and O atoms that depend on the peptide bond.  We re-invoke it here  
# for that purpose: 

    <Add mover="peptide_bond1" /> 
<Add mover="peptide_bond1" /> 
<Add filter="oversat" /> 

</PROTOCOLS> 
# The OUTPUT section allows the user to define output settings.  Here, we  
# specify the scoring function that will be used to score the output structure  
# for the score written in the output PDB file. 
<OUTPUT scorefxn="ref"/> 

</ROSETTASCRIPTS> 

 
 
The additional files used in the script (which must be put into an inputs/ directory) are as 
follows: 

Listing S8: File L_res.txt, used to specify permitted L-amino acid residues for design 
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RESET NOTAA CG 
start 

 
 
Listing S9: File D_res.txt, used to specify permitted D-amino acid residues for design 

 
EMPTY NC DAL NC DAS NC DGU NC DPH NC DHI NC DIL NC DLY NC DLE NC DME NC DAN / 
NC DGN NC DAR NC DSE NC DTH NC DVA NC DTR NC DTY NC DPR 
start 

 
 
Listing S10: File desired_makeup.comp, used to place constraints on the desired amino acid 
composition for design 

 
# At least two proline residues. 
# These can be L- or D- (or mixed). 
PENALTY_DEFINITION 
TYPE PRO DPR 
DELTA_START -2 
DELTA_END 1 
PENALTIES 500 10 0 0 
ABSOLUTE 2 
BEFORE_FUNCTION QUADRATIC 
AFTER_FUNCTION CONSTANT 
END_PENALTY_DEFINITION 
 
# At least one L-asp or L-glu. 
PENALTY_DEFINITION 
TYPE ASP GLU 
DELTA_START -1 
DELTA_END 1 
PENALTIES 200 0 0 
ABSOLUTE 1 
BEFORE_FUNCTION QUADRATIC 
AFTER_FUNCTION CONSTANT 
END_PENALTY_DEFINITION 
 
# At least one positively-charged residue 
PENALTY_DEFINITION 
TYPE LYS ARG DLY DAR 
DELTA_START -1 
DELTA_END 1 
PENALTIES 200 0 0 
ABSOLUTE 1 
BEFORE_FUNCTION QUADRATIC 
AFTER_FUNCTION CONSTANT 
END_PENALTY_DEFINITION 

 
Assuming that cyclic peptide backbones from earlier clustering steps are contained in the 
Rosetta binary file inputs/backbones.silent, and the script itself is file 
inputs/design_script.xml, then the command line to run the script above for 7-residue 
cyclic peptides is shown below: 

Listing S11: Sample command line for running the design RosettaScripts script shown above 
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<path to binary>/rosetta_scripts.default.linuxgccrelease -parser:protocol design.xml / 
  -in:file:silent inputs/backbones.silent -in:file:fullatom -parser:script_vars / 
  Nres=7 -parser:protocol inputs/design_script.xml 

 
 
Computational validation: Energy landscape analysis of designed macrocycles and their 
mutants 

For each torsion bin string and hydrogen bonding pattern, the lowest-energy sequence 
designed was picked as a representative of that cluster.  A subset of such low-energy structures 
(from 44% of all designs for length 7 to 3% of all designs for length 10) was subjected to a final 
round of computational validation using the simple_cycpep_predict application, as described 
previously(15).  As for the sampling of polyglycine conformations, large numbers of backbone 
conformations were sampled for each sequence tested, but this time, the sampling was biased 
based on the Ramachandran map of each amino acid residue in the sequence.  Each sample 
was subjected to full side-chain rotamer optimization and energy minimization using the Rosetta 
FastRelax protocol(27).  The “foldability” of each macrocycle was evaluated based on the 
estimated fractional occupancy of the native state (a value that we call PNear), and on the energy 
gap between the native structures and other low energy models, as reported previously(15).  A 
PNear value of > 0.9 and energy gap of < -0.1 was selected as the basic threshold for 
acceptance. Additionally, the plot of energy vs. RMSD was then visually inspected. 

For a subset of macrocycles, large-scale landscape analysis was performed. Each residue in 
the initial sequence was systematically mutated to the other 18 amino acid residues of the same 
chirality, and to alanine with mirror chirality, in the input sequences provided to the 
simple_cycpep_predict application.  These large scale computational analyses of the energy 
landscape was performed using the Berkeley Open Infrastructure for Network Computing 
(BOINC) as part of the Rosetta@Home project, mostly using volunteer cellular telephones as 
the computing hardware (though some earlier predictions were carried out using volunteer 
desktop computers, or using the Argonne “Mira” Blue Gene/Q system used for poly-Gly 
conformational sampling). 

Scrambled sequences were generated by randomly assigning residues to different positions in 
the structure (see fig. S13 for details of assignment). 

After generation of results, site-saturation mutagenesis plots were generated based on PNear 

values (see equation below for PNear) for each structure, with λ set to 1 Å and a value of kBT of 
0.62 kcal/mol (equivalent to 37 °C).  For two of the macrocycles, different combinations of λ and 
kBT (0.5, 0.75, 1, 1.5 for l and 0.5, 0.75, 1, 2 for kBT) were tested and the value with more 
dynamic range (i.e. values that showed the difference between a high-quality vs. low-quality 
energy funnel best) were selected. Double mutants were generated and analyzed using similar 
methods described above. 

https://paperpile.com/c/hrIaP1/rXcu5
https://paperpile.com/c/hrIaP1/rXcu5
https://paperpile.com/c/hrIaP1/rXcu5
https://paperpile.com/c/hrIaP1/ivYGk
https://paperpile.com/c/hrIaP1/ivYGk
https://paperpile.com/c/hrIaP1/ivYGk
https://paperpile.com/c/hrIaP1/rXcu5
https://paperpile.com/c/hrIaP1/rXcu5
https://paperpile.com/c/hrIaP1/rXcu5
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Equation 1: Definition of PNear, a measure of the quality of an energy function.  Pnear 
approximates the Boltzmann-weighted probability of finding the structure in a conformation near 
the native conformation. 

 

 
Turn type analysis and measurement of RMSD to hot loops 

We defined a turn as a semi-independent part of a macrocycle structure that is connected 
internally through backbone-to-backbone hydrogen bonds, but which lacks hydrogen bonds to 
other parts of the structure. For each structure, different turn types were defined by their torsion 
bin strings and hydrogen bond patterns. Similar analysis was performed on a subset of 
structures from the PDB, and the frequencies were then calculated and compared. The 
redundancy of the PDB subset was reduced to 30% -- that is, no two PDB chains in the set had 
more than 30% sequence identity. 

From all the hot loops generated by Kritzer and coworkers(24), those that contained continuous 
stretches of amino acids were selected. Each loop, and small truncations of it (one residue 
shorter from each side) were then compared to a library of macrocycles that passed 
computational consistency check. For every motif and scaffold, a matrix of pairwise distances 
between C-alpha atoms and a vector of dihedral angles for every four consecutive C-alpha 
atoms was computed. For every possible alignment of linear motif to cyclic scaffold, Root-Mean-
Square of the differences of both the distance matrices (distance RMS) and the dihedral vectors 
(dihedral RMS) is reported. Macrocycles that at least in one position had a distance RMSD of 
less than 1 Å and a dihedral RMSD of less than 10 degrees (i.e. contained a portion matching 
the motif backbone) were considered to be plausible stabilizing scaffolds for the given motif.  A 
complete list of these hot loops and the results are available as a supplementary file. 

Synthesis, purification, and mass spectrometry of macrocycles 

All peptides were synthesized using standard Fmoc solid phase peptide synthesis (SPPS) on 
preloaded and sidechain-linked Fmoc-Asp(Wang resin LL)-ODmab or Fmoc-Glu(Wang resin 
LL)-ODmab resin. Linear, protected peptides were built on a CEM Liberty Blue Peptide 
Synthesizer with microwave heating at coupling and deprotection steps.  After the final Fmoc 
deprotection, the resin was treated with 2% (v/v) hydrazine monohydrate in dimethylformamide 
(DMF) to remove the C-terminal Dmab protecting group; the N- and C-termini were then joined 
on-resin by a coupling reaction.  A cleavage cocktail of TFA:Water:TIPS:DODT (92.5 : 2.5 : 2.5 : 
2.5) used for global deprotection of side-chains and to cleave the peptide from the resin.  After 
the removal of residual TFA by evaporation, peptides were ether precipitated and further 
purified using RP-HPLC. 

https://paperpile.com/c/hrIaP1/3BsGP
https://paperpile.com/c/hrIaP1/3BsGP
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Crude peptides were purified using an Agilent Infinity Preparative HPLC with an Agilent Zorbax 
SB-C18 column (9.4 mm X 250 mm). A linear gradient of 1%/min for Solvent B (ACN with 0.1% 
TFA) and flow rate of 5 ml/min was used for purification to collect fractions with pure peptides. 
Mass and purity of peptides were were confirmed using electrospray ionization mass 
spectrometry (ESI-MS) on a Thermo Scientific TSQ Quantum Access mass spectrometer. 

For disulfide-stapled peptides, cyclic reduced peptides were air-oxidized in 0.1 M ammonium 
bicarbonate buffer (pH 8.3) for 48 hours, and purified again using RP-HPLC. Some of the 
disulfide-containing peptides were synthesized with Fmoc-Cys(Acm)-OH at the cysteine 
positions. Following synthesis and cyclization, the resin was treated with 8 eqs. of iodine in 4:1 
DMF:methanol overnight to remove the Acm protecting groups and facilitate disulfide bond 
formation.  After iodine treatment, the resin was washed with 2% w/v ascorbic acid in DMF, 
rinsed with dichloromethane (DCM) and cleaved and purified as normal. 

Nuclear magnetic resonance (NMR) spectroscopy studies of the designed macrocycles 

Each peptide macrocycle was dissolved at concentrations of ~5 mg/mL at a pH between 3.0 
and 5.5 in 10% D2O, with up to 5% glycerol-d8 added. All NMR data were collected on a DRX 
500 MHz, an Avance III 600 MHz, or an Avance III 800 MHz spectrometer, equipped with TCI 
cryoprobe and triple-axis gradient (Bruker). Unless otherwise noted, all NMR data were 
collected at 5 oC and 25 oC using pulse sequences with excitation sculpting water suppression. 
Data were processed with TOPSPIN v. 3.5 (Bruker) or NMRPIPE(34) and visualized with 
Sparky. Initial screening of designed cyclic peptides for discrete structure involved recording 1D 
1H spectra at 25 oC and selecting peptides with sharp, and well dispersed backbone amide 
resonances. The small size of the peptides (<=14 residues) selected for structural analysis 
allowed for complete proton backbone and side chain resonance assignment using 2D [1H,1H] 
TOCSY; including many stereospecific assignments. To facilitate quantitative evaluation of 
internuclear distances, sample temperatures were dropped to 5 oC and both 2D [1H,1H] -ROESY 
with a 200 ms mixing time and 2D [1H,1H] NOESY spectra were collected using mixing times of 
100 ms and 500 ms. For designs 8.1 and 14_SS a full NOESY buildup curve (50-75 ms mixing 
time) was collected to ensure linear behavior of the glycerol containing samples of small 
peptides (fig. S28). Because it is currently not economical to prepare uniformly 13C and 15N-
labelled peptides using solid phase methods, and because natural abundance experiments are 
resource-intensive, only a set of 15N assignments were measured using natural abundance 2D 
[15N,1H] SOFAST HMQC for designs 7.1, 7.2, 8.1, 8.2, 12_SS, 14_SS. For longer peptide 
designs or designs with clear overlap in the 2D [1H,1H] TOCSY we also collected natural 
abundance 2D [13C,1H] HMQC. 

Nuclear Overhauser Effect (NOE) constraint consistency check 

To evaluate whether NOE constraints alone can predict the designed structure, we first used 
Rosetta to relax 5 macrocycles from the Protein Data Bank (PDB) and Cambridge Structural 
Database (CSD) that shared the same criteria as our peptides (4ME6 from the PDB and 
CUQYUI, DUYTIA, JIANGO, and UZUKUW from the CSD); this was repeated 20 times.  Based 

https://paperpile.com/c/hrIaP1/91pKQ
https://paperpile.com/c/hrIaP1/91pKQ
https://paperpile.com/c/hrIaP1/91pKQ
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on the observed distribution of energies after relaxation, we set the following filters for the score 
terms below and selected structures that passed these filters from our previous landscape 
analysis: 

omega=1, fa_rep=10, fa_intra_rep=0.5, pro_close=5, rama_prepro=3 

Each structure was then rescored, using Rosetta, based solely on how well it satisfied the NOE 
constraints and the scores vs. RMSD to design were plotted, as shown in fig. S12. 

NMR structure determination of designed macrocycles 

A set of 200 structures were calculated for well-behaved designs with the Xplor-NIH software 
package using torsion angle dynamics and simulated annealing. Initial folding was conducted 
from a single starting template of randomized torsional angles for the cyclic peptide after 
patching L- or D- stereoisomers. Distance restraints were derived from NOE intensities at 100 
and 500 ms mixing times in 2D [1H,1H] NOESY spectra recorded at 500 or 800 MHz and were 
sorted into Strong (2.5 0.7 0.7), Medium (3.5 1.5 1.5) and Weak (4.5 2.0 2.0) bins based on 
relative peak intensities to aromatic resonance signals. A soft square potential was used for 
NOE restraints for initial folding and convergence was established when there were no NOE 
violations greater than 0.5 Å of the calculated structures. 

After initial folding, hydrogen-bonding restraints were inferred from proximal atoms, identified by 
cross-strand or nearest neighbor amide NOE cross peaks in the 2D [1H-1H] NOESY or 
monitoring slow exchanging protons with 1D 1H CLEANEX-PM pulse sequences (mixing time 0-
500 ms). After backbone hydrogen bonding was established, structures were re-calculated as 
described incorporating hydrogen bonds as NOE restraints using a biharmonic potential. 
Throughout folding and refinement, only NOE and van der Waals terms were active during 
structure calculation. Due to lack of uniform labeling and peak overlap we were not able to make 
clear predictions of backbone dihedral angle restraints or coupling constants. The torsional 
database constraints were also left unrestrained due to lack of sufficient information for handling 
D-amino acids. To refine the structures based on NMR experiments, we launched MD 
simulations with NOE constraints. In particular, for each structure, a simulated annealing from 
350K to 310K followed by a 10-ns production run was performed(35). For each atom pair 

measured by NOE, a distance restraint (k=1000 kJ mol−1 nm−1) was applied throughout the 

simulation. The 20 conformations with the lowest total energy were selected for further analysis. 

MD simulation of designed macrocycles 

Molecular Dynamics simulations were performed using GROMACS 2016.1(36, 37) with the 
Amber 99SB-ILDN forcefield(38). Each peptide was solvated in a dodecahedron box of explicit 
TIP3P waters(39) and neutralized with either sodium or chloride ions. The solvated systems 
were energy-minimized using the steepest descent minimization method. Next, the system was 

equilibrated for 1 ns under the NPT ensemble with position restraints (1000 kJ mol−1 nm−1) 

applied on all the heavy atoms of the peptide. During this equilibration, pressure coupling to 1 

https://paperpile.com/c/hrIaP1/t1ZCH
https://paperpile.com/c/hrIaP1/t1ZCH
https://paperpile.com/c/hrIaP1/t1ZCH
https://paperpile.com/c/hrIaP1/pWqSK+loKaw
https://paperpile.com/c/hrIaP1/pWqSK+loKaw
https://paperpile.com/c/hrIaP1/pWqSK+loKaw
https://paperpile.com/c/hrIaP1/pWqSK+loKaw
https://paperpile.com/c/hrIaP1/pWqSK+loKaw
https://paperpile.com/c/hrIaP1/3HQJq
https://paperpile.com/c/hrIaP1/3HQJq
https://paperpile.com/c/hrIaP1/3HQJq
https://paperpile.com/c/hrIaP1/k0oRq
https://paperpile.com/c/hrIaP1/k0oRq
https://paperpile.com/c/hrIaP1/k0oRq
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atm was performed with the Berendsen barostat(40), and temperature coupling to 310 K using 
the velocity-rescaling thermostat(41). From each equilibrated system, 10 simulations of 100 ns 
were performed in the NVT ensemble. The systems were simulated using periodic boundary 
conditions. A cutoff at 10 Å was used for van der Waals and short-range electrostatic 
interactions. The Particle-Mesh Ewald (PME) summation method was used for the long-range 
electrostatic interactions(42). The Verlet cut-off scheme was used(43).  All chemical bonds were 
constrained using the LINCS algorithm(44). The integration time-step was 2 fs, and simulations 
were analyzed using GROMACS tools. We calculated the root-mean-square deviation (RMSD) 
of the position of the Cα atoms of the peptides, compared to the initial conformation, using gmx 
rms. The peptides were aligned to the Cα of the initial conformation. The Ramachandran plots 
were calculated using gmx chi, and plotted using the Matplotlib histogram2d function 
(https://matplotlib.org/citing.html).   

For two of the structures, design 8.1 and 10.1, we also performed our analysis for the mirrored 
structure of the designs to make sure that our calculations are not energetically biased against 
L- or D-amino acids. As shown in fig. S29, the results are comparable; thus, we only performed 
simulations of the designed structure (and not its mirror image) for the rest of the macrocycles. 

For designs 7.3 and 7.4, we performed long (>1 µs) molecular dynamics simulations to analyze 

the dynamics of folding and different conformations explored by the macrocycles. The Markov 
state model that captures movement of the macrocycle was generated by MSM builder, and the 
dynamics of movement were described using a time-structure independent component analysis 
(tlCA) model(44–47). 

Ion mobility spectrometry analysis 

The single-site mutant libraries of design 7.1 were synthesized with a process similar to that 
described above with an additional step. For the residues for which the mutation was made 
(dPro4 or Thr5), the resin was removed from the synthesizer and split into 6 pools.  Each pool 
had its respective amino acid coupled individually using the synthesizer (D-Pro,D-Ser, D-Asn, 
D-Asp, D-Met, D-Arg for position 4 and Thr, Ser, Leu, Gln, Glu, Trp for position 5). After all pools 
of resin were loaded with the desired amino acid they were recombined and the remaining 
amino acids in the sequence were coupled as normal. Cleavage of the resin was performed 
using the same cleavage cocktail described above. All expected species were confirmed by 
mass spectrometry. 

All samples were prepared in 50% aqueous methanol acidified with 0.1% formic acid. The 
solutions were infused at an infusion rate of 300 nL/min and electrosprayed in the positive mode 
using an etched emitter (20 mm i.d.). The formed ions were transmitted through a heated inlet 
capillary (130oC) into a high-resolution Structures for Lossless Ion Manipulations Ion Mobility 
Mass Spectrometer (SLIM IM-MS) platform for high resolution ion mobility spectrometry(21). 
Ions were accumulated in an ion funnel trap(48) for 2 ms and then released to SLIM IM-MS. The 
SLIM module was similar to that of the SLIM serpentine design previously reported(49, 50), but 
has a path length of 15.9 m that allows for multiple passes through the serpentine path for 

https://paperpile.com/c/hrIaP1/siJR3
https://paperpile.com/c/hrIaP1/siJR3
https://paperpile.com/c/hrIaP1/siJR3
https://paperpile.com/c/hrIaP1/JhMBI
https://paperpile.com/c/hrIaP1/JhMBI
https://paperpile.com/c/hrIaP1/JhMBI
https://paperpile.com/c/hrIaP1/EV4GD
https://paperpile.com/c/hrIaP1/EV4GD
https://paperpile.com/c/hrIaP1/EV4GD
https://paperpile.com/c/hrIaP1/UoelK
https://paperpile.com/c/hrIaP1/UoelK
https://paperpile.com/c/hrIaP1/UoelK
https://paperpile.com/c/hrIaP1/5ptyL
https://paperpile.com/c/hrIaP1/5ptyL
https://paperpile.com/c/hrIaP1/5ptyL
https://paperpile.com/c/hrIaP1/Vr5Sx+VGlY2+p6u78+xo5AO
https://paperpile.com/c/hrIaP1/Vr5Sx+VGlY2+p6u78+xo5AO
https://paperpile.com/c/hrIaP1/Vr5Sx+VGlY2+p6u78+xo5AO
https://paperpile.com/c/hrIaP1/Vr5Sx+VGlY2+p6u78+xo5AO
https://paperpile.com/c/hrIaP1/Vr5Sx+VGlY2+p6u78+xo5AO
https://paperpile.com/c/hrIaP1/bdJcA
https://paperpile.com/c/hrIaP1/bdJcA
https://paperpile.com/c/hrIaP1/bdJcA
https://paperpile.com/c/hrIaP1/stUP3
https://paperpile.com/c/hrIaP1/stUP3
https://paperpile.com/c/hrIaP1/stUP3
https://paperpile.com/c/hrIaP1/stUP3+n2MvD
https://paperpile.com/c/hrIaP1/stUP3+n2MvD
https://paperpile.com/c/hrIaP1/stUP3+n2MvD
https://paperpile.com/c/hrIaP1/stUP3+n2MvD
https://paperpile.com/c/hrIaP1/stUP3+n2MvD
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higher ion mobility spectrometry resolution. The SLIM module was integrated with an Agilent 
6224 TOF MS equipped with a 1.5 m extended flight tube via a rear ion funnel and RF-only 
quadrupole. All SLIM separations were performed at ~2.5 Torr N2 with the following parameters: 
wave speed of 160 m/s, wave amplitudes of 40 V, guard electrode voltage of 6 V, and RF 
frequency of 1.0 MHz and amplitude of 380 Vp-p. Data were acquired on an 8-bit ADC (analog-
to-digital converter) using a control software developed in-house. 

Protease assay: 

Protease assay was performed using PRONASE® Protease derived from Streptomyces griseus 
from EMD Millipore (product# 53702). 0.2 μmole of each peptide tested was added to 200 μl of 
50 mM ammonium acetate buffer, pH 8, supplemented with 0.01 M calcium acetate. 5 μl of this 
starting material was mixed with μl TFA and kept as the time 0 sample. To this mixture we 
added 2 μl of 2 mg/ml protease mix stock (prepared by dissolving in water) and incubated at 37 
˚C. At different time points, 5 μl of the reaction mixture was taken out and quenched by addition 
of 5 μl TFA. To track protease cleavage, each sample was analyzed by LC/MS (Thermo 
Scientific Accela HPLC system connected to  Thermo Scientific TSQ Quantum Access mass 
spectrometer) using an Agilent ZORBAX StableBond 300 C18, 4.6 x 150 mm, 5 µm as the 
chromatography column. 
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fig. S1. (A), (B) the flat-bottomed Gly (A) and Pro (B) symmetric Ramachandran table  used for 
sampling backbone conformations. (C) shows all the clusters obtained for macrocycles with 7 
residues.  Designs were clustered based on the backbone torsion bin strings and then sub-
clustered based on turn types and hydrogen bond patterns.  The red box in the table 
corresponds to the structure in (D), for which the torsion angle bin strings, the torsion angles, as 
well as the two turn types are depicted. (E) members of the clusters with same hydrogen bond 
pattern overlay with each other. Both the torsion bin string and the hydrogen bond pattern are 
important for defining a cluster. 
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fig. S2. Phi-psi distributions at individual residue positions for 9 residue macrocycle samples.  
Sampling is clearly complete at the individual residue level. 
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fig. S3. Cluster distribution.  Left panel:  Number of unique clusters for 9 residue macrocycles 
as a function of number of D-amino acids for all possible torsion bin strings and those sampled 
with more than 10 members.  The unsampled strings correspond to backbone conformations 
not compatible with chain closure (for example the helical bin string AAAAAAAAA). Right panel: 
Designs were clustered based on the torsion bin strings, and the number of designs in each 
cluster plotted against the number of designs with the mirror image bin string.  The similarity in 
the frequency of sampling of both chiralities is another indication of the convergence of 
sampling.  Tests on individual clusters sampled at very different frequencies show that the 
differences in sampling frequency arise from differences in the frequency with which the 
corresponding conformations can be closed by the kinematic closure algorithm. 
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fig. S4. Computed energy gaps for designed macrocycles of different lengths. The total number 
of designs for which energy landscape calculations were carried out for each length is indicated 
by the dashed line near the top of each panel.  The number of designs in different PNear ranges 
is shown in grey bars, and the combined grey plus white bars indicate the cumulative 
distribution.  As expected given the much smaller conformational space accessible to 7 residue 
version 10 residue macrocycles, for the former, roughly half had PNear > 0.9 and nearly all had 
PNear> 0.6, whereas for the latter, less than a tenth had PNear > 0.9. 
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fig. S5. Examples of designed macrocycles with large computed energy gaps.  7-10 residue 
macrocycles are shown in rows 1-4, respectively.  The torsion bin strings and the backbone-
backbone hydrogen bonds are shown under each structure. Each amino acid is colored based 
on its backbone torsion angle (fig. 1A, red=A, blue=B, orange=X, cyan=Y). 
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fig. S6. Structures of previously described macrocycles in size range of 7-10 with no 
crosslinkers (including ester linkages (depsipeptides) and thioether staples), no backbone N-
methylation, and not in the context of a binding partner. The structure ID, torsion bin strings, and 
backbone-backbone hydrogen bonds are shown under each structure. Each amino acid is 
colored based on its backbone torsion angle (red=A, blue=B, orange=X, cyan=Y). 
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fig. S7. Macrocycle building blocks.  Top: Representative structure for two non-turn building 
blocks: proline-stabilized kinks on the left and long range sidechain-backbone hydrogen bonds 
on the right. Bottom: Macrocycle structures can be viewed as sequences of rigid building blocks.  
Starting from an ABX turn (the leftmost panel), addition of building blocks generate a structure 
for a potential design with bin string ABXYYAAY.  For each linkage point, different torsions of 
the first amino acid are explored and the final solution (shown as discrete ball and stick models 
in the rightmost figure) is the one that can generate a closed cycle. As shown in the final panel 
on the right, the assembled structure matches the design. The assembled building blocks are 
from different backbones. 
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fig. S8. For each peptide with experimental structure within 1.5 Å of the designed structure, the 
initial design, computational folding landscape, ESI spectra and the HPLC traces are shown 
from left to right, respectively. The bin string and sequence of each peptide as well as the main 
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chain hydrogen bonds are shown as well. The dotted red line in the HPLC trace shows the 
acetonitrile gradient and the green box highlights the peak collected for further NMR analysis. 

 

fig. S9. 1D NMR spectra of peptides described in this study with NMR structures within 1.5 Å of 
design. 
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fig. S10. Representative HMQC spectra for several peptides in this study. 
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fig. S11. NOESY NMR spectra of peptides mentioned in this study with NMR structures within 
1.5 Å of design. 
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fig. S12. The NOE constraints identify structures close to the design models in pre-generated 
ensembles. For each design, an ensemble of possible cyclic structures pre-generated for 
energy landscape analysis was rescored based on how well they fit the NOE constraints (lower 
scores are better fits) with a penalty for interatomic clashes (omega=1, fa_rep=10, 

fa_intra_rep=0.5, pro_close=5, rama_prepro=3).  For most of the designs, this simple 
filtering of the pre-generated ensembles yielded structures within 1Å of the designed models, 
providing an independent validation of the NMR structure calculations. 
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fig. S13. (a) RMSD to the starting conformation of MD trajectories (10x100 ns) for designed 
macrocycles with NMR structures within 1.5 Å of design as well as their mutants.  (b) The 
torsional space that the macrocycles and their mutants explore during simulation. (c) 
Histograms compare the frequency of observing structures from the entire trajectory versus their 
RMSD to the initial structure for initial design (cyan) and mutants (pink). The designs spend the 
majority of their time in the designed conformation. Analysis of MD trajectories for mutants of 
these macrocycles shows more flexibility in most cases, some with prominent changes (design 
11_SS). Design 10.2 showed a completely open structure in unrestrained MD that violated 
experimental NOEs, thus not shown. 
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fig. S14. Long time simulation of design 7.3. Plot A shows the RMSD of the backbone over  two 
~1 microsecond trajectories. MSM was generated by projecting the backbone conformations 
(phi,psi) using the tICA methods. figure B shows the projection of the 2 main tICs, and the 
centers of the clustered conformations (200 microstates), the size of the dots is proportional to 
its populations, and a red color means that transitions to it are slow if coming from a blue-
colored dot. The 200-microstates are clustered in 3 macrostates shown in part C. These three 
models are later used to extract the retention time of the macrocycle at the designed structure. 
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fig. S15. Trajectory of 6x1 microsecond MD simulation runs on design 7.4 shows that the 
structure is spending most of its time within 1 Å of the designed structure but there is another 
kinetically stable conformation that shows up after 400 ns in one of the trajectories and persists 
throughout the simulation. 
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fig. S16. Large-scale landscape analysis of macrocycles with validated NMR structure. Each 
square box corresponds to a different full energy landscape analysis using the Rosetta@Home 
cell phone network for the indicated amino acid substitution at the indicated position.  Colors 
indicate the PNear values obtained from these energy landscapes; disruptive substitutions with 
PNear < 0.4 (sequence predicted not to populate designed structure) are shown in red, and 
neutral substitutions with PNear > 0.8  are shown in blue.   These tables provided a guide to 
library generation without structure generation: blue substitutions may be freely included, 
whereas red substitutions should be avoided. 
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fig. S17. SLIM ion mobility results.  Intensity of observed peaks as a function of arrival time (ms) 
for two crude libraries of design 7.1. dPro4 and Thr5 are the original designs, for which the 
arrival time is shown. As depicted in the figure, dPro4 library (dPro4 to dSer, dPro, dAsn, dAsp, 
dMet, dArg) clearly has members with more than one conformation. 
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fig. S18. Computed energy gaps (PNear) for scrambled versions of a subset of the designed 
macrocycles. Scramble 1 indicates random permutations of the original sequence. In scramble 
2, the identity of amino acids at each given position are permuted but the chirality at each 
position retained. Scramble 3 is similar to 2, but proline residues are retained. In scramble 4,  
prolines are retained along with other residues found to decrease PNear to less than 0.4 in the 
individual substitution scans (fig. S16).  For most but not all of the designed macrocycles, 
specifying only the individual residues identified in the fig. S16 tables is sufficient to determine 
the structure. 
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fig. S19. Contribution of amino acid types to energy gaps of designed macrocycles. The Y axis 
is the average change in PNear upon mutation. (A) shows the average effect of mutating the 
original amino acids (top, grouped based on class) to all other amino acids.  (B) shows the 
effect of mutating amino acids in different positions to those indicated at top. Mutations to 
proline produce the largest effects.  Orange lines represent the average PNear deviation for all 
the mutations. 
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fig. S20. Energy landscape of selected designs with all residues mutated to alanine with the 
same chirality except those (indicated under the plot for each design), found to be important for 
folding in the comprehensive individual substitution landscape analyses (Fig. 3-4, and Fig. S16). 
As shown in the figure, specifying the identity of only few amino acids is in some case sufficient 
to determine the structure. The grey plot shows the original landscape before mutation. 
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fig. S21. Backbone hydrogen bond patterns of macrocycles with 7 residues which passed our 
computational folding analysis. The arrow direction is from C=O to NH. Red circles indicate 
those for which NMR structures were determined.  The torsion strings are unique but the overall 
hydrogen bond patterns quite similar. 
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fig. S22. Backbone hydrogen bond patterns of 8 residue designed macrocycles with PNear > 0.8. 
Representation is as in Fig S21. The thick line indicates a sidechain.  There are several distinct 
hydrogen bond patterns that recur with different torsion bin strings. 
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fig. S23. A) 1D 1H CLEANEX-PM experiment on design 8.1 showing slow exchanging protons 
with reduced signal (red star). Data were collected with mixing times 0-500ms (i-vii) at 25 C. B- 
top, design 1D 1H spectrum of design  8.1 in 90% H2O/ 10% D2O at 25 C, B-bottom, the sample 
was lyophilized to dryness and exchanged with 99.99% D2O. Three of the slowly exchanging 
backbone amide peaks remain visible after fully exchanging with D2O. These are those involved 
in backbone-backbone hydrogen bonds. 
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fig. S24. NOESY spectrum of design 8.2.1 showing only 3 (out of 6) backbone NH protons, 
suggesting symmetry in the peptide (sequence shown in the panel on the right). 
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fig. S25. Backbone hydrogen bond patterns of a subset of 9 residue macrocycles that passed 
our energy landscape analysis shows increased diversity in the longer lengths. The arrow 
direction is from C=O to NH. 
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fig. S26. The designed macrocycles are highly protease resistant. To test whether cyclization, 
mixed chirality, and structured nature of the designed macrocycle adds to its stability, we 
performed protease cleavage test on one of our designs along with some controls. We used 
Pronase, a cocktail of different proteases, and the controls were a linear small protein with all L-
amino acids, the linear version of the design, and a cyclic version with scrambled sequence 
(expected to have no rigid structure), and tested the cleavage at different time points using 
LC/MS. After 1 day, small fractions of the design was cleaved but the majority remained intact 
whereas the linear control with all L-amino acids was completely degraded after 1 hour. The MS 
results for initial and last time points are shown as well. 
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fig. S27. The designed macrocycles can mimic and stabilize known protein binding loops. The 
native loops are shown as color cartoons at the grey interfaces and the peptide is overlayed on 
them, shown in orange. The spheres show the peptide backbone atoms at the hot spot 
residues. 
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fig. S28. The addition of 5% glycerol to the aqueous peptide NMR samples reduced the 
overall molecular tumbling rate resulting in improved uniform linear response in peak 
intensity for NOE build up curves of backbone NOEs in both design 8.1 (left) and 14_SS 
(right).  This suggests the range in NOE mixing times used were appropriate for NOE 
assignments and structure determination. 
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fig. S29. MD simulations of design 8.1 and design 10.1 and their mirrored structures show that 
the two structures sample similar regions in the Ramachandran plot (when the rama plot of one 
is symmetrized), suggesting that our MD simulation method is agnostic with respect to amino 
acid chirality. 
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Table S1. Frequency of different turn types within PDB and designs and the distribution of sub-
turns within each turn. 
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Table S2. NMR statistics for reported structures for size 7 and 8 residues. 
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Table S3. NMR statistics for reported structures for size 9 and 10 residues. 
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Table S4. NMR Statistics for reported structures for macrocycles containing disulfide crosslinks. 
Design14_SS displayed high average backbone RMSD in the preliminary structural ensemble 
as intial NMR structure calculations had difficulty converging. However, restrained MD 
simulations starting with lowest-energy NMR structure converge very well on the designed 
topology (Fig. 4). 
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Table S5. Macrocycles evaluated in this study. Designs 8.1 and 10.1 are selected using an 
older protocol before clustering of large dataset and picking the lowest energy variants. 
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Table S6. % time that each structure spends in designed state during MD simulations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

61 
 

 

 

Table S7. Different structural features observed for experimentally verified designs. 
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Database S1. Comp_Folded_Macrocycles 
The provided zip file contains the ~200 macrocycle that passed our computational folding 
criteria. 
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Database S2. Hot_Loop_Matches 
The provided excel file shows the hot loops from Kritzer and coworker(24) that we tested in this 
study to evaluate the potential of our macrocycles in stabilizing them. All the columns are 
adapted from (24). Last column shows the results of our analysis. Blue color indicates that we 
found at least one macrocycle whose backbone matches that of the hot loop. Red color 
indicates failure in finding such macrocycle. 
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Database S3. Designed_Macrocycles_Structures 
The provided zip file contains the original designed version of all the macrocycles in the main 
text for which NMR structure is provided. 
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