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S1. RE-SCALING OF VARIABLES

This dynamics in Eq. (1) of the main paper applies to general p-player games, no matter whether the number of
actions, N , is finite or infinite. In this notation, the variables xµi denote the probability with which player µ plays

action i, and so
∑N
i=1 x

µ
i = 1, for all µ. This indicates that each xµi is of order 1/N .

The term
∑
iµ+1,...,iµ−1

Πµ
i,iµ+1,...,iµ−1

∏
κ6=µ x

κ
iκ

on the right-hand-side of the second equation in (1) describes the

payoff player µ should expect if she plays action i, and given the mixed strategies of her p − 1 opponents. It is sum
over the payoff received for all possible actions of the p− 1 other players (recall that subscripts labelling players are
to be interpreted modulo p). In total, these are Np−1 terms.

Given that the payoff matrices elements are drawn at random, each term in the sum on the right-hand-side of
Eq. (1) in the main paper is a random variable. So long as all actions are played with non-zero probability,

each of the variables xκiκ can be assumed to be of order 1/N ; their sum is
∑N
i=1 x

µ
i = 1, as discussed above.

The Πµ
i,iµ+1,...,iµ−1

are quenched random variables; they each have a mean of zero, and their variance does not

depend on N [see Eq. (4) in the main manuscript]. This turns the term
∑
iµ+1,...,iµ−1

Πµ
i,iµ+1,...,iµ−1

∏
κ 6=µ x

κ
iκ

into a random variable with mean zero, and standard deviation of order 1/
√
Np−1. Player µ is interested in

the expected payoffs the different possible actions i in her action space return to her. These expected payoffs
are given by

∑
iµ+1,...,iµ−1

Πµ
i,iµ+1,...,iµ−1

∏
κ6=µ x

κ
iκ

(for her action i), indicating that the expected payoffs for the

different actions only differ by amounts proportional to 1/
√
Np−1.Thus, in order to turn these differences between

the expected payoffs of different actions into appreciably different attractions, Qµi , the intensity of choice β must

be of order
√
Np−1. In other words, as either N or p increase, the expected payoffs for the different actions

i become less and less distinguishable (each of them is an average over an increasing number of terms). In or-
der to exploit these differences in a meaningful way, the players have to scale up their intensity of choice β accordingly.

We take this into account by writing β = N (p−1)/2β̃, where β̃ is independent of N and p. Introducing Qµi =

N−(p−1)/2Q̃µi then leads to βQµi = β̃Q̃µi , i.e., we can re-write Eq. (1) of the main paper in the following form:

xµi (t+ 1) =
exp[β̃Q̃µi (t)]∑
k exp[β̃Q̃µk(t)]

, (S1)

where

Q̃µi (t+ 1) = (1− α)Q̃µi (t) +N (p−1)/2 ×
∑

iµ+1,...,iµ−1

Πµ
i,iµ+1,...,iµ−1

∏
κ6=µ

xκiκ(t). (S2)

We now further introduce x̃µi = Nxµi , and Π̃µ
i,iµ+1,...,iµ−1

= N−(p−1)/2Πµ
i,iµ+1,...,iµ−1

. Carrying out these transforma-
tions we arrive at

x̃µi (t+ 1) =
exp[β̃Q̃µi (t)]∑
k exp[β̃Q̃µk(t)]

,

Q̃µi (t+ 1) = (1− α)Q̃µi (t) +
∑

iµ+1,...,iµ−1

Π̃µ
i,iµ+1,...,iµ−1

∏
κ6=µ

x̃κiκ . (S3)
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This is exactly of the same form as Eq. (1) in the main paper, but now β̃ does not scale with N or p. We also have∑
i x̃

µ
i = N , and the re-scaled payoff matrix elements Π̃µ

i,iµ+1,...,iµ−1
have a standard deviation of order N−(p−1)/2.

We can remove the tildes and write

xµi (t+ 1) =
exp[βQµi (t)]∑
k exp[βQµk(t)]

,

Qµi (t+ 1) = (1− α)Qµi (t) +
∑

iµ+1,...,iµ−1

Πµ
i,iµ+1,...,iµ−1

∏
κ6=µ

xκiκ , (S4)

with β order N0 and p0,
∑
i x

µ
i = N , and〈

Πµ
iµ,iµ+1,...,iµ−1

Πν
iν ,iν+1,...,iν−1

〉
=

{
1

Np−1 µ = ν
Γ

(p−1)Np−1 µ 6= ν.
(S5)

This is the starting point of the further analysis.

S2. GENERATING FUNCTIONAL ANALYSIS

Following [1, 2], we perform a generating functional analysis of the Sato-Crutchfield dynamics (i.e., the continuous
limit of EWA). This will lead to an effective dynamics that is representative of the continuous limit of the EWA system,
for large values of N , for typical realizations of the payoffs, and after averaging over the ensemble of random games.
The fixed points of the effective dynamics are far easier to study analytically than those of the the Sato-Crutchfield
equations for any particular random game.
Consider the dynamics

ẋµi (t)

xµi (t)
= −r−1 lnxµi (t) +

∑
iµ+1,...,iµ−1

Πµ
i,iµ+1,...,iµ−1

∏
κ6=µ

xκiκ(t)− ρµ(t) + hµi (t). (S6)

This is identical to the Sato-Crutchfield dynamics, Eq. (4) in the main paper, except that we have added arbitrary
functions hµi (t) to generate response functions—these will later be set to zero. Recall that the normalization term
ρµ(t) is defined such that the xµi (t) have mean 1.
We define a generating functional

Z[ψ] =

∫
D[x] δ(equations of motion) exp

i
∑
µ,i

∫
dt xµi (t)ψµi (t)

 , (S7)

where δ(equations of motion) is used to mean that the integral is performed over realizations of (S6). Writing these
delta functions in Fourier form yields

Z[ψ] =

∫
D[x, x̂] exp

(
i
∑
µ,i

∫
dt

{
x̂µi (t)

(
ẋµi (t)

xµi (t)
+ r−1 lnxµi (t)−

∑
iµ+1,...,iµ−1

Πµ
i,iµ+1,...,iµ−1

∏
κ6=µ

xκiκ(t) + ρµ(t)− hµi (t)

)

+ xµi (t)ψµi (t)

})
. (S8)

The factor in this expression depending on the payoff elements is

ZΠ = exp

−i
∑

µ,i1,...,ip

∫
dtΠµ

iµ,iµ+1,...,iµ−1
x̂µiµ(t)

∏
κ6=µ

xκiκ(t)

 . (S9)

Averaging this over the payoff elements gives

ZΠ =
∏

i1,...,ip

exp

{
− 1

2Np−1

∑
µ

∫
dt

∫
dt′

[
x̂µiµ(t)x̂µiµ(t′)

( ∏
κ6=µ

xκiκ(t)

)( ∏
λ6=µ

xλiλ(t′)

)

+Γ
∑
ν 6=µ

x̂µiµ(t)x̂νiν (t′)

( ∏
κ 6=µ

xκiκ(t)

)(∏
λ 6=ν

xλiλ(t′)

)]}
, (S10)
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which can be written as

ZΠ = exp

{
− N

2

∫
dt

∫
dt′
∑
µ

(
Lµ(t, t′)

∏
κ6=µ

Cκ(t, t′) + Γ
∑
ν 6=µ

Kµ(t, t′)Kν(t′, t)
∏

κ/∈{µ,ν}

Cκ(t, t′)

)}
, (S11)

where we have introduced the functions

Cµ(t, t′) =
1

N

∑
i

xµi (t)xµi (t′),

Kµ(t, t′) =
1

N

∑
i

xµi (t)x̂µi (t′),

Lµ(t, t′) =
1

N

∑
i

x̂µi (t)x̂µi (t′). (S12)

We can use the expression (S11) in (S8), introducing the functions Cµ, Kµ, and Lµ into the integral using delta
functions, for example

1 =

∫
D[Cµ]

∏
t,t′

δ

(
Cµ(t, t′)− 1

N

∑
i

xµi (t)xµi (t′)

)

=

∫
D[Cµ, Ĉµ] exp

(
iN

∫
dt

∫
dt′ Ĉµ(t, t′)

(
Cµ(t, t′)− 1

N

∑
i

xµi (t)xµi (t′)

))
. (S13)

The generating functional becomes

Z[ψ] =

∫
D[C, Ĉ,K, K̂, L, L̂] exp(N(ψ + Φ + Ω)), (S14)

where

Ψ = i
∑
µ

∫
dt

∫
dt′
(
Ĉµ(t, t′)Cµ(t, t′) + K̂µ(t, t′)Kµ(t, t′) + L̂µ(t, t′)Lµ(t, t′)

)
(S15)

results from the introduction of C, K, and L into the integral,

Φ = −1

2

∑
µ

∫
dt

∫
dt′

(
Lµ(t, t′)

∏
κ6=µ

Cκ(t, t′) + Γ
∑
ν 6=µ

Kµ(t, t′)Kν(t′, t)
∏

κ/∈{µ,ν}

Cκ(t, t′)

)
(S16)

results from the average over the payoff elements, and

Ω =
1

N

∑
µ,i

ln

{∫
D[xµi , x̂

µ
i ] pµi,0(xµi (0)) exp

(
i

∫
dt xµi (t)ψµi (t)

)
exp

(
i

∫
dt x̂µi (t)

(
ẋµi (t)

xµi (t)
+

1

r
lnxµi (t) + ρµ(t)− hµi (t)

))

× exp

[
− i

∫
dt

∫
dt′

(
Ĉµ(t, t′)xµi (t)xµi (t′) + K̂µ(t, t′)xµi (t)x̂µi (t′) + L̂µ(t, t′)x̂µi (t)x̂µi (t′)

)]}
(S17)

contains the integral over x and x̂. Here, pµi,0(·) represents the initial distribution of xµi .

In the limit as N → ∞, the integrals in (S14) can be performed using the saddle-point method. Extremising the
exponent with respect to Cµ, Kµ, and Lµ gives the relations

iĈµ(t, t′) =
1

2

∑
ν 6=µ

(
Lν(t, t′)

∏
κ/∈{µ,ν}

Cκ(t, t′) + Γ
∑

κ/∈{µ,ν}

Kν(t, t′)Kκ(t′, t)
∏

λ/∈{µ,ν,κ}

Cλ(t, t′)

)
,

iK̂µ(t, t′) = Γ
∑
ν 6=µ

Kν(t, t′)
∏

κ/∈{µ,ν}

Cκ(t, t′),

iL̂µ(t, t′) =
1

2

∏
κ6=µ

Cκ(t, t′), (S18)
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while extremisation with respect to Ĉµ, K̂µ, and L̂µ leads to

Cµ(t, t′) = lim
N→∞

1

N

∑
i

〈xµi (t)xµi (t′)〉Ω ,

Kµ(t, t′) = lim
N→∞

1

N

∑
i

〈xµi (t)x̂µi (t′)〉Ω ,

Lµ(t, t′) = lim
N→∞

1

N

∑
i

〈x̂µi (t)x̂µi (t′)〉Ω , (S19)

where 〈·〉Ω represents a mean taken against a measure defined by Ω, see for example the Supplemental Material of
[2] for details in a similar calculation for p = 2.
It can also be seen, from the definition of the generating functional, that we have

Cµ(t, t′) = − lim
N→∞

1

N

∑
i

δ2Z[ψ]

δψµi (t)δψµi (t′)

∣∣∣∣∣
ψ=h=0

,

Kµ(t, t′) = − lim
N→∞

1

N

∑
i

δ2Z[ψ]

δψµi (t)δhµi (t′)

∣∣∣∣∣
ψ=h=0

,

Lµ(t, t′) = − lim
N→∞

1

N

∑
i

δ2Z[ψ]

δhµi (t)δhµi (t′)

∣∣∣∣∣
ψ=h=0

. (S20)

Because of normalization, Z[ψ = 0] = 1 for all h, so Lµ(t, t′) = 0 ∀t, t′. Due to causality, we have Kµ(t, t′) = 0 for
t′ > t, so that Kµ(t, t′)Kν(t′, t) = 0.
This leaves Ψ + Φ = 0, and if we set ψ = 0, and assume identical perturbations hµi (t) = h(t) and initial distributions
pµi,0(x) = p0(x) for all players and strategy components, then we have

Ω = p ln

{∫
D[x, x̂] p0(x(0)) exp

(
i

∫
dt x̂(t)

(
ẋ(t)

x(t)
+

1

r
lnx(t) + ρ(t)− h(t)

))

× exp

[
−
∫

dt

∫
dt′

(
Γ(p− 1)K(t, t′)C(t, t′)p−2x(t)x̂(t′) +

1

2
C(t, t′)p−1x̂(t)x̂(t′)

)]}
(S21)

where we have dropped the distinction between different players and strategy components. Each degree of freedom
then has an effective generating functional

Zeff =

∫
D[x, x̂] p0(x(0)) exp

(
i

∫
dt x̂(t)

(
ẋ(t)

x(t)
+

1

r
lnx(t) + ρ(t)− h(t)

))
× exp

[
−
∫

dt

∫
dt′

(
ΓK(t, t′)C(t, t′)p−2x(t)x̂(t′) +

1

2
C(t, t′)p−1x̂(t)x̂(t′)

)]
. (S22)

Defining G(t, t′) = −iK(t, t′), we have

Zeff =

∫
D[x, x̂] p0(x(0)) exp

(
i

∫
dt x̂(t)

(
ẋ(t)

x(t)
+

1

r
lnx(t) + ρ(t)− h(t)

))
× exp

[
−
∫

dt

∫
dt′

(
iΓG(t, t′)C(t, t′)p−2x(t)x̂(t′) +

1

2
C(t, t′)p−1x̂(t)x̂(t′)

)]
, (S23)

which is identical to the generating functional of the effective dynamics

ẋ(t)

x(t)
= Γ

∫
dt′G(t, t′)C(t, t′)p−2x(t′)− 1

r
lnx(t)− ρ(t) + η(t) + h(t), (S24)
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where η(t) is a Gaussian random variable satisfying 〈η(t)η(t′)〉∗ = C(t, t′)p−1 and 〈η(t)〉∗ = 1, and the functions G
and C are determined by

G(t, t′) =

〈
δx(t)

δh(t′)

〉
∗
,

C(t, t′) = 〈x(t)x(t′)〉∗ , (S25)

with 〈·〉∗ used to denote an average over the effective dynamics (S24). Finally setting h to zero, the effective system
is

ẋ(t)

x(t)
= Γ

∫
dt′G(t, t′)C(t, t′)p−2x(t′)− 1

r
lnx(t)− ρ(t) + η(t). (S26)

with G, C, and η defined as above.

S3. ONSET OF INSTABILITY IN THE LARGE-p LIMIT

Writing n = p−1 for convenience, the boundary of the stable region is given by the solution of the following equations:

1

r
lnx− Γqn−1χx− qn/2z + ρ = 0,∫ ∞

−∞
Dz

∂x

∂z
= qn/2χ,∫ ∞

−∞
Dz x2 = q∫ ∞

−∞
Dz x = 1∫ ∞

−∞
Dz

(
∂x

∂z

)2

=
q

n
, (S27)

where Dz is a shorthand for the standard Gaussian measure Dz = dz√
2π

e−z
2/2.

For Γ = 0 the order parameters at the boundary of the stable region are given by Eq. (24) in the main paper. As
an ansatz for the region with Γ < 0 we assume that the order parameters and the value of r on the phase boundary
scale with n in the same way as they do for Γ = 0. We can write

q = 1 + n−1q′,

χ = n−
1
2χ′,

r = n−
1
2 r′,

ρ = n−
1
2 ρ′, (S28)

where all primed variables are of order O(n0).

If we also write x = 1 + n−
1
2x′, and retain only leading-order terms in q′, χ′, r′, and ρ′ t we obtain from Eq. (S27):

1

r′
ln
(

1 + n−
1
2x′
)
− n− 1

2 (1 + q′/2)z + n−1ρ′

−n−1Γ(1 + q′)χ′ − n− 3
2 Γ(1 + q′)χ′x′ = 0,∫ ∞
−∞

Dz
∂x′

∂z
=

(
1 +

q′

2

)
χ′,∫ ∞

−∞
Dz x′2 = q′,∫ ∞

−∞
Dz x′ = 0,∫ ∞

−∞
Dz

(
∂x′

∂z

)2

= 1 +
q′

n
. (S29)
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The linear term in x′ in the first of these equations is dominated by the log term except at large x. Specifically, by
using the approximation W−1(y) ≈ ln(−y) as y → ∞, it can be seen that the linear term reaches the size of the log
term when the value of x′, to leading order, is

x′ ≈ xl =
n

3
2 lnn

−Γr′(1 + q′)χ′
, (S30)

while to leading order z is

z ≈ zl =
n

1
2 lnn

r′
(

1 + q′

2

) (S31)

It remains only to show that the region of the real line beyond zl makes a vanishing contribution to the integrals in
Eqs. (S29). By ignoring the linear term for z < zl, and the log term for z > zl, the integrals over these two regions
can be approximated analytically. In each case, the z > zl contribution shrinks more quickly as n grows.
Neglecting the linear term in the first relation in Eq. (S29) altogether is equivalent to making the approximation x = 1
in the linear term in the first equation of (S27). This yields a system of the same form as the Γ = 0 special case,
except for an additional constant term, which can be solved exactly in the same manner. So, to leading order, the
parameters r, χ, and q take constant values along the stability curve for large p, while ρ takes the value

ρ =

(
1

2
+ Γ

)√
e

n
. (S32)

This value for ρ scales with n in the same way as it does in our ansatz, so the ansatz is indeed valid for all negative
values of Γ. This demonstrates that r =

√
e(p− 1) is a solution of the equations for the onset of instability in the

limit of large p.

S4. FURTHER NUMERICAL RESULTS: LIMIT CYCLES AND MULTIPLICITY OF FIXED POINTS

S4.1. Competitive games (Γ < 0)

In Fig. S1 we show the likelihood of converging to a limit cycle for games with negatively correlated payoff matrix
elements, i.e. games in which players compete agains each other (Γ < 0). For intermediate values of α, just smaller
than those for which stable fixed points are ubiquitous, limit cycles are seen very commonly. However, at small values
of α, fixed points or limit cycles are achieved only rarely—chaos is the norm.

S4.2. Positively correlated payoffs (Γ > 0)

For positive values of the competition parameter, chaotic dynamics is rarely observed (though chaotic-appearing
transients are frequently seen). Instead, for smaller values of α and Γ, limit cycles are very common, as shown in Fig.
S2. In the rest of this region, EWA consistently converges to a fixed point. However, for small values of α and large
values of Γ, there are many distinct fixed points that the dynamics can converge to for a given payoff matrix. This is
shown in Fig. S3.

[1] M. Opper, S. Diederich, Phys. Rev. Lett. 69 1616-1619 (1992)
[2] T. Galla, J. D. Farmer, Proc. Nat. Acad. Sci (USA) 110 1232 (2013)
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p = 2 p = 3

p = 4 p = 5

FIG. S1. Heat maps showing the fraction of 500 random initial conditions for which the EWA system converged to a limit
cycle according to the heuristic in the main paper, for negative Γ. Limit cycles appear in a narrow band at intermediate values
of α. The green curves show the boundaries of the stable region as derived in the main paper (Eq. (21)).
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p = 2, N = 50 p = 3, N = 12

p = 4, N = 6 p = 5, N = 4

FIG. S2. Heat maps showing the fraction of 500 random initial conditions for which the EWA system converged to a limit
cycle according to the heuristic in the main paper, for positive Γ. Limit cycles appear most commonly when the payoffs are
weakly correlated.
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p = 2, N = 50 p = 3, N = 12

p = 4, N = 6 p = 5, N = 4

FIG. S3. Heat maps showing the fraction of 20 independent payoff matrices for which the EWA dynamics converged to multiple
distinct fixed points for different initial conditions. For each payoff matrix, the EWA system was iterated for 100 different initial
conditions, with fixed points being detected as explained in the main paper. Fixed points were considered to be identical if the
relative distance between each component was less than 0.1.
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(a) p = 2, N = 10.

(b) p = 2, N = 20.

p = 2, N = 50

p = 2, N = 100

FIG. S4. Heat maps showing the dependence on N of the stable region for p = 2 and Γ < 0. For each set of parameters
the system was iterated for 500 random initial conditions. The heat maps show the fraction that converged to a fixed point
(numerical convergence criteria are described in the main paper). The size of the unstable region grows with the size N of the
payoff matrix, but begins to converge around N = 50. The green curves are the stability curves as derived from the generating
functional analysis in the main paper.
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