Unexplained mortality differences between septic shock trials: A systematic analysis of population characteristics and control-group mortality rates.

Harm-Jan de Grooth, Jonne Postema, Stephan A. Loer, Jean-Jacques Parienti, Heleen M. Oudemans-van Straaten, Armand R. Girbes

ELECTRONIC SUPPLEMENTARY MATERIAL – ADDITIONAL METHODS AND RESULTS

Table of contents

1. PRISMA checklist	2
2. Search and selection strategy	4
eFigure 1	4
3. Estimation of 28-day mortality from other mortality measures	5
eTable 1	5
eFigure 2	5
4. Mean mortality rates and heterogeneity in subcategories of trials	6
eTable 2	6
5. Regression goodness-of-fit statistics.	7
eTable 3	7
6. Plots of the association between baseline variables and mortality	8
eFigure 3	
7. Results from multivariate linear model	9
eTable 4	9
8. Results from regression tree analysis.	10
eFigure 4	10
eFigure 5	
9. List of excluded trials	

1. PRISMA checklist

Section/topic	#	Checklist item	Reported
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	Yes
ABSTRACT			
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	Yes
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known.	Yes
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	Yes
METHODS	·		
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	Yes
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	Yes
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	Yes
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	Yes
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	Yes
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	Yes
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	Yes
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	Not applicable
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	Yes
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., l ²) for each meta-analysis.	Yes

Section/topic	#	Checklist item	Reported
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	Not applicable
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	Yes
RESULTS			
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	Yes
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	Yes
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	Not applicable
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	Yes
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	Yes
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	Not applicable
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	Yes
DISCUSSION			
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	Yes
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	Yes
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	Yes
FUNDING			
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	Yes

From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097. doi:10.1371/journal.pmed1000097

2. Search and selection strategy

PubMed, Embase and the Cochrane Central Register of Controlled Trials were queried using the search term ["septic shock" AND (random* or rct)]. Embase was additionally queried using the search term "septic shock" with the randomized controlled trial filter. The queries were limited to publications from 01-01-2006 and the queries were last performed on January 20, 2018. The list of excluded trials is appended at the end of this supplementary materials document.

eFigure 1. Results of the search and selection strategy. * Irrelevant search results were reports that were clearly and unambiguously irrelevant to the research question for a variety of reasons (too many to count individually). These reasons included, but were not limited to: Animal studies, other preclinical studies, healthy volunteer studies and letters. Authors of trials that did not report mortality or baseline characteristics were not contacted for additional information.

3. Estimation of 28-day mortality from other mortality measures

For the 20 trials that did not report 28-day mortality, we estimated 28-day mortality based on reported hospital, ICU or 90-day mortality using linear regression with data from trials that reported both 28-day and another mortality measure.

Predictor	Trials estimated using predictor (n)	Trials used to derive prediction equation (n)	Prediction equation	P-value and R ² value of prediction equation
Hospital mortality	9	14	28-day = 0.84 x	P<0.0001
			hospital	R2=0.99
ICU mortality	10	13	28-day = 0.95 x ICU	P<0.0001
				R2=0.98
90-day mortality	1	18	28-day = 0.78 x 90-	P<0.0001
			day	R2=0.98

eTable 1. Equations used to estimate 28-day mortality.

eFigure 2. Regression estimation plots of 28-day mortality from (A) hospital mortality, (B) ICU mortality and (C) 90-day mortality.

4. Mean mortality rates and heterogeneity in subcategories of trials.

	incitanty	rates and neterogeneity	or that design	and quality
	N (%)	Mean mortality (95%	т: estimated	95% prediction
		confidence interval)	heterogeneity	interval
			(p-value)	
All RCTs	65 (100)	38.6% (34.2 – 43.3%)	0.710 (<0.001)	13.5 – 71.7%
Smallest 50% trials *	32 (49)	43.0% (36.0 – 50.4%)	0.712 (<0.001)	15.7 – 75.3%
Largest 50% trials *	33 (51)	35.5% (30.2 – 41.2%)	0.676 (<0.001)	12.7 – 67.5%
Monocenter trials	37 (57)	46.0% (39.0 – 53.3%)	0.802 (<0.001)	15.0 – 80.4%
Multicenter trials	28 (43)	30.6% (27.3 – 34.2%)	0.376 (<0.001)	17.4 – 48.0%
Unblinded trials	41 (65)	36.8% (31.5 – 42.6%)	0.694 (<0.001)	13.0 – 69.5%
Double-blind trials	23 (35)	42.4% (34.8 – 50.5%)	0.725 (<0.001)	15.1 – 75.3%
Trials with Jadad score ≤ 3	46 (71)	39.5% (33.9 – 45.5%)	0.760 (<0.001)	12.9 – 74.4%
Trials with Jadad score > 3	18 (29)	36.3% (30.0 – 43.0%)	0.555 (<0.001)	16.1 – 62.8%
Trials without usual-care control group	14 (21)	36.1% (29.9 – 43.0%)	0.413 (<0.001)	20.1 – 55.9%
Trials with usual-care control	51 (79)	39.3% (34.0 – 44.8%)	0.756 (<0.001)	12.8 – 74.0%
group				

Mean mortality and heterogeneity parameters were estimated using a weighted random-effects model with mortality on the log-odds scale. Mortality was back-transformed from log-odds to percentages for clarity. The value of τ represents the estimated between-trial standard deviation in mortality on the log-odds scale. The 95% confidence intervals indicate the precision of the estimated mean, while the 95% prediction intervals represents the estimated between-trial variability in mortality rates after adjusting for random chance and sample size (equal to the mean mortality rate \pm 1.96 τ on the log-odds scale). There was significant heterogeneity in all subcategories of trials. * The median sample size separating the 50% largest from smallest trials was 36 patients.

5. Regression goodness-of-fit statistics.

	N (%)	Log-linear model AIC	Quadratic model AIC	Power model AIC	Model choice
Publication year	65 (100)	148.3	149.0	149.0	Linear
· · · ·					
Age, years	64 (98)	156.8	158.0	158.5	Linear
Male patients %	63 (97)	145.0	155.0	158.5	Linear
Comorbidity characteristics					
Charlson comorbidity index	5 (8)	14.1	14.9	14.5	Linear
From long-term care facility %	6 (9)	11.9	13.9	11.9	Linear
McCabe class I %	6 (9)	13.4	13.4	13.4	Linear
McCabe class II %	6 (9)	14.2	15.5	14.2	Linear
McCabe class III %	4 (6)	11.6	11.9	11.6	Linear
Diabetes mellitus %	23 (36)	59.0	60.2	59.0	Linear
Heart failure or coronary disease %	26 (40)	64.8	66.8	64.8	Linear
Chronic obstructive pulmonary disease %	25 (39)	60.7	64.7	63.7	Linear
Chronic renal disease %	21 (33)	54.5	55.3	54.6	Linear
Chronic liver disease %	17 (26)	42.0	42.6	42.0	Linear
Cancer %	20 (31)	54.6	56.6	54.6	Linear
Severity of illness scores					
APACHE II score	33 (51)	74.1	75.9	74.6	Lineaer
APACHE III score	1 (2)	-	-	-	
APACHE IV score	1 (2)	-	-	-	
SAPS II score	24 (37)	63.0	63.0	64.5	Linear
SAPS III score	3 (4)	3.09	3.09	3.09	Linear
SOFA score	37 (58)	57.9	59.4	63.7	Linear
Characteristics of acute illness					
Medical (non-surgical) %	22 (34)	43.7	43.7	43.7	Linear
Time from diagnosis to randomization, hours	13 (20)	29.5	31.5	29.5	Linear
Mechanical ventilation %	33 (51)	64.2	66.3	64.4	Linear
Heart rate, 1/min	39 (60)	107.8	109.8	107.8	Linear
Mean arterial pressure, mmHg	43 (66)	111.6	113.5	111.7	Linear
Central venous pressure, mmHg	22 (34)	68.2	96.7	68.6	Linear
Vasopressor support %	38 (58)	71.6	71.8	72.0	Linear
Serum lactate, mmol/L	52 (80)	130.8	131.9	131.3	Linear
Serum creatinine, µmol/L	26 (40)	54.7	57.7	58.7	Linear
Fluids before randomization, mL	19 (30)	44.4	46.4	46.3	Linear
Infection site characteristics					
Respiratory %	53 (82)	128.5	130.3	128.7	Linear
Abdominal %	51 (78)	122.1	122.1	122.2	Linear
Urogenital %	41 (63)	97.8	99.6	97.9	Linear
Central nervous system %	19 (30)	62.7	62.7	62.7	Linear
Skin and soft tissue %	28 (43)	85.1	86.5	85.1	Linear
Bloodstream %	32 (49)	82.7	83.8	82.8	Linear
Pathogen characteristics					
Gram-negative %	25 (39)	58.6	59.9	58.9	Linear
Gram-positive %	22 (34)	54.4	55.4	54.7	Linear
Other pathogen %	22 (34)	55.8	56.7	56.4	Linear
Culture negative %	18 (28)	35.6	36.3	35.6	Linear

eTable 3. Univariate regression goodness-of-fit statistics.

The model with the smallest AIC (Akaike Information Criterion, which penalized additional regressors) was chosen. For equal AIC's, the linear model was preferred.

6. Plots of the association between baseline variables and mortality

eFigure 3. Associations between control group mortality and selected population characteristics. Circle sizes are proportional to the trial sample sizes. The lines represent significant linear associations estimated using inverse variance weighted random-effects model with mortality on the log-odds scale. Morality rates are back-transformed to percentages for clarity. APACHE, Acute Physiology and Chronic Health Evaluation; SAPS, Simplified Acute Physiology Score; SOFA, Sequential Organ Failure Assessment score; MAP, mean arterial pressure

7. Results from multivariate linear model

To estimate the proportion of heterogeneity that can be explained by a combination of population characteristics, we constructed a weighted multivariate random-effects linear model with multiple imputation to account for missing values.

Population variables that were reported by at least 25% of the included trials with a univariate regression $R^2 \ge 0.10$ were candidate regressors: The proportion of patients with chronic heart disease, mean SAPS-II score, mean SOFA score, the proportion of patients on mechanical ventilation, the proportion of patients on vasopressors, mean serum creatinine, the amount of fluids before randomization, the proportion of Gram-positive infections and the proportion of culture-negative infections.

Multiple imputation (generating 20 datasets) with predictive mean matching was used to estimate missing observations from the candidate variables. In addition to the candidate regressors above, population variables that were reported by more than 50% of trials were included in the multiple imputation datasets to strengthen the validity of the imputation: The year of publication, mean age, the proportion of male patients, mean APACHE II score, mean mean arterial pressure, mean heart rate, mean serum lactate, and the proportions of patients with respiratory, abdominal and urological infections. These variables were included in the imputation but not in the multivariate regression analysis.

Candidate variables that were eliminated stepwise from the model (for P \ge 0.05) were, in order of elimination: The amount of fluids before randomization (P=0.779), the proportion of patients on vasopressors (P=0.528), the proportion of Gram-negative cultures (P=0.712), the proportion of culture-negative infections (P=0.366), the proportion of patients with chronic heart disease (P=0.132), the proportion of Gram-positive cultures (P=0.126), mean SAPS-II score (P=0.102).

The final model estimating the effect of the independent variables on control-group 28-day mortality (expressed on the log-odds scale) was:

eTable 4. Results from multivariate random-effects linear model

	coefficient	95% confi interv		Std. Error	Std. coef. β	Std. Std. err	Z-value	P-value
Intercept	-3.341	-4.409	-2.274	0.544			-6.134	<0.0001
Mean SOFA score	0.103	0.017	0.189	0.044	0.389	0.166	2.343	0.0191
Mechanical ventilation (%)	0.979	0.162	1.797	0.417	0.422	0.179	2.348	0.0188
Serum creatinine, µmol/L	0.007	0.002	0.011	0.002	0.316	0.099	3.175	0.0015

Mixed effects model (k=65; Tau² estimator: Maximum Likelihood) Tau² = 0.2955447; Tau = 0.5436402;

Test for Residual Heterogeneity: QE(df = 61) = 685.7083, p-val < .0001

 $R^2 = 0.4144$, residual $I^2 = 81.9\%$

Estimated function: Logodds(mortality rate) = -3.341 + 0.103 × [mean SOFA score] +

0.979 × [% mechanical ventilation] + 0.007 × [mean serum creatinine, µmol/L]

8. Results from regression tree analysis.

We constructed a regression tree using the Recursive Partitioning and Regression Tree (RPART) routines implemented in R (1, 2).

The dependent variable in the model was 28-day mortality. The recursive partitioning algorithm selected among all inclusion criteria and baseline characteristics the most informative variable, which was then 'split' at the value that best differentiates low- versus high mortality. The algorithm then selected the most informative variable for each of the two resulting subgroups, and split it again. When a splitting variable was missing for a specific trial, a surrogate variable (the variable most closely correlated to the splitting variable) was used.

The resulting regression tree is shown in eFigure 4. The cumulative proportion of variability in 28-day mortality explained the regression tree is (R²) is 0.43 (eFigure 5, left panel). The cross-validated relative error decreased to below the the root (split 0) value, which indicates that the tree is likely not overfitted. (eFigure 5, right panel).

The algorithm output with primary splits and surrogate splits for missing values can be found at the end on this section.

eFigure 4. Regression tree for the prediction of 28-day mortality rate. The values between each terminal branch are the mean mortality rates for the n trials in the terminal branch. The splitting variables are: mean age (split at 64.8 years); the proportion of patients with a respiratory infection (split at 54.5%); the proportion of patients on mechanical ventilation (split at 74.3%); and the proportion of male patients (splits at 63.8% and 53.8%). The terminal numbers represent the mean mortality rate (and n number of trials) for that tree branch.

eFigure 5. The cumulative proportion of variability in 28-day mortality explained at each split (R^2 , left panel) and the cross-validated relative error at each split (right panel). The R^2 for the whole tree is 0.42. The cross-validated relative error decreases to below the the root (split 0) value, which indicates that the tree is likely not overfitted.

R output:

```
rpart(formula = f, data = d, weights = sqrt(mort.cg.n), control = list(minsplit = 10))
n= 65
Node number 1: 64 observations, complexity param=0.1677901
 mean=0.354528, MSE=0.02436645
 left son=2 (42 obs) right son=3 (22 obs)
 Primary splits:
   age.m.cg
                           < 64.85
                                     to the left, improve=0.1770292, (1 missing)
 Surrogate splits:
   male.p.cg < 0.678044 to the left, agree=0.747, adj=0.066, (1 split)
Node number 2: 42 observations, complexity param=0.09663411
 mean=0.3160983, MSE=0.01539218
 left son=4 (12 obs) right son=5 (30 obs)
 Primary splits:
                             < 0.7434334 to the left, improve=0.1826555, (19 missing)
   mechvent.p.cg
 Surrogate splits:
   population.incl.hyperlactatemia < 0.5
                                           to the right, agree=0.862, adj=0.618, (19 split)
Node number 3: 22 observations, complexity param=0.1184911
 mean=0.4609157, MSE=0.03380377
 left son=6 (13 obs) right son=7 (9 obs)
 Primary splits:
                     < 0.5447349 to the left, improve=0.32381720, (4 missing)
   oriresp.p.cg
 Surrogate splits:
                     < 0.1540171 to the right, agree=0.741, adj=0.378, (2 split)
   oriabd.p.cg
   year
                   < 2013.5 to the right, agree=0.679, adj=0.229, (2 split)
Node number 4: 12 observations
 mean=0.2388055, MSE=0.005242482
```

11

Node number 5: 30 observations, complexity param=0.04253843 mean=0.3575663, MSE=0.01591277 left son=10 (20 obs) right son=11 (10 obs) Primary splits: male.p.cg < 0.6381818 to the left, improve=0.09969404, (1 missing) Surrogate splits: population.incl.mechanical.ventilation < 0.5 to the left, agree=0.772, adj=0.186, (1 split) Node number 6: 13 observations mean=0.3814903, MSE=0.0120705 Node number 7: 9 observations mean=0.5979004, MSE=0.0416422 Node number 10: 20 observations, complexity param=0.04253843 mean=0.3317222, MSE=0.0139477 left son=20 (13 obs) right son=21 (7 obs) Primary splits: male.p.cg < 0.537751 to the right, improve=0.23640110, (1 missing) Surrogate splits: vear < 2014.5 to the left, agree=0.791, adj=0.013, (1 split) Node number 11: 10 observations mean=0.4258359, MSE=0.01467858 Node number 20: 13 observations mean=0.3013633, MSE=0.004979949

Node number 21: 7 observations mean=0.4484868, MSE=0.0312601

References

- 1. Atkinson EJ, Therneau TM. An introduction to recursive partitioning using the RPART routines. *Rochester Mayo Found* 2017;
- 2. Therneau T, Atkinson B, Ripley B. rpart: Recursive Partitioning and Regression Trees. *R Packag version 41-11* 2017;

9. List of excluded trials

This list contains the search results that were deemed possibly relevant (evaluated in full text) but which were excluded for the reasons stated below.

Search result	Reason for exclusion
Abd El Halim et al. Impact of gelatins on perfusion of microcirculatory blood flow in patient with septic shock. Intensive Care Medicine Experimental 2016;4	Population includes sepsis / severe sepsis (not only shock)
Agrawal et al. Comparative study of dopamine and norepinephrine in the management of septic shock. Saudi Journal of Anaesthesia 2011;5(2):162-166	No mortality outcome reported
Aguilar Arzapalo et al. Methylene blue effectiveness as contributory treatment in patients with septic shock. Intensive Care Medicine Experimental 2016;4	Post-hoc secondary analysis or conference abstract
Alhashemi et al. Levosimendan vs dobutamine in septic shock. Journal of Critical Care 2009;24(3):e14-e15	Post-hoc secondary analysis or conference abstract
Annane et al. Effect of low doses of corticosteroids in septic shock patients with or without early acute respiratory distress syndrome. Critical Care Medicine 2006;34(1):22-30	Post-hoc secondary analysis or conference abstract
Asfar et al. Hyperoxia and hypertonic saline in patients with septic shock (HYPERS2S): a two-by-two factorial, multicentre, randomised, clinical trial. The Lancet Respiratory Medicine 2017;5(3):180-190	Factorial design
Bergamin et al. Transfusion requirements in septic shock patients: A randomized controlled trial. Critical Care 2015	Post-hoc secondary analysis or conference abstract
Caironi et al. Circulating Biologically Active Adrenomedullin (bio-ADM) Predicts Hemodynamic Support Requirement and Mortality During Sepsis. Chest 2017;152(2):312-320	Post-hoc secondary analysis or conference abstract
Caironi et al. Pentraxin 3 in patients with severe sepsis or shock: the ALBIOS trial. European Journal of Clinical Investigation 2017;47(1):73-83	Post-hoc secondary analysis or conference abstract
Capoletto et al. Vasopressin versus norepinephrine for the management of septic shock in cancer patients (vancs II). Critical Care 2017;21(1):	Specific subpopulation of septic shock
Cherfan et al. Etomidate and mortality in cirrhotic patients with septic shock BMC clinical pharmacology 2011;11():22	Post-hoc secondary analysis or conference abstract
Choudhury et al. A randomized trial comparing terlipressin and noradrenaline in patients with cirrhosis and septic shock.	Specific subpopulation of septic shock

Search result	Reason for exclusion
Choudhury et al. A randomized trial comparing terlipressin and noradrenaline in patients with cirrhosis and septic shock. Liver International 2017;37(4):552-561	Specific subpopulation of septic shock
Chung et al. High-volume hemofiltration in adult burn patients with septic shock and acute kidney injury: A multicenter randomized controlled trial. Critical Care 2017;21(1)	Specific subpopulation of septic shock
Clem et al. Norepinephrine and vasopressin vs norepinephrine alone for septic shock: Randomized controlled trial. Critical Care Medicine 2016;44(12):413	Post-hoc secondary analysis or conference abstract
Cota-Delgado et al. Hemofiltration veno-venous continouos high and very high volume, pulmonary (paO2/FiO2) function and mortality in refractory septic shock patients. Intensive Care Medicine Experimental 2017;5(2):	Post-hoc secondary analysis or conference abstract
Cota-Delgado et al. Hemofiltration veno-venous continouos high and very high volume, hemodynamic answer and mortality in refractory septic shock patients. Intensive Care Medicine Experimental 2016;4	Post-hoc secondary analysis or conference abstract
Coudroy et al. Modulation by Polymyxin-B Hemoperfusion of Inflammatory Response Related to Severe Peritonitis Shock (Augusta, Ga.) Aug 2016;():	Post-hoc secondary analysis or conference abstract
Cronhjort et al. Association between fluid balance and mortality in patients with septic shock: a post hoc analysis of the TRISS trial Acta anaesthesiologica Scandinavica Aug 2016;60(7):925-33	Post-hoc secondary analysis or conference abstract
Cronhjort et al. Association between fluid balance and mortality in patients with septic shock: A post hoc analysis of the TRISS trial. Acta Anaesthesiologica Scandinavica 2016	Post-hoc secondary analysis or conference abstract
Cuthbertson et al. The effects of etomidate on adrenal responsiveness and mortality in patients with septic shock Intensive care medicine 2009;35(11):1868-1876	Post-hoc secondary analysis or conference abstract
David et al. Therapeutic plasma exchange as rescue therapy in refractory septic shock. Infection 2017;45(1):S46	Post-hoc secondary analysis or conference abstract
Davis et al. Prognostic value of peripheral venous oxygen tension to predict an abnormal initial central venous oxygen saturation in emergency department patients undergoing quantitative resuscitation for septic shock. Academic Emergency Medicine 2012;19	Post-hoc secondary analysis or conference abstract
De Winter et al. Higher versus standard amikacin single dose in emergency department patients with severe sepsis and shock: a randomized controlled trial International journal of antimicrobial agents Nov 2017	Population includes sepsis / severe sepsis (not only shock)
Deans et al. Intensive insulin therapy did not reduce mortality more than conventional therapy in septic shock treated with corticosteroids. Annals of Internal Medicine 2010;152(10):JC5-5	Post-hoc secondary analysis or conference abstract

Search result	Reason for exclusion
Delbove et al. Impact of endotracheal intubation on septic shock outcome: A post hoc analysis of the SEPSISPAM trial Journal of critical care Dec 2015;30(6):1174-8	Post-hoc secondary analysis or conference abstract
Dhainaut et al. Extended drotrecogin alfa (activated) treatment in patients with prolonged septic shock.	Specific subpopulation of septic shock
Dhifaoui et al. On-line hemofltration versus conventional hemofltration in septic shock patients: Clinical safety and effectiveness. Annals of Intensive Care 2017;7(1):114	Specific subpopulation of septic shock
Elbaradey et al. The effect of atrial natriuretic peptide infusion on intestinal injury in septic shock. Journal of Anaesthesiology Clinical Pharmacology 2016;32(4):470-475	Specific subpopulation of septic shock
Ferrario et al. Mortality prediction in patients with severe septic shock: a pilot study using a target metabolomics approach. Scientific reports 2016;6	Post-hoc secondary analysis or conference abstract
Fisher et al. Heparin-Binding Protein (HBP): A Causative Marker and Potential Target for Heparin Treatment of Human Sepsis-Induced Acute Kidney Injury Shock (Augusta, Ga.) Sep 2017;48(3):313-320	Post-hoc secondary analysis or conference abstract
Forceville Effects of high doses of selenium, as sodium selenite, in septic shock patients a placebo-controlled, randomized, double-blind, multi-center phase II studyselenium and sepsis Journal of trace elements in medicine and biology : organ of the Society for Minerals and Trace Elements (GMS) 2007;21 Suppl 1():62-5	Post-hoc secondary analysis or conference abstract
Galstyan et al. Administration of multipotent mesenchymal stromal cells (MSC) improves short term but not long term survival in oncohematological neutropenic patients (PTS) with septic shock (SS). Intensive Care Medicine Experimental 2016;4	Specific subpopulation of septic shock
Gaudry et al. Effect of renal replacement therapy strategies in septic- shock patients with severe acute kidney injury: A post hoc analysis of a randomized controlled trial. Annals of Intensive Care 2017;7(1):5	Post-hoc secondary analysis or conference abstract
Gaudry et al. Initiation strategies for renal replacement therapy according to severity and septic shock: A post-hoc analysis of the akiki trial. American Journal of Respiratory and Critical Care Medicine 2017;195	Specific subpopulation of septic shock
Gordon et al. The cardiopulmonary effects of vasopressin compared with norepinephrine in septic shock Chest Sep 2012;142(3):593-605	Post-hoc secondary analysis or conference abstract
Gordon et al. The effects of vasopressin on acute kidney injury in septic shock. Intensive Care Medicine 2010;36(1):83-91	Post-hoc secondary analysis or conference abstract
Guo-Long et al. The effects of the Qingre Jiedu Tongfu recipe on adjunct therapy in septic shock patients from ICU-a multicenter perspective randomized controlled study. Intensive Care Medicine 2014;40(1):S213	Post-hoc secondary analysis or conference abstract

Search result	Reason for exclusion
Haase et al. Thromboelastography in patients with severe sepsis: a prospective cohort study Intensive care medicine Jan 2015;41(1):77-85	Post-hoc secondary analysis or conference abstract
Haddad et al. Association of preservative-free propofol use and outcome in critically ill patients. American Journal of Infection Control 2011;39(2):141-147	Post-hoc secondary analysis or conference abstract
Hajjej et al. Effects of continuous haemofltration versus intermittent haemodialysis on microcirculatory parameters in septic shock: A muscle microdialysis study. Annals of Intensive Care 2017;7(1):153	Specific subpopulation of septic shock
Harvey et al. Effect of heart rate control with esmolol on haemodynamic and clinical outcomes in patients with septic shock 2C03, 3C00. Journal of the Intensive Care Society 2014;15(3):262-263	Post-hoc secondary analysis or conference abstract
Hjortrup et al. Effects of fluid restriction on measures of circulatory efficacy in adults with septic shock. Acta Anaesthesiologica Scandinavica 2017;61(4):390-398	Post-hoc secondary analysis or conference abstract
Holst et al. Lower versus higher hemoglobin threshold for transfusion in septic shock	Specific subpopulation of septic shock
Holst Benefits and harms of red blood cell transfusions in patients with septic shock in the intensive care unit Danish medical journal Feb 2016;63(2):	Post-hoc secondary analysis or conference abstract
Hou et al. Endothelial Permeability and Hemostasis in Septic Shock: Results From the ProCESS Trial. Chest 2017;152(1):22-31	Post-hoc secondary analysis or conference abstract
Hsieh et al. Prevalence and impact of active and passive cigarette smoking in acute respiratory distress syndrome. Critical Care Medicine 2014;42(9):2058-2068	Post-hoc secondary analysis or conference abstract
Hussain et al. Efficacy of phenylephrine versus noradrenaline in management of patients presenting with septic shock in the intensive care unit. Rawal Medical Journal 2014;39(2):136-140	No mortality outcome reported
Jaoued et al. Effect of mode of hydrocortisone administration in patients with septic shock: A prospective randomized trial. Annals of Intensive Care 2017;7(1):151-152	Post-hoc secondary analysis or conference abstract
Joannes-Bayou et al. High-volume versus standard-volume haemofiltration for septic shock patients with acute kidney injury (IVOIRE study): a multicentre randomized controlled trial	Specific subpopulation of septic shock
Johansen et al. Mild induced hypothermia: Effects on sepsis-related coagulopathy -results from a randomized controlled trial. Thrombosis Research 2015;135(1):175-182	Post-hoc secondary analysis or conference abstract
Johansson et al. Association between sympathoadrenal activation, fibrinolysis, and endothelial damage in septic patients: a prospective study Journal of critical care Jun 2014;29(3):327-33	Post-hoc secondary analysis or conference abstract

Search result	Reason for exclusion
Kadoi et al. Comparative effects of propofol vs dexmedetomidine on cerebrovascular carbon dioxide reactivity in patients with septic shock British journal of anaesthesia Feb 2008;100(2):224-9	No mortality outcome reported
Kaufmann et al. Stress doses of hydrocortisone in septic shock: Beneficial effects on opsonization-dependent neutrophil functions. Intensive Care Medicine 2008;34(2):344-349	No mortality outcome reported
Kawazoe et al. Effect of PMX-DHP longer than 2 hours on mortality in patients with septic shock: A sub-analysis of multicenter randomized controlled trial. Intensive Care Medicine Experimental 2017;5(2):	Post-hoc secondary analysis or conference abstract
Kellum et al. Relationship between Alternative Resuscitation Strategies, Host Response and Injury Biomarkers, and Outcome in Septic Shock: Analysis of the Protocol-Based Care for Early Septic Shock Study. Critical Care Medicine 2017;45(3):438-445	Post-hoc secondary analysis or conference abstract
Kellum et al. The Effects of Alternative Resuscitation Strategies on Acute Kidney Injury in Patients with Septic Shock American journal of respiratory and critical care medicine Feb 2016;193(3):281-7	Post-hoc secondary analysis or conference abstract
Kiehntopf et al. Prognostic impact of procalcitonin in severe sepsis and septic shock results of the VISEP-study. Infection 2011;39	Post-hoc secondary analysis or conference abstract
Kjaer et al. Factors associated with non-response at quality of life follow- up among survivors of septic shock. A registry-based post-hoc analysis of the TRISS randomised trial. Intensive Care Medicine Experimental 2017;5(2):	Post-hoc secondary analysis or conference abstract
Kjær et al. Factors associated with non-response at health-related quality of life follow-up in a septic shock trial. Acta Anaesthesiologica Scandinavica 2017	Post-hoc secondary analysis or conference abstract
László et al. Effects of adsorption of cytokines early in septic shock (the 'acess-trial')-results of the pilot study. Critical Care 2017;21(1):	Post-hoc secondary analysis or conference abstract
Lauzier et al. Vasopressin or norepinephrine in early hyperdynamic septic shock: a randomized clinical trial	Specific subpopulation of septic shock
Laviolle et al. Gluco- and mineralocorticoid biological effects of a 7-day treatment with low doses of hydrocortisone and fludrocortisone in septic shock Intensive care medicine Aug 2012;38(8):1306-14	Post-hoc secondary analysis or conference abstract
Li et al. Platelet desialylation is a novel mechanism and a therapeutic target in thrombocytopenia during sepsis: An open-label, multicenter, randomized controlled trial. Journal of Hematology and Oncology 2017;10(1):	Population includes sepsis / severe sepsis (not only shock)
Li et al. Platelet desialylation is a novel mechanism and a therapeutic target in thrombocytopenia during sepsis: An open-label, multicenter, randomized controlled trial. Haematologica 2017;102	Population includes sepsis / severe sepsis (not only shock)
Liu et al. Clinical effect of alprostadil in patients with septic shock associated with acute respiratory distress syndrome. Medical Journal of Chinese People's Liberation Army 2017;42(9):805-809	Specific subpopulation of septic shock

Search result	Reason for exclusion
Liu et al. Application strategy of PiCCO in septic shock patients Experimental and therapeutic medicine Apr 2016;11(4):1335-1339	No mortality outcome reported
Mabasa et al. Full vs. renal dosing of antibiotics in septic shock patients with acute renal failure: The fraser feasibility trial. Critical Care Medicine 2009;37(12):A429	Post-hoc secondary analysis or conference abstract
Masson et al. Presepsin (soluble CD14 subtype) and procalcitonin levels for mortality prediction in sepsis: data from the Albumin Italian Outcome Sepsis trial Critical care (London, England) 2014;18(1):R6	Post-hoc secondary analysis or conference abstract
Masson et al. Sequential N-Terminal Pro-B-Type Natriuretic Peptide and High-Sensitivity Cardiac Troponin Measurements during Albumin Replacement in Patients with Severe Sepsis or Septic Shock. Critical Care Medicine 2016;44(4):707-716	Post-hoc secondary analysis or conference abstract
Masson et al. Circulating presepsin (soluble CD14 subtype) as a marker of host response in patients with severe sepsis or septic shock: data from the multicenter, randomized ALBIOS trial. Intensive Care Medicine 2015;41(1):12-20	Post-hoc secondary analysis or conference abstract
McIntyre et al. The PRECISE RCT: Evolution of an Early Septic Shock Fluid Resuscitation Trial. Transfusion Medicine Reviews 2012;26(4):333- 341	Post-hoc secondary analysis or conference abstract
McIntyre et al. Fluid Resuscitation with 5% albumin versus Normal Saline in Early Septic Shock: A pilot randomized, controlled trial. Journal of Critical Care 2012;27(3):317.e1-317.e6	No baseline characteristics reported
McIntyre et al. The PRECISE fluid resuscitation pilot randomized controlled trial: Study design and preliminary feasibility results. American Journal of Respiratory and Critical Care Medicine 2010;181(1):	Post-hoc secondary analysis or conference abstract
McLaughlin et al. High versus low blood pressure target in patients with septic shock 2C03, 3C00. Journal of the Intensive Care Society 2014;15(3):258-259	Post-hoc secondary analysis or conference abstract
Meddeb et al. Effects of levosimendan on cellular metabolic alterations in patients with septic shock: A randomised controlled study. Intensive Care Medicine Experimental 2015;3	Post-hoc secondary analysis or conference abstract
Mehta et al. Cardiac ischemia in patients with septic shock randomized to vasopressin or norepinephrine. Critical Care 2013;17(3):	Post-hoc secondary analysis or conference abstract
Mehta et al. Agreement in electrocardiogram interpretation in patients with septic shock. Critical Care Medicine 2011;39(9):2080-2086	Post-hoc secondary analysis or conference abstract
Memiş et al. The effects of levosimendan vs dobutamine added to dopamine on liver functions assessed with noninvasive liver function monitoring in patients with septic shock. Journal of Critical Care 2012;27(3):318.e1-318.e6	No mortality outcome reported
Meng et al. Levosimendan Versus Dobutamine in Myocardial Injury Patients with Septic Shock: A Randomized Controlled Trial.	Specific subpopulation of septic shock

Search result	Reason for exclusion
Mishra et al. A pilot randomized controlled trial of comparison between extended daily hemodialysis and continuous veno-venous hemodialysis in patients of acute kidney injury with septic shock. Indian Journal of Critical Care Medicine 2017;21(5):262-267	Specific subpopulation of septic shock
Miyamoto et al. Effect of Dexmedetomidine on Lactate Clearance in Patients with Septic Shock: A Sub-Analysis of a Multicenter Randomized Controlled Trial	Septic shock not defined according to commonly accepted criteria (3 cSOFA points). patients with septic shock under ventilation (sub-analysis of septic shock patients from larger trial including septic patient (not only shock))
Molina et al. Are the low serum levels of vasopressin in septic shock patients refractory to catecholamines?. Intensive Care Medicine 2013;39	Post-hoc secondary analysis or conference abstract
Morelli et al. Effects of vasopressinergic receptor agonists on sublingual microcirculation in norepinephrine-dependent septic shock. Critical Care 2011;15(5):	No mortality outcome reported
Moreno et al. Time course of organ failure in patients with septic shock treated with hydrocortisone: Results of the Corticus study. Intensive Care Medicine 2011;37(11):1765-1772	Post-hoc secondary analysis or conference abstract
Moskowitz et al. Thiamine as a Renal Protective Agent in Septic Shock. A Secondary Analysis of a Randomized, Double-Blind, Placebo- controlled Trial Annals of the American Thoracic Society May 2017;14(5):737-741	Post-hoc secondary analysis or conference abstract
Mouncey et al. Protocolised Management In Sepsis (ProMISe):A multicentre randomised controlled trial of the clinical effectiveness and cost-effectiveness of early, goal-directed, protocolised resuscitation for emerging septic shock. Health Technology Assessment 2015;19(97):1- 150	Post-hoc secondary analysis or conference abstract
Nguyen et al. Early lactate clearance is associated with biomarkers of inflammation, coagulation, apoptosis, organ dysfunction and mortality in severe sepsis and septic shock. Journal of Inflammation 2010;7	Post-hoc secondary analysis or conference abstract
Park et al. Lactated Ringer Versus Albumin in Early Sepsis Therapy (RASP) study: Preliminary data of a randomized controlled trial. Critical Care 2015;19	Post-hoc secondary analysis or conference abstract
Peake et al. Potential Impact of the 2016 Consensus Definitions of Sepsis and Septic Shock on Future Sepsis Research Annals of emergency medicine Oct 2017;70(4):553-561.e1	Post-hoc secondary analysis or conference abstract
Permpikul et al. Early norepinephrine administration vs. standard treatment during severe sepsis/septic shock resuscitation: A randomized control trial. Intensive Care Medicine Experimental 2017;5(2):	Population includes sepsis / severe sepsis (not only shock)

Search result	Reason for exclusion
Perner et al. Hydroxyethyl starch 130/0.42 increased death at 90 days compared with Ringer's acetate in severe sepsis. Annals of Internal Medicine 2012;157(8):JC4-JC6	Post-hoc secondary analysis or conference abstract
Philips et al. Comparison and outcomes of 5% albumin vs 0.9% normal saline fluid resuscitation in cirrhotics presenting with sepsis induced hypotension-a randomized controlled trial-fluid resuscitation in septic shock in cirrhosis (FRISC Protocol). Hepatology 2015;62((Mitra L.G.) Anesthesia and Critical Care, Institute of Liver and Biliary Sciences, New Delhi, India):261A	Post-hoc secondary analysis or conference abstract
Polito et al. Pharmacokinetics of oral fludrocortisone in septic shock British journal of clinical pharmacology Dec 2016;82(6):1509-1516	Post-hoc secondary analysis or conference abstract
Polli et al. Effects of recombinant human activated protein C on the fibrinolytic system of patients undergoing conventional or tight glycemic control Minerva anestesiologica ;75(7-8):417-26	Post-hoc secondary analysis or conference abstract
Póvoa et al. Clinical impact of stress dose steroids in patients with septic shock: insights from the PROWESS-Shock trial Critical care (London, England) 2015;19():193	Post-hoc secondary analysis or conference abstract
Prakash et al. Early introduction of a combination of low dose terlipressin and noradrenaline as vasopressors is superior to high dose noradrenaline alone in patients of cirrhosis with septic shock(NCT02468063). Hepatology 2017;66	Specific subpopulation of septic shock
Puskarich et al. Association between the timing of antibiotic administration and outcome in patients with septic shock. Academic Emergency Medicine 2011;18(5):S4	Post-hoc secondary analysis or conference abstract
Puskarich et al. Concordance and prognostic value of central venous oxygen saturation and lactate clearance of emergency department patients with septic shock. Academic Emergency Medicine 2011;18(5):S159-S160	Post-hoc secondary analysis or conference abstract
Puskarich et al. Pharmacometabolomics of L-carnitine treatment response phenotypes in patients with septic shock. Annals of the American Thoracic Society 2015;12(1):46-56	Post-hoc secondary analysis or conference abstract
Puskarich et al. Randomized controlled trial of safety and efficacy of l- carnitine infusion for the treatment of vasopressor-dependent septic shock. Academic Emergency Medicine 2013;20(5):S304	Post-hoc secondary analysis or conference abstract
Puskarich et al. Whole blood lactate kinetics in patients undergoing quantitative resuscitation for severe sepsis and septic shock. Chest 2013;143(6):1548-1553	Post-hoc secondary analysis or conference abstract
Puskarich et al. Prognostic value and agreement of achieving lactate clearance or central venous oxygen saturation goals during early sepsis resuscitation. Academic Emergency Medicine 2012;19(3):252-258	Post-hoc secondary analysis or conference abstract
Puskarich et al. Association between timing of antibiotic administration and mortality from septic shock in patients treated with a quantitative resuscitation protocol. Critical Care Medicine 2011;39(9):2066-2071	Post-hoc secondary analysis or conference abstract

Search result	Reason for exclusion
Puskarich et al. Outcomes of patients undergoing early sepsis resuscitation for cryptic shock compared with overt shock. Resuscitation 2011;82(10):1289-1293	Post-hoc secondary analysis or conference abstract
Quraishi et al. Effect of cholecalciferol supplementation on vitamin d status and cathelicidin in sepsis. Critical Care Medicine 2014;42(12):A1383	Post-hoc secondary analysis or conference abstract
Richard et al. Preload-dependence indices to titrate volume expansion during septic shock: A randomized controlled trial. Intensive Care Medicine 2014;40(1):S237	Post-hoc secondary analysis or conference abstract
Rowan et al. Early, Goal-Directed Therapy for Septic Shock - A Patient- Level Meta-Analysis The New England journal of medicine 06 2017;376(23):2223-2234	Post-hoc secondary analysis or conference abstract
Rüddel et al. Effects of time to source control on 28-day-mortality in patients with severe sepsis or septic shock. Infection 2017;45(1):S49-S50	Post-hoc secondary analysis or conference abstract
Russell et al. The Septic Shock 3.0 definition and trials: A vasopressin and Septic Shock trial experience. Critical Care Medicine 2017;45(6):940-948	Post-hoc secondary analysis or conference abstract
Russell et al. Vasopressin compared with norepinephrine augments the decline of plasma cytokine levels in septic shock. American Journal of Respiratory and Critical Care Medicine 2013;188(3):356-364	Post-hoc secondary analysis or conference abstract
Russell et al. Interaction of vasopressin infusion, corticosteroid treatment, and mortality of septic shock. Critical Care Medicine 2009;37(3):811-818	Post-hoc secondary analysis or conference abstract
Rygård et al. Lower versus higher haemoglobin threshold for blood transfusion in septic shock: Exploratory subgroup analyses of a randomised trial. Intensive Care Medicine Experimental 2016;4	Post-hoc secondary analysis or conference abstract
Rygård et al. Higher vs. lower haemoglobin threshold for transfusion in septic shock: subgroup analyses of the TRISS trial. Acta Anaesthesiologica Scandinavica 2017;61(2):166-175	Post-hoc secondary analysis or conference abstract
Rygård et al. Long-term outcomes in patients with septic shock transfused at a lower versus a higher haemoglobin threshold: the TRISS randomised, multicentre clinical trial Intensive care medicine Nov 2016;42(11):1685-1694	Post-hoc secondary analysis or conference abstract
Saoraya et al. Immunomodulation of therapeutic normothermia in febrile septic shock patients: A randomized controlled trial. Intensive Care Medicine Experimental 2017;5(2):	Post-hoc secondary analysis or conference abstract
Schädler et al. The effect of a novel extracorporeal cytokine hemoadsorption device on IL-6 elimination in septic patients: A randomized controlled trial. PLoS ONE 2017;12(10):	Population includes sepsis / severe sepsis (not only shock)
Schädler et al. Extracorporeal cytokine hemoadsorption in severely septic patients: A multicenter randomized controlled trial. Intensive Care Medicine 2013;39((Kuhlmann M.K.) Vivantes Hospital Friedrichshain, Berlin, Germany):S214	Post-hoc secondary analysis or conference abstract

Search result	Reason for exclusion
Schortgen et al. Respective impact of lowering body temperature and heart rate on mortality in septic shock: mediation analysis of a randomized trial. Intensive Care Medicine 2015;41(10):1800-1808	Post-hoc secondary analysis or conference abstract
Schortgen et al. External cooling reduces vasopressor use in septic shock: Preliminary results from the sepsiscool study. Intensive Care Medicine 2010;36	Post-hoc secondary analysis or conference abstract
Schortgen et al. External cooling accelerates the weaning of vasopressors in septic shock. American Journal of Respiratory and Critical Care Medicine 2011;183(1)	Post-hoc secondary analysis or conference abstract
Scott et al. Lower versus higher haemoglobin threshold for transfusion in septic shock. Journal of the Intensive Care Society 2015;16(4):345-347	Post-hoc secondary analysis or conference abstract
Semeraro et al. Platelet Drop and Fibrinolytic Shutdown in Patients With Sepsis Critical care medicine Dec 2017;():	Post-hoc secondary analysis or conference abstract
Sharma et al. Incidence of acute respiratory distress syndrome from two study sites of the protocolized care for early septic shock trial. Academic Emergency Medicine 2017;24	Post-hoc secondary analysis or conference abstract
Srisawat et al. The immunomodulation effect of Polymyxin-B Hemoperfusion in severe sepsis/septic shock: A randomized controlled trial. Intensive Care Medicine Experimental 2016;4	Population includes sepsis / severe sepsis (not only shock)
Sterling et al. Organ dysfunction in survivors of septic shock treated with early quantitative resuscitation. Academic Emergency Medicine 2013;20(5):S285-S286	Post-hoc secondary analysis or conference abstract
Thompson et al. Drotrecogin alfa (activated) did not reduce mortality at 28 or 90 days in patients with septic shock. Annals of Internal Medicine 2012;157(4):JC4-JC11	Post-hoc secondary analysis or conference abstract
Toma et al. Steroids for patients in septic shock: The results of the CORTICUS trial. Canadian Journal of Emergency Medicine 2011;13(4):273-276	Post-hoc secondary analysis or conference abstract
Tongyoo et al. Hydrocortisone in treatment of severe sepsis and septic shock with acute respiratory distress syndrome: A randomised controlled trial. Intensive Care Medicine Experimental 2015;3	Post-hoc secondary analysis or conference abstract
Toth et al. Effects of IgM-enriched immunoglobulin therapy in septic- shock-induced multiple organ failure: pilot study	Specific subpopulation of septic shock
Venkatesh et al. The ADRENAL study protocol: adjunctive corticosteroid treatment in critically ill patients with septic shock Critical care and resuscitation : journal of the Australasian Academy of Critical Care Medicine 2013;15(2):83-88	Post-hoc secondary analysis or conference abstract
Wacharasint et al. One size does not fit all in severe infection: obesity alters outcome, susceptibility, treatment, and inflammatory response Critical care (London, England) 2013;17(3):R122	Post-hoc secondary analysis or conference abstract

Search result	Reason for exclusion
Wacharasint et al. Normal-range blood lactate concentration in septic shock is prognostic and predictive. Shock 2012;38(1):4-10	Post-hoc secondary analysis or conference abstract
Wiedermann et al. High-dose antithrombin III in the treatment of severe sepsis in patients with a high risk of death: Efficacy and safety. Critical Care Medicine 2006;34(2):285-292	Post-hoc secondary analysis or conference abstract
Xiao et al. Effects of terlipressin on patients with sepsis via improving tissue blood flow. Journal of Surgical Research 2016;200(1):274-282	No mortality outcome reported
Yang et al. Body temperature control in patients with refractory septic shock: too much may be harmful.	Specific subpopulation of septic shock
Yaseen et al. Low-dose hydrocortisone in patients with cirrhosis and septic shock: a randomized controlled trial	Specific subpopulation of septic shock
Yeh et al. The effect of endotoxin adsorber hemoperfusion on microcirculation in patients with severe sepsis and septic shock. Intensive Care Medicine Experimental 2015;3(Population includes sepsis / severe sepsis (not only shock)
Yu et al. Global end-diastolic volume index vs central venous pressure goal-directed fluid resuscitation for chronic obstructive pulmonary disease patients with septic shock: a randomized controlled trial.	Specific subpopulation of septic shock
Yu et al. Global end-diastolic volume index vs CVP goal-directed fluid resuscitation for COPD patients with septic shock: a randomized controlled trial. American Journal of Emergency Medicine 2017;35(1):101-105	Specific subpopulation of septic shock
Yune et al. Infusion of methylene blue in severe sepsis and septic shock: A randomized controlled trial. Critical Care Medicine 2016;44(12):439	Population includes sepsis / severe sepsis (not only shock)
Zhang et al. Shenfu injection for improving cellular immunity and clinical outcome in patients with sepsis or septic shock.	Population includes sepsis / severe sepsis (not only shock)
Zhang et al. Sepsis endotypes and their physiologic characterization using vital signs. Critical Care Medicine 2016;44(12):408	Post-hoc secondary analysis or conference abstract
Zhang et al. Identifying sepsis endotypes and time of onset from interleukin-6 trajectories in septic shock patients. Intensive Care Medicine Experimental 2016;4	Post-hoc secondary analysis or conference abstract
Zhao et al. Pharmacokinetic and pharmacodynamic efficacies of continuous versus intermittent administration of meropenem in patients with severe sepsis and septic shock: A prospective randomized pilot study. Chinese Medical Journal 2017;130(10):1139-1145	Population includes sepsis / severe sepsis (not only shock)
Zhu et al. Varying Presentations and Outcomes of Septic Shock: Should Septic Shock Be Stratified?. The American surgeon Nov 2017;83(11):1235-1240	Post-hoc secondary analysis or conference abstract