815 A Appendices

 To derive our formulae, we need to define formally the stochastic process described by the 817 transition matrices P, P_{K}, P_{C} , and P_{S} . The Markov chain associated with the transition matrix **P** describes a stochastic process $\{X_t\}_{t\geq 0}$ taking values in the i-state space S and satisfying the Markov property

$$
\mathbb{P}\left(\mathbf{X}_{t+1}=i|\mathbf{X}_t=j, X_{t-1}=j_{t-1},\ldots,\mathbf{X}_0=j_0\right)=p_{ji} \tag{60}
$$

821 for any $i, j, j_0, \ldots, j_{t-1} \in \mathcal{S}$. Likewise, the killed Markov chain, the conditional Markov chain, and the sub-Markov chain describe the stochastic processes $\{X_t^{\mathbb{K}}\}_{t\geq 0}$ $\{X_t^{\mathbb{C}}\}_{t\geq 0}$ $\{X_t^{\mathcal{B}}\}_{t\geq 0}$, which ⁸²³ satisfy the Markov property, respectively.

824 A.1 Derivation of the matrix $U_{\rm S}$ and the vector m_S

 $\sum_{i=1}^{325}$ Let *i*, *j* be two target states. The entry $u_{j-\alpha,i-\alpha}^{\mathbb{S}}$ is the probability that an individual initially in $\frac{1}{266}$ target state *j* to reach the state *i* without passing by any other states in *B*. Define the stopping 827 time $T = \min\{t \geq 1 | \mathbf{X}_t \in \mathcal{B}\}$. The time T is the random time — possibly infinite — at which 828 the individual will enter the set \mathcal{B} . In particular, \mathbf{X}_T is the state through which the individual enters for its first time in *B*. Then we can rewrite $u_{j-\alpha,i-\alpha}^{\mathbb{S}}$ as

$$
u_{j-\alpha,i-\alpha}^{\mathbb{S}} = \mathbb{P}_i \left(\mathbf{X}_T = j \right). \tag{61}
$$

By definition of the absorbing probabilities (eqn. 11), for a non target state $k \in \mathcal{B}^c$, we have

$$
a_{j-\alpha,k} = \mathbb{P}_k \left(\mathbf{X}_T = j \right). \tag{62}
$$

833 Using the Chapman-Kolmogorov equation (see e.g., Meyn and Tweedie $[2009]$), we obtain

$$
\mathbb{P}_i (\mathbf{X}_T = j) = \mathbb{P}_i (\mathbf{X}_1 = j) + \sum_{k \in \mathcal{B}^c} \mathbb{P}_i (\mathbf{X}_T = j | \mathbf{X}_1 = k) \mathbb{P}_i (\mathbf{X}_1 = k)
$$

\n
$$
= \mathbb{P}_i (\mathbf{X}_1 = j) + \sum_{k \in \mathcal{B}^c} \mathbb{P}_k (\mathbf{X}_T = j) \mathbb{P}_i (\mathbf{X}_1 = k)
$$

\n
$$
= \mathbb{P}_i (\mathbf{X}_1 = j) + \sum_{k \in \mathcal{B}^c} a_{\alpha - j,k} \mathbb{P}_i (\mathbf{X}_1 = k)
$$

\n
$$
= u_{ji} + \sum_{k \in \mathcal{B}^c} a_{\alpha - j,k} u_{ki}.
$$
 (63)

834 In matrix notation, equation (63) is equivalent to equation (18) , i.e.

$$
\mathbf{U}_{\mathbb{S}} = \mathbf{A}\mathbf{L} + \mathbf{Q} \tag{64}
$$

836 where the matrices **L** and **Q** are extracted from the matrix **U**, as in equation (7) .

837 A.2 Proof that $X_{\mathbb{C}}$ is a Markov chain

 Iosifescu [1980] (section 3.2.9) proves that an absorbing Markov chain, with respect to the conditional probability that it is absorbed by a specific state, is still an absorbing Markov chain. Here, we generalise this statement to the condition that the chain is absorbed in a specific set of states.

Let's define the event $A = \{X^{\mathbb{K}} \text{ is absorbed in the target set } B\}$, i.e. the killed chain is as absorbed in the target set. We consider the stochastic process $X^{\mathbb{C}}$, living on the space \mathcal{T} , ⁸⁴⁴ defined by

$$
\mathbb{P}\left(\mathbf{X}_{t}^{\mathbb{C}}\in B\right)=\mathbb{P}\left(\mathbf{X}_{t}^{\mathbb{K}}\in B|A\right)
$$
\n(65)

for any measurable set $B \subset \mathcal{S}$. To ease the notation, we write $\mathbb{P}(\mathbf{X}_t^{\mathbb{K}} \in B|A) = \mathbb{P}_A(\mathbf{X}_t^{\mathbb{K}} \in B)$. By definition, the process $X^{\mathbb{C}}$ corresponds to the killed Markov chain, where trajectories ⁸⁴⁸ encountering death before target states are set aside. We first prove that $X^{\mathbb{C}}$ is a Markov chain 849 and then we show that its transition probabilities are describe by the matrix $P_{\mathbb{C}}$ defined in ⁸⁵⁰ Section 3.2. As a consequence, this proves that the conditional Markov chain is indeed a Markov ⁸⁵¹ chain and that it corresponds to the killed Markov chain, where trajectories encountering death ⁸⁵² before target states are set aside.

⁸⁵³ Io prove that $X^{\mathbb{C}}$ is a Markov chain, we only need to show that it satisfies the Markov ⁸⁵⁴ property, i.e.

$$
\mathbb{P}\left(\mathbf{X}_{t+1}^{\mathbb{C}}=i_{t+1}|\mathbf{X}_{t}^{\mathbb{C}}=i_{t},\ldots,\mathbf{X}_{0}^{\mathbb{C}}=i_{0}\right)=\mathbb{P}\left(\mathbf{X}_{t+1}^{\mathbb{C}}=i_{t+1}|\mathbf{X}_{t}^{\mathbb{C}}=i_{t}\right),\tag{66}
$$

 f_{356} for $(i_0, \ldots, i_{t+1}) \in \mathcal{T}^{t+2}$.

Fix $(i_0, \ldots, i_{t+1}) \in \mathcal{T}^{t+2}$, and define the event $B_s = {\mathbf{X}_s^K = i_s, \ldots, \mathbf{X}_t^K = i_0}, \text{ for } 0 \le s \le t$. From the definitions of conditional probabilities and the process $\mathbf{X}^{\mathbb{C}}$, we have

$$
{}^{\text{859}}\mathbb{P}\left(\mathbf{X}_{t+1}^{\mathbb{C}}=i_{t+1}|\mathbf{X}_{t}^{\mathbb{C}}=i_{t},\ldots,\mathbf{X}_{0}^{\mathbb{C}}=i_{0}\right)=\frac{\mathbb{P}\left(\{\mathbf{X}_{t+1}^{\mathbb{K}}=i_{t+1}\}\cap B_{0}\cap A\right)}{\mathbb{P}\left(A\cap B_{0}\right)}\tag{67}
$$

860 If $(i_0, \ldots, i_t) \notin \mathcal{B}^{t+1}$, then

$$
\mathbb{P}(A \cap B_s) = \mathbb{P}(A|B_s) \mathbb{P}(B_s)
$$

$$
= \mathbb{P}\left(A|\mathbf{X}_t^{\mathbb{K}} = i_t\right) \mathbb{P}(B_s)
$$

$$
p_{i_t}^a \mathbb{P}(B_s),
$$

⁸⁶¹ for any $0 \leq s \leq t$. The second equality is is a consequence of the Markov property of the killed ⁸⁶² Markov chain, and the third equality follows from the definition of the absorbing probability ⁸⁶³ vector p*^a* (see eqn 12).

⁸⁶⁴ Similarly,

$$
\mathbb{P}\left(\left\{\mathbf{X}_{t+1}^{\mathbb{K}}=i_{t+1}\right\}\cap B_s\cap A\right) = \mathbb{P}\left(\left\{\mathbf{X}_{t+1}^{\mathbb{K}}=i_{t+1}\right\}\cap A|B_s\right)\mathbb{P}\left(B_s\right) \tag{68}
$$

$$
= \mathbb{P}\left(\{\mathbf{X}_{t+1}^{\mathbb{K}} = i_{t+1}\} \cap A | \mathbf{X}_{t}^{\mathbb{K}} = i_{t}\right) \mathbb{P}\left(B_{s}\right)
$$
\n(69)

$$
= \mathbb{P}(B_s) \mathbb{I}_{\mathcal{B}}(i_{t+1}) \mathbb{P}_{i_t} \left(\mathbf{X}_{t+1}^{\mathbb{K}} = i_{t+1} \right)
$$
\n(70)

$$
+\mathbb{P}\left(B_s\right)\left(1-\mathbb{I}_{\mathcal{B}}(i_{t+1})\right)\mathbb{P}\left(A|\mathbf{X}_{t+1}^{\mathbb{K}}=i_{t+1}\right)\mathbb{P}_{i_{t}}\left(\mathbf{X}_{t+1}^{\mathbb{K}}=i_{t+1}\right)
$$
\n(71)

$$
= \mathbb{P}(B_s) \left[\mathbb{I}_{\mathcal{B}}(i_{t+1}) \mathbb{P}_{i_t} \left(\mathbf{X}_{t+1}^{\mathbb{K}} = i_{t+1} \right) + (1 - \mathbb{I}_{\mathcal{B}}(i_{t+1})) p_{i_{t+1}}^a \mathbb{P}_{i_t} \left(\mathbf{X}_{t+1}^{\mathbb{K}} = i_{t+1} \mathbb{I} \right) \right)
$$

- 865 where $\mathbb{I}_{\mathcal{B}}(k)$ equals 1 if $k \in \mathcal{B}$ and 0 otherwise.
- 866 If $i_t \in \mathcal{B}$, then $B_s \subset A$, for $0 \le s \le t$, and

$$
\frac{\mathbb{P}\left(\left\{\mathbf{X}_{t+1}^{\mathbb{K}}=i_{t+1}\right\}\cap B_{s}\cap A\right)}{\mathbb{P}\left(A\cap B_{s}\right)} = \frac{\mathbb{P}\left(\left\{\mathbf{X}_{t+1}^{\mathbb{K}}=i_{t+1}\right\}\cap B_{s}\right)}{\mathbb{P}\left(B_{s}\right)}\tag{73}
$$

$$
= \mathbb{P}\left(\mathbf{X}_{t+1}^{\mathbb{K}} = i_{t+1}|B_s\right) \tag{74}
$$

$$
= \mathbb{P}\left(\mathbf{X}_{t+1}^{\mathbb{K}} = i_{t+1} | \mathbf{X}_t^{\mathbb{K}} = i_t\right) \tag{75}
$$

 $\frac{867}{20}$ Equations [\(72\)](#page-2-0) and [\(75\)](#page-2-1) imply that the ratio on the right hand side of equation [\(67\)](#page-1-0) does not 868 depend on *s*, for $0 \leq s \leq t$. In particular,

$$
\mathbb{P}\left(\mathbf{X}_{t+1}^{\mathbb{C}}=i_{t+1}|\mathbf{X}_{t}^{\mathbb{C}}=i_{t},\ldots,\mathbf{X}_{0}^{\mathbb{C}}=i_{0}\right) = \frac{\mathbb{P}\left(\left\{\mathbf{X}_{t+1}^{\mathbb{K}}=i_{t+1}\right\}\cap B_{t}\cap A\right)}{\mathbb{P}\left(A\cap B_{t}\right)}\tag{76}
$$

$$
= \mathbb{P}\left(\mathbf{X}_{t+1}^{\mathbb{C}} = i_{t+1} | \mathbf{X}_t^{\mathbb{C}} = i_t\right).
$$
 (77)

- ⁸⁶⁹ This prove that $X^{\mathbb{C}}$ satisfies the Markov property.
- σ The transition probabilities of the Markov chain $X^{\mathbb{C}}$ follow from the equations above. For

871 $j \in \mathcal{T}$ and $i \notin \mathcal{B}$,

$$
\mathbb{P}\left(\mathbf{X}_{t+1}^{\mathbb{C}}=j|\mathbf{X}_{t}^{\mathbb{C}}=i\right)=\frac{p_{j}^{a}p_{ji}^{\mathbb{K}}}{p_{i}^{a}},\tag{78}
$$

⁸⁷³ with the convention that $p_k^a = 1$ for $k \in \mathcal{B}$. And we have for $i, j \in \mathcal{B}$,

$$
\mathbb{P}\left(\mathbf{X}_{t+1}^{\mathbb{C}}=j|\mathbf{X}_{t}^{\mathbb{C}}=i\right)=1.\tag{79}
$$

⁸⁷⁵ It follows form equations [\(78\)](#page-3-0) and [\(79\)](#page-3-1) that the transition probabilities of the Markov chain 876 $X^{\mathbb{C}}$ are given by the matrix $P_{\mathbb{C}}$ defined in Section 3.2, i.e.

$$
\mathbf{P}_{\mathbb{C}} = \left(\begin{array}{c|c} \mathbf{U}_{\mathbb{C}} & \mathbf{0} \\ \hline \mathbf{M}_{\mathbb{C}} & \mathbf{I}_{\beta} \end{array}\right) \tag{80}
$$

⁸⁷⁸ where

$$
\mathbf{U}_{\mathbb{C}} = \mathbf{D}_a \mathbf{U}_{\mathbb{K}} \mathbf{D}_a^{-1} \text{ and } \mathbf{M}_{\mathbb{C}} = \mathbf{K} \mathbf{D}_a^{-1}, \tag{81}
$$

880 where $D_a = \text{diag}(p_a)$ is a diagonal matrix with, on the diagonal, the probabilities of absorption ⁸⁸¹ in the target states.

882 A.3 Moments of occupancy times

 To calculate the moments of the occupancy time for individuals initially outside the target set *B*, we use the strong Markov property. If the individual never enters in *B*, then its occupancy ⁸⁸⁵ time is zero. If it does enter in \mathcal{B} , say through the state *j*, then the law of its occupancy time is equal to the law of the occupancy time for an individual starting in the state *j*. To fix the ⁸⁸⁷ idea, consider the state $i \in \mathcal{B}^c$. Then

$$
\mathbb{E}(\tau_i^m) = \sum_{\ell=1}^{\infty} \ell^m \mathbb{P}(\tau_i = \ell)
$$

\n
$$
= \sum_{\ell=1}^{\infty} \ell^m \left(\sum_{j \in \mathcal{B}} \mathbb{P}(\tau_i = \ell | \text{enter in } \mathcal{B} \text{ in } j) \mathbb{P}(\text{enter in } \mathcal{B} \text{ in } j) \right)
$$

\n
$$
= \sum_{\ell=1}^{\infty} \ell^m \left(\sum_{j \in \mathcal{B}} \mathbb{P}(\tau_j = \ell) a_{ji} \right)
$$

\n
$$
= \sum_{j \in \mathcal{B}} a_{ji} \sum_{\ell=1}^{\infty} \ell^m \mathbb{P}(\tau_j = \ell)
$$

\n
$$
= \sum_{j \in \mathcal{B}} a_{ji} \mathbb{E}(\tau_j^m), \tag{82}
$$

where a_{ji} is the probability that the killed Markov chain, starting in state *i*, is absorbed by the 889 state j , as in Section 3.1.1. In matrix notation, equation (82) is equivalent to

$$
\boldsymbol{\tau}_{\text{out}}^k = \mathbf{A}^{\mathsf{T}} \boldsymbol{\tau}_{\text{in}}^k. \tag{83}
$$

891 A.4 Covariance between the occupancy times in two disjoint sets

892 Here, we calculate the covariance between the occupancy time in two disjoint subsets B_1 and 893 *B*₂, of the transient set *T*. As stated in the main text, the covariance between τ_{B_1} and τ_{B_2} is

 $Cov\left(\boldsymbol{\tau}_{\mathcal{B}_1}, \boldsymbol{\tau}_{\mathcal{B}_2}\right) = \mathbb{E}\left[\left(\boldsymbol{\tau}_{\mathcal{B}_1} - \boldsymbol{\tau}_{\mathcal{B}_1}^1\right)\left(\boldsymbol{\tau}_{\mathcal{B}_2} - \boldsymbol{\tau}_{\mathcal{B}_2}^1\right)\right].$ ⁽⁸⁴⁾

We rewrite the covariance between $\tau_{\mathcal{B}_1}$ and $\tau_{\mathcal{B}_2}$ in terms of their variances and the variance of ⁸⁹⁶ their sum,

$$
Cov(\boldsymbol{\tau}_{\mathcal{B}_1},\boldsymbol{\tau}_{\mathcal{B}_2})=\frac{1}{2}\left[\text{Var}(\boldsymbol{\tau}_{\mathcal{B}_1}+\boldsymbol{\tau}_{\mathcal{B}_2})-\text{Var}(\boldsymbol{\tau}_{\mathcal{B}_1})-\text{Var}(\boldsymbol{\tau}_{\mathcal{B}_2})\right].\tag{85}
$$

898 Since the sets \mathcal{B}_1 and \mathcal{B}_2 are disjoint, the occupancy time in the union $\mathcal{B}_1 \cup \mathcal{B}_2$ is the sum of ⁸⁹⁹ the occupancy times in each of the subsets. Thus,

$$
Cov(\boldsymbol{\tau}_{\mathcal{B}_1}, \boldsymbol{\tau}_{\mathcal{B}_2}) = \frac{1}{2} \left[Var(\boldsymbol{\tau}_{\mathcal{B}_1 \cup \mathcal{B}_2}) - Var(\boldsymbol{\tau}_{\mathcal{B}_1}) - Var(\boldsymbol{\tau}_{\mathcal{B}_2}) \right]. \tag{86}
$$

⁹⁰¹ The variances Var $(\tau_{\mathcal{B}_1\cup\mathcal{B}_2})$, Var $(\tau_{\mathcal{B}_1})$, and Var $(\tau_{\mathcal{B}_2})$ are calculated with the formulae (24) and 902 (26) applied to the sets $\mathcal{B}_1 \cup \mathcal{B}_2$, \mathcal{B}_1 , and \mathcal{B}_2 , respectively.

⁹⁰³ A.5 One-step transition probabilities from *B* given return

⁹⁰⁴ Let w_{ij}^{in} be the conditional probability that an individual in target state $\alpha + j$ moves to the 905 target state $\alpha + i$, in one time-step, given that it eventually returns to the target set. Then,

$$
w_{ji}^{\text{in}} := \mathbb{P}_{\alpha+i} \left(X_1 = \alpha + j | T < \infty \right) = \frac{\mathbb{P}_{\alpha+i} \left(X_1 = \alpha + j, T < \infty \right)}{\mathbb{P}_{\alpha+i} \left(T < \infty \right)} \\
= \frac{\mathbb{P}_{\alpha+i} \left(X_1 = \alpha + j \right)}{\mathbb{P}_{\alpha+i} \left(T < \infty \right)} \\
= \frac{u_{\alpha+j,\alpha+i}}{\sum_{\ell \in \mathcal{B}} u_{\ell i}^{\mathcal{B}}} \\
= \frac{u_{\alpha+j,\alpha+i}}{p_i^r}, \tag{87}
$$

⁹⁰⁶ where p_r describes the return probabilities, as defined in equation (47). Thus,

$$
\mathbf{W}_{\text{in}} = \mathbf{Q} \mathbf{D}_r^{-1} \quad \text{of size } \beta \times \beta,
$$
\n(88)

908 where $\mathbf{D}_r = \text{diag}(\mathbf{p}_r)$ and the matrix **Q** is extracted from the matrix **U**, as in equation (7). 909 Let w_{ij}^{out} be the conditional probability that an individual in target state $\alpha + j$ moves to the ⁹¹⁰ non-target state *i*, in one time-step, given that it eventually returns to the target set. Then

$$
w_{ji}^{\text{out}} := \mathbb{P}_{\alpha+i} \left(X_1 = j | T < \infty \right) = \frac{\mathbb{P}_{\alpha+i} \left(T < \infty | X_1 = j \right) \mathbb{P}_{\alpha+i} \left(X_1 = j \right)}{\mathbb{P}_{\alpha+i} \left(T < \infty \right)} \\
= \frac{\mathbb{P}_{\alpha+i} \left(X_1 = j \right) \mathbb{P}_{\alpha+j} \left(T < \infty \right)}{\mathbb{P}_{\alpha+i} \left(T < \infty \right)} \\
= \frac{u_{j,\alpha+i} \sum_{\ell \in \mathcal{B}} a_{\ell j}}{\sum_{\ell \in \mathcal{B}} u_{\ell i}^{\mathcal{B}}} \\
= \frac{u_{j,\alpha+i} p_j^a}{p_i^r}, \tag{89}
$$

 911 where the vector p_a describes the probabilities of absorption in the target states, as defined in ⁹¹² eqn. (11). Thus,

$$
\mathbf{W}_{\text{out}} = \mathbf{D}_a \mathbf{L} \mathbf{D}_r^{-1} \quad \text{of size } \alpha \times \beta,
$$
\n(90)

914 where $\mathbf{D}_r = \text{diag}(\mathbf{p}_r)$, $\mathbf{D}_a = \text{diag}(\mathbf{p}_a)$, and the matrix **L** is extracted form the matrix **U**, as in ⁹¹⁵ equation (7).

 \mathbb{N}_{916} Now, we derive the moments of μ , conditional on the individual returning to the target set.

917 Let $\alpha + i$ be a target state. Then

$$
\mathbb{E}[\mu_i^k | T < \infty] \quad = \quad \sum_{n=1}^{\infty} n^k \mathbb{P}(\mu_i = n | T < \infty) \tag{91}
$$

$$
= \mathbb{P}(\mu_i = 1 | T < \infty) + \sum_{n=2}^{\infty} n^k \sum_{j \in \mathcal{B}^c} \mathbb{P}(t_j^{\mathcal{B}} = n-1) \mathbb{P}_i(X_1 = j | T < \infty) \tag{92}
$$

$$
= \mathbb{P}(\mu_i = 1 | T < \infty) + \sum_{j \in \mathcal{B}^c} \mathbb{P}_i(X_1 = j | T < \infty) \sum_{n=1}^{\infty} (n+1)^k \mathbb{P}(t_j^{\mathcal{B}} = n) \tag{93}
$$

$$
= \mathbb{P}(\mu_i = 1 | T < \infty) + \sum_{j \in \mathcal{B}^c} \mathbb{P}_i(X_1 = j | T < \infty) \sum_{n=1}^{\infty} \sum_{r=0}^k \binom{k}{r} n^r \mathbb{P}(t_j^{\mathcal{B}} = n) \tag{94}
$$

$$
= \mathbb{P}(\mu_i = 1 | T < \infty) + \sum_{j \in \mathcal{B}^c} \mathbb{P}_i(X_1 = j | T < \infty) \sum_{r=0}^k {k \choose r} t_{\mathcal{B}_j}^r
$$
(95)

$$
= 1 + \sum_{j \in \mathcal{B}^c} w_{ji}^{\text{out}} \sum_{r=1}^k {k \choose r} t_{\mathcal{B}_j}^r.
$$
 (96)

⁹¹⁸ Hence, in matrix notation,

919
$$
\mathbb{E}[\boldsymbol{\mu}^{k} | T < \infty] = \mathbf{1}_{\beta} + \sum_{r=1}^{k} {k \choose r} \mathbf{W}_{\text{out}}^{\mathsf{T}} \mathbf{t}_{\mathcal{B}}^{r}.
$$
 (97)

920 B Supplementary Material

⁹²¹ 1. Figues S1 and S2 are provided.

922 2. We provide the MATLAB files (see below) to carry out the calculations presented the Ex-⁹²³ ample.

Figure S1: Distribution of the time required to return to the set \mathcal{B}_b for an individual initially in the state successful breeder, under favourable condition (left), ordinary condition (centre), and unfavourable condition (right). The y-axis is truncated at 0*.*05 to enhance the readability of the plots. The probability that the return time equals 1 is 0*.*983 under favorable ice conditions, 0*.*9403 under ordinary ice conditions, and 0*.*8444 under unfavorable ice conditions.

Figure S2: Distribution of the time required to reach the set B_b for an individual initially in the state non breeder, under favourable condition (left), ordinary condition (centre), and unfavourable condition (right). The y-axis is truncated at 0*.*25 to enhance the readability of the plots. The probability that the reaching time equals 1 is 0*.*658 under favorable ice conditions, 0*.*37 under ordinary ice conditions, and 0*.*19 under unfavorable ice conditions.