
A Appendices815

To derive our formulae, we need to define formally the stochastic process described by the816

transition matrices P,PK,PC, and PS. The Markov chain associated with the transition matrix817

P describes a stochastic process {Xt}t�0 taking values in the i-state space S and satisfying the818

Markov property819

P (Xt+1 = i|Xt = j,Xt�1 = jt�1, . . . ,X0 = j0) = pji (60)820

for any i, j, j0, . . . , jt�1 2 S. Likewise, the killed Markov chain, the conditional Markov chain,821

and the sub-Markov chain describe the stochastic processes {XK
t }t�0 {XC

t }t�0 {XB
t }t�0, which822

satisfy the Markov property, respectively.823

A.1 Derivation of the matrix US and the vector mS824

Let i, j be two target states. The entry uSj�↵,i�↵ is the probability that an individual initially in825

target state j to reach the state i without passing by any other states in B. Define the stopping826

time T = min{t � 1|Xt 2 B}. The time T is the random time — possibly infinite — at which827

the individual will enter the set B. In particular, XT is the state through which the individual828

enters for its first time in B. Then we can rewrite uSj�↵,i�↵ as829

uSj�↵,i�↵ = Pi (XT = j) . (61)830

By definition of the absorbing probabilities (eqn. 11), for a non target state k 2 Bc, we have831

aj�↵,k = Pk (XT = j) . (62)832

Using the Chapman-Kolmogorov equation (see e.g., Meyn and Tweedie [2009]), we obtain833

Pi (XT = j) = Pi (X1 = j) +
X

k2Bc

Pi (XT = j|X1 = k)Pi (X1 = k)

= Pi (X1 = j) +
X

k2Bc

Pk (XT = j)Pi (X1 = k)

= Pi (X1 = j) +
X

k2Bc

a↵�j,kPi (X1 = k)

= uji +
X

k2Bc

a↵�j,kuki. (63)
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In matrix notation, equation (63) is equivalent to equation (18), i.e.834

US = AL+Q (64)835

where the matrices L and Q are extracted from the matrix U, as in equation (7).836

A.2 Proof that XC is a Markov chain837

Iosifescu [1980] (section 3.2.9) proves that an absorbing Markov chain, with respect to the838

conditional probability that it is absorbed by a specific state, is still an absorbing Markov839

chain. Here, we generalise this statement to the condition that the chain is absorbed in a840

specific set of states.841

Let’s define the event A = {XK is absorbed in the target set B}, i.e. the killed chain is842

absorbed in the target set. We consider the stochastic process X
C, living on the space T ,843

defined by844

P
⇣
X

C
t 2 B

⌘
= P

⇣
X

K
t 2 B|A

⌘
(65)845

for any measurable set B ⇢ S. To ease the notation, we write P
�
X

K
t 2 B|A

�
= PA

�
X

K
t 2 B

�
.846

By definition, the process X
C corresponds to the killed Markov chain, where trajectories847

encountering death before target states are set aside. We first prove that XC is a Markov chain848

and then we show that its transition probabilities are describe by the matrix PC defined in849

Section 3.2. As a consequence, this proves that the conditional Markov chain is indeed a Markov850

chain and that it corresponds to the killed Markov chain, where trajectories encountering death851

before target states are set aside.852

To prove that X
C is a Markov chain, we only need to show that it satisfies the Markov853

property, i.e.854

P
⇣
X

C
t+1 = it+1|XC

t = it, . . . ,X
C
0 = i0

⌘
= P

⇣
X

C
t+1 = it+1|XC

t = it
⌘
, (66)855

for (i0, . . . , it+1) 2 T t+2.856

Fix (i0, . . . , it+1) 2 T t+2, and define the event Bs = {XK
s = is, . . . ,XK

t = i0}, for 0  s  t.857

From the definitions of conditional probabilities and the process XC, we have858

P
⇣
X

C
t+1 = it+1|XC

t = it, . . . ,X
C
0 = i0

⌘
=

P
�
{XK

t+1 = it+1} \B0 \A
�

P (A \B0)
(67)859
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If (i0, . . . , it) 62 Bt+1, then860

P (A \Bs) = P (A|Bs)P (Bs)

= P
⇣
A|XK

t = it
⌘
P (Bs)

paitP (Bs) ,

for any 0  s  t. The second equality is is a consequence of the Markov property of the killed861

Markov chain, and the third equality follows from the definition of the absorbing probability862

vector pa (see eqn 12).863

Similarly,864

P
⇣
{XK

t+1 = it+1} \Bs \A
⌘

= P
⇣
{XK

t+1 = it+1} \A|Bs

⌘
P (Bs) (68)

= P
⇣
{XK

t+1 = it+1} \A|XK
t = it

⌘
P (Bs) (69)

= P (Bs) IB(it+1)Pit

⇣
X

K
t+1 = it+1

⌘
(70)

+P (Bs) (1� IB(it+1))P
⇣
A|XK

t+1 = it+1

⌘
Pit

⇣
X

K
t+1 = it+1

⌘
(71)

= P (Bs)
h
IB(it+1)Pit

⇣
X

K
t+1 = it+1

⌘
+ (1� IB(it+1))p

a
it+1

Pit

⇣
X

K
t+1 = it+1

⌘i
(72)

where IB(k) equals 1 if k 2 B and 0 otherwise.865

If it 2 B, then Bs ⇢ A, for 0  s  t, and866

P
�
{XK

t+1 = it+1} \Bs \A
�

P (A \Bs)
=

P
�
{XK

t+1 = it+1} \Bs
�

P (Bs)
(73)

= P
⇣
X

K
t+1 = it+1|Bs

⌘
(74)

= P
⇣
X

K
t+1 = it+1|XK

t = it
⌘

(75)

Equations (72) and (75) imply that the ratio on the right hand side of equation (67) does not867

depend on s, for 0  s  t. In particular,868

P
⇣
X

C
t+1 = it+1|XC

t = it, . . . ,X
C
0 = i0

⌘
=

P
�
{XK

t+1 = it+1} \Bt \A
�

P (A \Bt)
(76)

= P
⇣
X

C
t+1 = it+1|XC

t = it
⌘
. (77)

This prove that XC satisfies the Markov property.869

The transition probabilities of the Markov chain X
C follow from the equations above. For870
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j 2 T and i 62 B,871

P
⇣
X

C
t+1 = j|XC

t = i
⌘
=

pajp
K
ji

pai
, (78)872

with the convention that pak = 1 for k 2 B. And we have for i, j 2 B,873

P
⇣
X

C
t+1 = j|XC

t = i
⌘
= 1. (79)874

It follows form equations (78) and (79) that the transition probabilities of the Markov chain875

X
C are given by the matrix PC defined in Section 3.2, i.e.876

PC =

0

BB@
UC 0

MC I�

1

CCA (80)877

where878

UC = DaUKD
�1
a and MC = KD

�1
a , (81)879

where Da = diag (pa) is a diagonal matrix with, on the diagonal, the probabilities of absorption880

in the target states.881

A.3 Moments of occupancy times882

To calculate the moments of the occupancy time for individuals initially outside the target set883

B, we use the strong Markov property. If the individual never enters in B, then its occupancy884

time is zero. If it does enter in B, say through the state j, then the law of its occupancy time885

is equal to the law of the occupancy time for an individual starting in the state j. To fix the886
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idea, consider the state i 2 Bc. Then887

E(⌧mi ) =
1X

`=1

`mP(⌧i = `)

=
1X

`=1

`m

0

@
X

j2B
P(⌧i = `|enter in B in j)P(enter in B in j)

1

A

=
1X

`=1

`m

0

@
X

j2B
P(⌧j = `)aji

1

A

=
X

j2B
aji

1X

`=1

`mP(⌧j = `)

=
X

j2B
ajiE(⌧mj ), (82)

where aji is the probability that the killed Markov chain, starting in state i, is absorbed by the888

state j, as in Section 3.1.1. In matrix notation, equation (82) is equivalent to889

⌧ k
out = A

T⌧ k
in. (83)890

A.4 Covariance between the occupancy times in two disjoint sets891

Here, we calculate the covariance between the occupancy time in two disjoint subsets B1 and892

B2, of the transient set T . As stated in the main text, the covariance between ⌧B1 and ⌧B2 is893

Cov (⌧B1 , ⌧B2) = E
⇥�
⌧B1 � ⌧ 1

B1

� �
⌧B2 � ⌧ 1

B2

�⇤
. (84)894

We rewrite the covariance between ⌧B1 and ⌧B2 in terms of their variances and the variance of895

their sum,896

Cov (⌧B1 , ⌧B2) =
1

2
[Var (⌧B1 + ⌧B2)�Var (⌧B1)�Var (⌧B2)] . (85)897

Since the sets B1 and B2 are disjoint, the occupancy time in the union B1 [ B2 is the sum of898

the occupancy times in each of the subsets. Thus,899

Cov (⌧B1 , ⌧B2) =
1

2
[Var (⌧B1[B2)�Var (⌧B1)�Var (⌧B2)] . (86)900

The variances Var (⌧B1[B2), Var (⌧B1), and Var (⌧B2) are calculated with the formulae (24) and901

(26) applied to the sets B1 [ B2, B1, and B2, respectively.902
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A.5 One-step transition probabilities from B given return903

Let win
ij be the conditional probability that an individual in target state ↵ + j moves to the904

target state ↵+ i, in one time-step, given that it eventually returns to the target set. Then,905

win
ji := P↵+i (X1 = ↵+ j|T < 1) =

P↵+i (X1 = ↵+ j, T < 1)

P↵+i (T < 1)

=
P↵+i (X1 = ↵+ j)

P↵+i (T < 1)

=
u↵+j,↵+iP

`2B uB`i

=
u↵+j,↵+i

pri
, (87)

where pr describes the return probabilities, as defined in equation (47). Thus,906

Win = QD
�1
r of size � ⇥ �, (88)907

where Dr = diag (pr) and the matrix Q is extracted from the matrix U, as in equation (7).908

Let wout
ij be the conditional probability that an individual in target state ↵ + j moves to the909

non-target state i, in one time-step, given that it eventually returns to the target set. Then910

wout
ji := P↵+i (X1 = j|T < 1) =

P↵+i (T < 1|X1 = j)P↵+i(X1 = j)

P↵+i (T < 1)

=
P↵+i(X1 = j)P↵+j (T < 1)

P↵+i (T < 1)

=
uj,↵+i

P
`2B a`jP

`2B uB`i

=
uj,↵+ipaj

pri
, (89)

where the vector pa describes the probabilities of absorption in the target states, as defined in911

eqn. (11). Thus,912

Wout = DaLD
�1
r of size ↵⇥ �, (90)913

where Dr = diag (pr), Da = diag (pa), and the matrix L is extracted form the matrix U, as in914

equation (7).915

Now, we derive the moments of µ, conditional on the individual returning to the target set.916
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Let ↵+ i be a target state. Then917

E[µk
i |T < 1] =

1X

n=1

nkP(µi = n|T < 1) (91)

= P(µi = 1|T < 1) +
1X

n=2

nk
X

j2Bc

P(tBj = n� 1)Pi(X1 = j|T < 1) (92)

= P(µi = 1|T < 1) +
X

j2Bc

Pi(X1 = j|T < 1)
1X

n=1

(n+ 1)kP(tBj = n) (93)

= P(µi = 1|T < 1) +
X

j2Bc

Pi(X1 = j|T < 1)
1X

n=1

kX

r=0

✓
k

r

◆
nrP(tBj = n)(94)

= P(µi = 1|T < 1) +
X

j2Bc

Pi(X1 = j|T < 1)
kX

r=0

✓
k

r

◆
trBj

(95)

= 1 +
X

j2Bc

wout
ji

kX

r=1

✓
k

r

◆
trBj

. (96)

Hence, in matrix notation,918

E[µk|T < 1] = 1� +
kX

r=1

✓
k

r

◆
W

T
outt

r
B. (97)919

B Supplementary Material920

1. Figues S1 and S2 are provided.921

2. We provide the MATLAB files (see below) to carry out the calculations presented the Ex-922

ample.923
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Figure S1: Distribution of the time required to return to the set Bb for an individual initially in the
state successful breeder, under favourable condition (left), ordinary condition (centre), and unfavourable
condition (right). The y-axis is truncated at 0.05 to enhance the readability of the plots. The probability
that the return time equals 1 is 0.983 under favorable ice conditions, 0.9403 under ordinary ice conditions,
and 0.8444 under unfavorable ice conditions.
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Figure S2: Distribution of the time required to reach the set Bb for an individual initially in the state
non breeder, under favourable condition (left), ordinary condition (centre), and unfavourable condition
(right). The y-axis is truncated at 0.25 to enhance the readability of the plots. The probability that the
reaching time equals 1 is 0.658 under favorable ice conditions, 0.37 under ordinary ice conditions, and
0.19 under unfavorable ice conditions.
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