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A Appendices

To derive our formulae, we need to define formally the stochastic process described by the
transition matrices P, Pk, Pc, and Ps. The Markov chain associated with the transition matrix
P describes a stochastic process {X;}+>0 taking values in the i-state space S and satisfying the
Markov property

P (X1 =i Xe = J, Xom1 = Je—1, ..., Xo = Jo) = Dji (60)

for any 4, 4, jo,...,jt—1 € S. Likewise, the killed Markov chain, the conditional Markov chain,
and the sub-Markov chain describe the stochastic processes {X}}i>0 {XF }i>0 {XFP}i>0, which

satisfy the Markov property, respectively.

A.1 Derivation of the matrix Ug and the vector mg

S
J—ai—

Let 4, j be two target states. The entry u is the probability that an individual initially in
target state j to reach the state ¢ without passing by any other states in B. Define the stopping
time 7' = min{¢t > 1|X; € B}. The time T is the random time — possibly infinite — at which

the individual will enter the set B. In particular, Xp is the state through which the individual

enters for its first time in B. Then we can rewrite u]S-_ oi—a @S
S .
Uj—qji—a = P; (XT = ]) . (61)

By definition of the absorbing probabilities (eqn. 11), for a non target state k € B¢, we have
aj—ak =Pr (Xr =j). (62)
Using the Chapman-Kolmogorov equation (see e.g., [ ]), we obtain

Py (Xp=j) = Pi(Xi=j)+ Y Pi(Xp=jXi=kPi (X, =k)

keBe
= Pi(Xi=j)+ > Pp(Xp=j)P; (X1 =k)
keBe
= P;(X1=j)+ Z aa—j1lPi (X1 = k)
keBe
= Uj + Z Qo —j,kUKi (63)
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In matrix notation, equation (63) is equivalent to equation (18), i.e.
Us=AL+Q (64)
where the matrices L and Q are extracted from the matrix U, as in equation (7).

A.2 Proof that X¢ is a Markov chain

[ | (section 3.2.9) proves that an absorbing Markov chain, with respect to the
conditional probability that it is absorbed by a specific state, is still an absorbing Markov
chain. Here, we generalise this statement to the condition that the chain is absorbed in a
specific set of states.

Let’s define the event A = {X¥ is absorbed in the target set B}, i.e. the killed chain is
absorbed in the target set. We consider the stochastic process XC, living on the space T,
defined by

P (X;C € B) =P (XE<§ € B]A) (65)

for any measurable set B C S. To ease the notation, we write P (XF € B]A) =Py (ng € B).

By definition, the process X corresponds to the killed Markov chain, where trajectories
encountering death before target states are set aside. We first prove that X is a Markov chain
and then we show that its transition probabilities are describe by the matrix P¢ defined in
Section 3.2. As a consequence, this proves that the conditional Markov chain is indeed a Markov
chain and that it corresponds to the killed Markov chain, where trajectories encountering death
before target states are set aside.

To prove that XC is a Markov chain, we only need to show that it satisfies the Markov

property, i.e.
P (Xi&1 =X = dp,..., XS = io) —Pp (X;CH = i1 |XC = it> , (66)

for (ig,...,it+1) € T2,
Fix (ig,...,3+1) € T'T2, and define the event B, = {XK =i, ... XK =iy}, for 0 < s < t.
From the definitions of conditional probabilities and the process XC, we have

P ({X{, = i1} NByNA)
P (A N BO)

C . C . C .
1&»(){1&+1 = i XC =i, ..., XE :zo) -

40



860

861

862

863

864

865

866

867

868

869

870

If (ig,...,ir) & B, then

P (A N Bs) =P (A|Bs) P (Bs)
- P (A\XE<§ - it) P (B,)
PP (Bs),
for any 0 < s <t. The second equality is is a consequence of the Markov property of the killed

Markov chain, and the third equality follows from the definition of the absorbing probability

vector p, (see eqn 12).

Similarly,
P ({Xﬁil = i1} N BN A) = P ({Xﬁil = i1} N A\Bs> P (B,) (68)
= P({XF =i} NAXF = i) P(BY) (69)
= P(B)Is(insn)Pi, (X551 = i) (70)
P (By) (1~ (it 1))P (AIXE = 1) Py (XEoy = ics) (71)

= P(Bs) [HB(itH)Pit (XEH = it+1) + (1 = Ip(it+1))pi, P, (XEA = it+(17>2})

where Ig(k) equals 1 if k € B and 0 otherwise.

If iy € B, then B; C A, for 0 < s <t, and

P({Xf =i} NBNA) _ P({XS, =i} N Bs) 73)
P (AN By) P (Bs)

= P(XE, =il B) (74)

= P (XEA =i X = it) (75)

Equations (72) and (75) imply that the ratio on the right hand side of equation (67) does not

depend on s, for 0 < s < t. In particular,

. . . P({Xi1 =i} N BN A)
P(X(t(:+1 :Zt+1‘X§: :’Lt,...,Xg :Zo) — t+]P>(AﬂBt) (76)

This prove that X satisfies the Markov property.

The transition probabilities of the Markov chain X follow from the equations above. For
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jE€T and i & B,

a, K
P(XE = JIXF =) = 22, (78)
with the convention that pj = 1 for k € B. And we have for i,j € B,
P (XE = jIXF =i) = 1. (79)

It follows form equations (78) and (79) that the transition probabilities of the Markov chain

XC are given by the matrix P¢ defined in Section 3.2, i.e.

(80)

where

Uc = D, UgD;' and M¢ =KD, !, (81)

where D, = diag (p,) is a diagonal matrix with, on the diagonal, the probabilities of absorption

in the target states.

A.3 Moments of occupancy times

To calculate the moments of the occupancy time for individuals initially outside the target set
B, we use the strong Markov property. If the individual never enters in B, then its occupancy
time is zero. If it does enter in B, say through the state j, then the law of its occupancy time

is equal to the law of the occupancy time for an individual starting in the state j. To fix the
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idea, consider the state i € B¢. Then
E(r") = Y {"P(ri=1)

(=1

= Zﬁm ZP(TZ' = (|enter in B in j)P(enter in B in j)

(=1 JjEB
= Z[m ZP(T]' = E)aji
(=1 JjEB
= Zaﬁ EmP(Tj = [)
JjEB (=1
= ZajiE(T]m)v (82)
jeB

where aj; is the probability that the killed Markov chain, starting in state 4, is absorbed by the

state j, as in Section 3.1.1. In matrix notation, equation (82) is equivalent to
k k
Tout — ATTin' (83)

A.4 Covariance between the occupancy times in two disjoint sets

Here, we calculate the covariance between the occupancy time in two disjoint subsets B; and

Ba, of the transient set 7. As stated in the main text, the covariance between 75, and 73, is

Cov (Tp,,T8,) =E [(7'31 - T}gl) (1'32 — 7}32)] ) (84)

We rewrite the covariance between 73, and 73, in terms of their variances and the variance of
their sum,

1
Cov (TB,,TB,) = 2 [Var (73, +TB,) — Var (15,) — Var (7,)] . (85)

Since the sets By and By are disjoint, the occupancy time in the union B; U Bs is the sum of

the occupancy times in each of the subsets. Thus,
1
Cov (TB,,TB,) = 3 [Var (T3,u8,) — Var (13,) — Var (73,)] . (86)

The variances Var (75,u8,), Var (75,), and Var (73,) are calculated with the formulae (24) and

(26) applied to the sets By U Ba, By, and Ba, respectively.
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A.5 One-step transition probabilities from B given return

Let w;? be the conditional probability that an individual in target state a4+ 7 moves to the

target state o + ¢, in one time-step, given that it eventually returns to the target set. Then,

Pa—l—i (X1 :Oé+j,T< OO)

wﬁ =Py (X1 =a+j|T <o) =

]P)a+i (T < OO)
_ Pai(Xh =a+))
]P)a+i (T < OO)
_ Ua+j5,a+i
> teB ug
= Zotiati (87)

i

where p, describes the return probabilities, as defined in equation (47). Thus,
Wi, = QD! of size 8 x f3, (88)

where D, = diag (p,) and the matrix Q is extracted from the matrix U, as in equation (7).

Let w%ut be the conditional probability that an individual in target state o + j moves to the

non-target state ¢, in one time-step, given that it eventually returns to the target set. Then

Poti (T < 00| Xy = j) Pati (X1 = j)
Pa—l—i (T < OO)
Poti(X1 = j)Paq; (T < o0)
]P)OH—Z' (T < OO)
Ujati D gep O
> teB “eBz'
Uj,a+iDf

_ ety 89
o (89)

’U);;lt = Pa—l—i (Xl = j’T < OO) =

where the vector p, describes the probabilities of absorption in the target states, as defined in
eqn. (11). Thus,
Wou = D,LDY of size a x 3, (90)

where D, = diag (p,), D, = diag (p,), and the matrix L is extracted form the matrix U, as in
equation (7).

Now, we derive the moments of u, conditional on the individual returning to the target set.
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Let a + ¢ be a target state. Then

o0
anP(,ui =n|T < o0)

n=1

E[uf|T < oc] =

[e.o]

= P(u; = 1|T<oo)+an

=2

= P(ui=1T <o00)+ Y Pi(X1 = j|T < ) i(n +1)*P(tF = n)

jeBe

(91)
S P =n-1DPi(X1 =j|T <o0)  (92)
jeBe

(93)

oo k
= P(ui=1T <o0)+ Y Pi(X1=jT <o0)> > (k>nr}P’(tJB =n)(94)

jenBe

= P(ui=1T <o0)+ > Pi(X; =j|T < )

JjeBe
LNy
SN DN WS

JEBC r=1

Hence, in matrix notation,

k
k
BT < o =154 3 (1) Whath

B Supplementary Material

1. Figues S1 and S2 are provided.

(97)

r=1

2. We provide the MATLAB files (see below) to carry out the calculations presented the Ex-

ample.
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Figure S1: Distribution of the time required to return to the set By for an individual initially in the
state successful breeder, under favourable condition (left), ordinary condition (centre), and unfavourable
condition (right). The y-axis is truncated at 0.05 to enhance the readability of the plots. The probability

that the return time equals 1 is 0.983 under favorable ice conditions, 0.9403 under ordinary ice conditions,
and 0.8444 under unfavorable ice conditions.
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Figure S2: Distribution of the time required to reach the set B, for an individual initially in the state
non breeder, under favourable condition (left), ordinary condition (centre), and unfavourable condition
(right). The y-axis is truncated at 0.25 to enhance the readability of the plots. The probability that the

reaching time equals 1 is 0.658 under favorable ice conditions, 0.37 under ordinary ice conditions, and
0.19 under unfavorable ice conditions.
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