
 
Supplementary Figure 1 

Clustering scores for enterotypes in gut WGS samples. 

Consistent with Koren et al. 5, these plots indicate weak support for any discrete clustering in the data and confirm that the three 
enterotypes hypothesis is likely an oversimplification that does not hold when considering large set of biogeographycally diverse 
populations. Thresholds for significance of clustering are presented as dashed lines, and are the same thresholds used by Koren et al. 
5. Each plot line represents an analysis that can be accomplished with one line of code using the R packages ‘fpc’ (prediction strength 
and Calinski-Harabasz) and ‘cluster’ (silhouette index), provided in the curatedMetagenomicData package examples. 
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Supplementary Figure 2 

Health status classification from species abundance. 

Six different classification problems of health status were attempted using a random forest algorithm and cross-validation to estimate 
prediction accuracy. Plots show ROC curves by using species abundance as microbiome features, one of the five data types 
considered in the Example 1 of Figure 1. Results are consistent with the meta-analysis conducted in 32. 
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Supplementary Figure 3 

Principal Coordinates Analysis (PCoA) plot of species abundance for gut samples on selected diseases. 

Specimens are annotated by disease state (shape), study name (color), and abundance of Prevotella copri (size). 

Nature Methods: doi:10.1038/nmeth.4468



 

Supplementary Figure 4 

Top correlations between metabolic pathways and genera. 

Pearson correlation was calculated between each individual pathway (HUMAnN2 pathways from the full UniRef90 database) and each 
of the top 20 most abundant microbial genera, in a combined dataset obtained from merging 20 studies of gut specimens. The top 
correlations are 1) Ornithine de novo biosynthesis: Bacteroides (r = 0.86), activity that has been confirmed in cultures of this organism 
33, and 2) superpathway of allantoin degradation in yeast: Escherichia (r =0.95). Although this superpathway has been associated with 
yeast, it includes subpathways (such as allantoin degradation to glyoxylate I and allantoin degradation to ureidoglycolate I) that are 
common in Escherichia, which is known to be an allantoin utilizier under anaerobic conditions 34. Of note, the top 100 correlations have 
adjusted p < 0.001. 
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Supplementary Figure 5 

Alpha diversity of taxa from 22 studies of the gut microbiome. 

Shannon Alpha Diversity was calculated for each individual sample within each human gut microbiome study. The median diversity 
varies by a maximum factor of 1.5 between studies, however the variability within studies as measured by interquartile range varies by 
more than 3-fold. 
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Supplementary	Methods	
	
Available	datasets	
To	date	(development	version	1.7.5),	we	have	curated	metadata	for	and	packaged	a	total	of	
5,716	 publicly	 available	 shotgun	 metagenomic	 samples	 from	 26	 large-scale	 studies	 (see	
Supplementary	Tables	1-2).	Accessing	the	most	recently	added	datasets	requires	installing	
the	development	version	of	Bioconductor.	All	these	metagenomes	have	been	sequenced	on	
the	Illumina	platform	at	an	average	depth	of	45	M	reads.	
	
Twelve	 of	 these	 studies	 were	 performed	 to	 assess	 the	 association	 of	 the	 human	 gut	
microbiome	 with	 different	 diseases.	 In	 particular,	 four	 studies	 were	 devoted	 to	 the	
characterization	of	the	human	microbiome	in	colorectal	cancer	patients:	FengQ_201511	(154	
samples,	93	cases),	VogtmannE_201628	(110	samples,	52	cases),	YuJ_201530	(128	samples,	75	
cases),	 and	 ZellerG_201431	 (199	 samples,	 133	 cases).	 Heintz-BuschartA_201612	 includes	 a	
total	of	53	samples,	27	of	which	are	associated	with	type	1	diabetes	(T1D).	KarlssonFH_201313	
sampled	on	European	women	and	includes	53	type	2	diabetes	(T2D)	patients,	49	impaired	
glucose	 tolerance	 individuals	 and	 43	 normal	 glucose	 tolerance	 individuals.	 QinJ_201220	
sampled	an	additional	T2D	dataset	and	is	composed	by	170	Chinese	T2D	patients	and	193	
non-diabetic	 controls.	 LeChatelierE_201314	 includes	 123	 non-obese	 and	 169	 obese	
individuals.	LomanNJ_201316	includes	43	samples	from	patients	with	life-threatening	diarrhea	
during	 the	 2011	 outbreak	 of	 Shiga-toxigenic	 Escherichia	 coli	 (STEC)	O104:H4	 in	 Germany.	
NielsenHB_201417	focuses	on	inflammatory	bowel	disease	(IBD)	and	comprises	a	total	of	396	
samples,	 21	 of	 which	 are	 from	 Crohn’s	 disease	 patients	 and	 127	 from	 ulcerative	 colitis	
patients.	 QinN_201421	 includes	 123	 patients	 affected	 by	 liver	 cirrhosis	 and	 114	 healthy	
controls.	VincentC_201627	focused	on	microbiota	dynamics	in	response	to	hospital	exposures	
and	Clostridium	difficile	colonization	infection	in	a	total	of	229	samples.	
	
We	included	also	four	datasets	that	investigated	gut	configuration	in	hunter-gatherer	or	non-
westernized	populations.	BritoIL_20168	considered	agrarian	Fiji	 islanders	for	a	total	of	312	
samples,	 including	 also	 some	 samples	 from	 the	oral	 cavity.	 LiuW_201615	 investigated	 110	
Mongolian	 adults.	 Obregon-TitoAJ_201518	 sequenced	 58	 samples,	 which	 include	 hunter-
gatherer	and	traditional	agriculturalist	communities	in	Peru.	RampelliS_201522	comprises	38	
samples,	part	of	which	were	collected	from	Hadza	hunter-gatherers	of	Tanzania.	
	
Additional	datasets	were	acquired	entirely	from	healthy	subjects.	AsnicarF_20177	collected	
24	 samples	 for	 studying	 vertical	 microbiome	 transmission	 from	 mothers	 to	 infants.	
RaymondF_201623	acquired	72	samples	to	evaluate	effects	of	a	standard	antibiotic	treatment	
on	the	microbiome.	SchirmerM_201624	investigated	471	samples	to	link	the	microbiome	to	
inflammatory	 cytokine	 production	 capacity.	 VatanenT_201626	 considered	 222	 infants	 in	
Northern	 Europe	 from	 birth	 until	 age	 three	 for	 a	 total	 of	 785	 samples.	 XieH_201629	
investigated	 250	 adult	 twins	 to	 evaluate	 genetic	 and	 environmental	 impacts	 on	 the	
microbiome.	
	
Some	datasets	not	strictly	related	to	the	gut	microbiome	are	also	taken	into	account.	Castro-
NallarE_20159	 collected	32	 samples	 from	 the	oral	 cavity	 to	 investigate	 the	oropharyngeal	
microbiome	in	individuals	with	schizophrenia.	HMP4	includes	749	samples	collected	for	the	
Human	Microbiome	Project	from	five	major	body	sites	(i.e.,	gastrointestinal	tract,	nasal	cavity,	
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oral	cavity,	skin,	and	urogenital	tract).	Finally,	three	datasets	focused	on	the	skin	microbiome.	
OhJ_201419	is	composed	by	291	samples	collected	from	several	different	skin	sites	in	healthy	
conditions.	Skin	samples	but	from	patients	affected	by	atopic	dermatitis	and	psoriasis	were	
acquired	in	ChngKR_201610	(78	samples)	and	TettAJ_201625	(97	samples),	respectively.	
	
Raw	data	pre-processing	
Approximately	63	TB	of	raw	sequencing	data	were	downloaded	from	public	repositories.	All	
samples	 were	 subject	 to	 standard	 pre-processing	 as	 described	 in	 the	 SOP	 of	 the	 Human	
Microbiome	Project4,	without	however	 the	step	of	human	DNA	removal	as	 these	publicly	
available	metagenomes	were	deposited	free	of	reads	from	human	DNA	contamination.	
	
MetaPhlAn2	profiling	and	data	products	
MetaPhlAn22	(v2.0)	was	ran	on	the	pre-processed	reads	with	default	parameters	to	generate	
microbial	community	profiles	(from	kingdom-	to	species-level)	 including	Bacteria,	Archaea,	
microbial	Eukaryotes	and	Viruses.	These	profiles	were	generated	from	~1	M	unique	clade-
specific	marker	 genes	 identified	 from	 ~17,000	 reference	 genomes	 (~13,500	 bacterial	 and	
archaeal,	~3,500	viral,	and	~110	eukaryotic).	MetaPhlAn2	has	the	capability	of	characterizing	
organisms	 at	 a	 finer	 resolution	 using	 non-aggregated	 marker	 information	 (“-t	
marker_pres_table"	and	"-t	marker_ab_table"	mode).	Single	marker-level	profiles	were	then	
merged	in	samples	versus	markers	tables	removing	markers	there	were	never	detected	in	any	
samples.	
	
Such	processing	resulted	in	three	data	products:	i)	species-level	relative	abundance	(denoted	
as	“metaphlan_bugs_list”	in	the	package);	ii)	marker	presence	(“marker_presence”);	and	iii)	
marker	 abundance	 (“marker_abundance”).	 Species	 abundance	 is	 expressed	 in	 percentage	
and	sum	up	to	hundred	within	each	sample	when	selecting	a	single	taxonomic	level.	Marker	
presence	and	marker	abundance	assume	binary	and	real	values,	respectively.		
	
HUMAnN2	profiling	and	data	products	
HUMAnN23	(v0.7.1)	was	run	on	the	pre-processed	reads	with	default	parameters	for	profiling	
the	presence/absence	and	abundance	of	microbial	pathways	in	the	community.	The	mapping	
was	done	using	the	full	UniRef90	database	(~11	GB),	which	enabled	identifying	also	protein	
families	without	 functional	 annotations.	 Three	main	outputs	were	 generated:	 gene	 family	
abundance,	 pathway	 abundance,	 and	 pathway	 coverage.	 The	 two	 abundance	 output	 files	
were	normalized	in	terms	of	relative	abundance	through	the	“humann2_renorm_table”	(	“--
units	relab”	mode).	
	
In	 this	 way,	 three	 additional	 data	 products	 were	 produced:	 i)	 normalized	 gene	 family	
abundance	 (denoted	 as	 “genefamilies_relab”	 in	 the	 package);	 ii)	 normalized	 pathway	
abundance	(“pathabundance_relab”);	and	iii)	pathway	coverage	(“pathcoverage”).	Features	
assume	values	in	the	range	[0,	1],	where	the	two	normalized	abundance	profiles	sum	up	to	1	
when	excluding	species-specific	contributions.	
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Creation	of	curatedMetagenomicData	
To	 create	 the	 curatedMetagenomicData	 package,	 processed	 data,	 in	 the	 form	 of	 tab-
delimited	files,	from	the	MetaPhlAn2	and	HUMAnN2	pipelines	and	patient-level	metadata	are	
compressed	 into	 a	 single	 archive	 file	 per	 dataset.	 Then	 from	 within	 the	 R/Bioconductor	
environment	 a	 single	 function	 is	 used	 to	 process	 the	 compressed	 archive,	 create	
documentation,	and	add	 to	curatedMetagenomicData,	with	 internal	 intermediate	steps	as	
follows.	First,	patient-specific	metadata	is	read	in	using	the	readr	package	(https://CRAN.R-
project.org/package=readr),	 filtered	 using	 the	 dplyr	 (https://CRAN.R-
project.org/package=dplyr)	 and	 magrittr	 (https://CRAN.R-project.org/package=magrittr)	
packages,	and	coerced	to	the	appropriate	format.	Study-level	metadata	 is	then	created	by	
querying	PubMed	using	the	RISmed	package	(https://CRAN.R-project.org/package=RISmed),	
which	 collects	 citation	 information	 of	 published	 studies	 that	 can	 then	 be	 coerced	 to	 the	
appropriate	 format.	 Finally,	 patient-level	 sample	 data	 is	 read	 in	 (again	 using	 the	 readr	
package),	 merged,	 standardized,	 and	 used	 to	 create	 Bioconductor	 ExpressionSet	 objects	
featuring	 the	 patient	 and	 study-level	 metadata.	 Within	 each	 study,	 processed	 data	 is	
separated	into	six	data	products,	as	highlighted	above,	and	further	separated	by	bodysite	so	
as	to	allow	for	efficient	search	and	data	transfer.	
	
Once	 data	 from	 the	 MetaPhlAn2	 and	 HUMAnN2	 pipelines	 have	 been	 processed	 into	
Bioconductor	 ExpressionSet	 objects,	 documentation,	 package	 metadata,	 and	 upload	 to	
ExperimentHub	 are	 accomplished	 using	 developer	 functions	 available	 in	
curatedMetagenomicData.	Documentation	is	automatically	produced	from	the	ExpressionSet	
objects	using	 roxygen2	 (https://CRAN.R-project.org/package=roxygen2),	 although	 this	may	
change	in	the	future.	Package	metadata	is	also	produced	from	the	ExpressionSet	objects	and	
used	 in	 the	 creation	 of	 ExperimentHub	 records,	 with	 further	 details	 concerning	
ExperimentHub	below.	Finally,	a	convenience	function	is	provided	to	write	a	shell	script	to	
upload	all	data	to	ExperimentHub,	such	that	the	error-prone	process	of	working	with	Amazon	
Web	Services	(AWS)	Command	Line	Interface	(CLI)	is	trivial.	
	
Bioconductor	object	classes	
curatedMetagenomicData	 data	 objects	 are	 represented	 using	 the	 Bioconductor	
ExpressionSet	S4	class.	This	class	links	numeric	microbiome	data	with	subject	information	and	
whole-experiment	 level	 data,	 while	 maintaining	 correct	 alignment	 between	 numeric	
microbiome	data	subject	data	during	subset	operations.	The	following	ExpressionSet	slots	are	
populated	in	each	data	product:	

● experimentData:	 “MIAME”	class	object	providing	study-level	 information	 -	Pubmed	
ID,	 authors,	 title,	 abstract,	 sequencing	 technology,	 etc.	 Extracted	 using	
experimentData(object).	

● phenoData:	 “AnnotatedDataFrame”	 class	 object	 providing	 specimen-level	
information	 -	 subject	 IDs,	disease,	body	site,	number	of	 reads,	etc.	Extracted	using	
pData(object)	or	phenoData(object).	

● assayData:	 matrix	 class	 object	 providing	 taxonomic	 or	 pathway	 abundances.	
Extracted	using	exprs(object).	

	
ExpressionSet	objects	can	be	analyzed	for	differential	abundance	using	popular	Bioconductor	
packages	 for	 RNA-seq	 such	 as	 limma,	 edgeR,	 and	 DESeq2.	 For	 MetaPhlAn2	 abundances,	
however,	 it	 is	more	convenient	 to	 convert	 these	 to	phyloseq	 objects	 for	analysis	with	 the	
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phyloseq	Bioconductor	package	for	phylogenetics,	using	the	ExpressionSet2phyloseq	function	
from	 curatedMetagenomicData.	 Phyloseq	 objects	 additionally	 represent	 taxonomy	 and	
phylogenetic	distances,	and	enable	 straightforward	calculation	of	alpha	and	beta	diversity	
measures,	ordination	plots,	and	other	phylogenetic-specific	analyses.	
	
ExperimentHub	
curatedMetagenomicData	 datasets	 are	 distributed	 through	 ExperimentHub,	 a	 new	
Bioconductor	 software	 package	 we	 developed	 to	 provide	 programmatic	 access	 to	
experimental	data	files	stored	in	the	Amazon	Web	Services	(AWS)	cloud.		All	data	(referred	to	
as	“resources”)	in	ExperimentHub	have	undergone	some	level	of	curation	and	are	provided	
as	R/Bioconductor	data	structures	instead	of	in	raw	format.	Data	sets	are	generally	a	collation	
of	different	sources	combined	by	disease	or	cohort	or	data	used	in	a	published	experiment	or	
short	courses.	
	
The	 two	 primary	 components	 of	 ExperimentHub	 are	 the	 data	 files	 and	 the	 metadata	
describing	them.	Files	are	stored	in	AWS	S3	buckets	and	the	metadata	in	a	database	on	the	
ExperimentHub	 server.	 The	 database	 version	 is	 reflected	 in	 the	 “snapshot	 date”	which	 is	
updated	whenever	the	database	is	modified.	Users	interacting	with	ExperimentHub	can	select	
a	specific	snapshot	date	which,	along	with	the	version	of	R	/	Bioconductor,	modifies	which	
resources	are	exposed.	
	
ExperimentHub	 resources	 are	 accessed	 by	 invoking	 ExperimentHub()	 to	 create	 an	
'ExperimentHub'	object,	e.g.,	hub	<-	ExperimentHub().	This	call	downloads	the	database	of	
metadata	from	the	ExperimentHub	server	and	caches	it	locally.	The	'hub'	of	metadata	can	be	
searched	with	the	query()	function	and	subset	by	numerical	index	or	'EH'	identifier.	Once	a	
resource	 is	 identified,	 the	 double-bracket	 method	 ('[[')	 will	 initiate	 the	 download.	
Downloaded	resources	are	cached	locally	enabling	fast	repeated	access	to	the	data.	When	a	
resource	is	loaded	in	an	R	session,	the	accompanying	software	package	is	also	loaded	ensuring	
all	documentation	and	helper	functions	are	readily	available.	A	second	option	for	accessing	
the	data	is	to	invoke	the	resource	name	as	a	function,	e.g.,	data123().	In	this	approach,	the	
creation	and	searching	of	the	'hub'	is	not	exposed	to	the	user	and	does	not	require	knowledge	
of	ExperimentHub	objects.	
	
Resources	 are	 added	 to	 ExperimentHub	 by	 creating	 a	 software	 package	 according	 to	 the	
guidelines	 in	 the	 ExperimentHubData	 vignette	
(https://bioconductor.org/packages/release/bioc/vignettes/ExperimentHubData/inst/doc/E
xperimentHubData.html).	 The	 software	 package	 includes	 man	 pages	 and	 a	 vignette	
documenting	expected	use	as	well	as	functions	to	create	the	resource	metadata.	If	desired,	
the	author	may	include	additional	functions	for	resource	discovery	and	manipulation.		Data	
are	 stored	 separately	 in	 AWS	 and	 are	 not	 part	 of	 the	 software	 package;	 this	 separation	
enables	lightweight	installation	of	the	package	regardless	of	the	size	of	the	data.		
	
Accessing	curatedMetagenomicData	objects	in	R	
Within	the	R/Bioconductor	environment	there	are	two	distinct	methods	for	accessing	data,	
depending	on	the	needs	of	the	end-user.	In	the	case	that	a	specific	dataset	is	desired	and	its	
name	is	known,	then	convenience	functions	have	been	provided	for	all	datasets	and	calling	
the	function	will	retrieve	the	dataset	from	ExperimentHub.	Otherwise,	if	no	specific	dataset	

Nature Methods: doi:10.1038/nmeth.4468



is	desired,	it	is	possible	to	search	through	all	datasets	and	return	those	matching	a	pattern	
(e.g.,	all	datasets	from	the	stool	bodysite).	This	method	also	features	wildcard	search	to	allow	
for	powerful	selection	and	can	return	either	a	list	of	references	to	the	datasets	or	download	
the	datasets	from	ExperimentHub.	The	later	search	method	is	of	particular	use	in	conducting	
cross	 validation	 studies	 using	 curatedMetagenomicData,	 as	 it	 provides	 for	 highly	 specific	
filtering	conditions.	
	
Accessing	curatedMetagenomicData	from	the	command	line	
A	convenience	command-line	interface	is	provided	for	users	who	do	not	want	to	use	the	R	or	
Bioconductor	 framework	 for	 the	 analysis.	 The	 command-line	program	 is	 invoked	with	 the	
names	 of	 one	 or	more	 datasets	 with	 optional	 wildcard	 expansion,	 and	 provides	 flags	 for	
including	specimen	 information	 in	addition	 to	microbiome	data,	and	 for	 returning	 relative	
abundances	or	counts.	Datasets	are	written	to	disk	as	tab-separated	value	plain	text	files.		
	
Examples	of	enabled	downstream	tasks:	supervised	classification	analysis	
We	considered	six	different	classification	problems	of	health	status	to	evaluate	capabilities	of	
disease	 classification	 from	 gut	 microbial	 profiling	 (see	 Example	 1	 of	 Figure	 1	 and	
Supplementary	 Figure	 2).	 In	 KarlssonFH_2013,	 we	 discriminated	 between	 “healthy”	 and	
“T2D”	subjects.	We	took	into	account	96	samples	after	excluding	impaired	glucose	tolerance	
individuals.	 In	 LeChatlierE_2013,	we	discriminated	between	“lean”	 (BMI	≤	25	kg	m	 -2)	 and	
“obese”	 (BMI	 ≥	 30	 kg	 m	 -2)	 subjects	 for	 a	 total	 of	 265	 samples.	 Individuals	 having	 an	
intermediate	BMI	(i.e.,	>	25	and	<	30	kg	m	-2)	were	excluded.	NielsenHB_2014	was	composed	
by	a	total	of	396	samples,	in	which	the	“diseased”	class	included	inflammatory	bowel	disease	
(IBD)	patients	affected	by	both	“Crohn's	disease”	and	“ulcerative	colitis”.	 In	QinJ_2012	we	
considered	 a	 total	 of	 344	 samples	 and	 discriminated	 between	 “healthy”	 and	 “T2D”	
individuals.	 In	 QinN_2014,	 all	 the	 237	 available	 samples	 (subdivided	 into	 “healthy”	 and	
affected	by	“liver	cirrhosis”	subjects)	were	taken	 into	account.	Finally,	 in	ZellerG_2014	we	
removed	 the	 individuals	 affected	 by	 “large	 adenoma”,	 which	 resulted	 in	 a	 total	 of	 184	
samples.	“Cancer”	patients	were	discriminated	from	“healthy”	subjects,	which	included	also	
persons	affected	by	“small	adenoma”.	
	
We	compared	five	different	data	products,	three	taxonomic	(i.e.,	relative	abundance,	marker	
presence,	and	marker	abundance)	and	two	functional	(i.e.,	normalized	pathway	abundance	
and	pathway	coverage).	We	subset	relative	abundance	profiles	to	consider	only	species-level	
features,	while	the	whole	set	of	available	features	were	taken	into	account	for	the	other	four	
data	products.	
	
The	classification	problems	were	attempted	using	the	random	forest	algorithm	through	the	R	
packages	“randomForest”	and	“caret”.	Original	 features	were	preprocessed	(“preProc”)	by	
centering	 (“center”),	 scaling	 (“scale”)	 and	 removal	 of	 zero-variance	 predictors	 (“zv”)	
procedures.	Prediction	accuracies	were	estimated	using	a	10-fold	cross-validation	approach	
(“method=repeatedcv”	 and	 “number=10”	 in	 the	 “trainControl”	 function).	 The	 two	 main	
parameters	of	the	classifier	were	set	in	this	way:	i)	the	number	of	trees	(“ntree”)	was	set	to	
500;	ii)	the	number	of	variables	randomly	sampled	as	candidates	at	each	split	(“mtry”)	were	
estimated	through	grid	search.	Area	under	the	curve	(AUC)	values	were	computed	through	
the	“auc”	function	in	the	R	package	“pROC”.	The	scatterplot	matrix	of	AUC	values	(Example	1	
of	Figure	1)	was	generated	through	the	R	package	“gclus”,	which	provided	possibility	 to	 i)	
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rearrange	 the	 variables	 so	 that	 those	 with	 higher	 correlations	 are	 closer	 to	 the	 principal	
diagonal	and	ii)	color	the	cells	to	reflect	the	value	of	the	correlations.	The	“pROC”	package	
was	also	adopted	to	plot	the	receiver	operating	characteristic	(ROC)	curves	(Supplementary	
Figure	2)	using	the	“roc”	function.	
	
Examples	of	enabled	downstream	tasks:	unsupervised	clustering	analysis	
To	 assess	 the	 presence	 of	 discrete	 clustering	 in	 the	 data	 (see	 Example	 2	 of	 Figure	 1	 and	
Supplementary	 Figure	 1),	 we	 merged	 taxonomic	 abundance	 data	 from	 all	 gut	 samples	
(excluding	newborns),	on	which	we	calculated	three	distance	measures	using	the	R	package	
“phyloseq”:	the	Bray-Curtis	distance	metric,	the	Jenson-Shannon	divergence	(JSD),	and	the	
square	 root	 of	 the	 Jenson-Shannon	 divergence	 (root-JSD).	We	 then	 performed	 clustering	
against	 each	 of	 the	 three	 distance	measures	 by	 partitioning	 around	medoids	 using	 the	 R	
package	“cluster”.	We	determined	the	optimal	number	of	clusters	based	on	the	prediction	
strength	 (PS)	 using	 the	 R	 package	 “fpc”,	 and	 silhouette	 index	 (SI)	 using	 the	 R	 package	
“cluster”.	We	used	a	threshold	of	≥	0.90	for	PS,	and	≥	0.75	for	SI,	to	indicate	strong	clustering5.	
We	additionally	calculated	the	Calinski-Harabasz	(CH)	statistic	for	comparison	to	PS	and	SI,	
using	the	R	package	“fpc”.		
	
Package	maintenance	
We	set	up	the	curatedMetagenomicData	to	be	scalable	to	the	growing	size	of	metagenomic	
datasets	being	produced	and	we	plan	to	expand	to	over	10K	total	samples	by	the	end	of	2017,	
with	 dedicated	 personnel	 for	 the	 addition	 of	 processed	 metagenomic	 datasets.	 The	
curatedMetagenomicData	pipeline	directly	uses	output	of	the	publicly	available	MetaPhlAn2	
and	HUMAnN2	packages,	in	a	documented	subdirectory	structure	for	data	“handoff”	to	our	
pipeline	 for	 incremental	 dataset	 addition	 to	 curatedMetagenomicData	 in	 ExperimentHub	
(https://github.com/waldronlab/curatedMetagenomicData/wiki).	
Authors	welcome	the	addition	of	new	datasets	provided	they	can	be	or	already	have	been	
run	through	the	MetaPhlAn2	and	HUMAnN2	pipelines.	Please	contact	the	maintainer	if	you	
have	 a	 shotgun	 metagenomic	 dataset	 that	 would	 be	 of	 interest	 to	 the	 Bioconductor	
community.	
	
Availability	and	support	
The	curatedMetagenomicData	package	can	be	 installed	with	a	single	command	 from	an	R	
installation	 with	 the	 current	 Bioconductor	 release	 or	 development	 version	 installed	
(BiocInstaller::biocLite("curatedMetagenomicData")).	 The	 package	 is	 described	 at	
https://waldronlab.github.io/curatedMetagenomicData/,	 including	 information	 on	
installation,	datasets	to	be	added	in	the	near	future,	and	example	analyses.	Requests	for	help	
should	be	raised	at	https://support.bioconductor.org	with	the	tag	curatedMetagenomicData.	
Bugs	 in	 code	 or	 curation	 should	 be	 reported	 using	 the	 issue	 tracker	 at	
https://github.com/waldronlab/curatedMetagenomicData/issues.	 Instructions	 for	 adding	
datasets	or	re-using	parts	or	all	of	the	pipeline	for	other	purposes	are	provided	on	the	wiki	at	
https://github.com/waldronlab/curatedMetagenomicData/wiki.	
	
Reproducible	analysis	
All	analyses	presented	in	this	manuscript	are	reproducible	by	the	script	PaperFigures.Rmd	at	
https://github.com/waldronlab/curatedMetagenomicData/tree/master/vignettes/extras.	
Licensing	
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The	curatedMetagenomicData	package	is	licensed	under	the	permissive	Artistic	2.0	license.	
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Supplementary	Table	1:	Metadata	fields	available	in	curatedMetagenomicData.	These	fields	
are	continuously	and	formally	checked	for	syntax	in	all	datasets,	at	
https://github.com/waldronlab/curatedMetagenomicDataCuration.		
	
Metadata	Field	 Description	
adiponectin	 Curators	must	use	mg/l	
age	 Subject	age	(years)	
age_category	 Age	category:	newborn	<	1	year;	1	<=	child	<	12;	12	<=	schoolage	<	

19;	19	<=	adult	<=	65;	senior	>	65	
ajcc	 AJCC	staging	for	colorectal-cancer	
albumine	 Albumine	level;	curators	must	use	g/l	
alcohol	 Subject	is	reported	as	a	drinker	
antibiotics_current_use	 Subject	is	currently	taking	antibiotics	
antibiotics_family	 Family	of	antibiotics	currently	used;	Semicolon-separated	
bilubirin	 Bilubirin;	curators	must	use	mg/dl	
birth_control_pil	 Use	of	the	birth-control-pils	at	the	sampling	time	(men:	no)	
BMI	 Body	mass	index	(kg/m2)	
body_site	 Bodysite	of	acquisition	
body_subsite	 Subsite	of	body	site	of	acquisition	
cd163	 Curators	must	use	ng/ml	
cholesterol	 Curators	must	use	mg/dl	
country	 Country	of	acquisition	using	ISO3	code	from	

http://www.fao.org/countryprofiles/iso3list/en/	
c_peptide	 Curators	must	use	ng/ml	
creatine	 Curators	must	use	micro-mol/l	
creatinine	 Curators	must	use	micro-mol/l	
ctp	 Cytidine	triphosphate	level	
days_after_onset	 Days	from	the	onset	of	the	disease	
days_from_first_collection	 Used	for	time	series	studies	
disease	 Semicolon-delimited	vector	of	conditions;	Use	healthy	only	if	

subject	is	known	to	be	healthy;	CRC=colorectal	cancer	
disease_subtype	 Disease	subtype;	CD=Chrohn's	Disease	
DNA_extraction_kit	 DNA	extraction	kit	
dyastolic_p	 Measured	in	mm/Hg	
ever_smoker	 Ever	been	a	smoker	
family	 A	number	identifying	the	family	subjects	belong;	not	corrected	for	

meta-analyses	
fasting_insulin	 Curators	must	use	micro-units/ml	
ferm_milk_prod_consumer	 Dfmp	means	yes	(defined	milk	product)	
fgf_19	 Curators	must	use	pg/ml	
flg_genotype	 Any	term	for	filaggrin-protein	genotype	
fobt	 Fecal	occult	blood	test	
gender	 Subject	gender	
glp_1	 Curators	must	use	pmol/l	
glucose	 Curators	must	use	mg/dl	
glutamate_decarboxylase_2_antibody	 Glutamic	acid	decarboxylase	(GAD65)	antibody	assay	
hba1c	 Curators	must	use	%	
hdl	 Curators	must	use	mg/l	
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hitchip_probe_class	 High/Low	species	content	on	the	HIT-chip	probe	
hitchip_probe_number	 HIT-chip	probe	score	
hla_dbq11	 Hla_dbq11	allele	
hla_dbq12	 Hla_dbq12	allele	
hla_dqa11	 Hla_dqa11	allele	
hla_dqa12	 Hla_dqa12	allele	
hla_drb11	 Hla_drb11	allele	
hla_drb12	 Hla_drb12	allele	
hscrp	 High-sensitivity	C-reactive	protein	test	result	
il_1	 Curators	must	use	pg/ml	
infant_age	 Infant	age	(days);	should	be	used	for	infants	<	2	years	old	
inr	 International	normalized	ratio	
insulin_cat	 Insulin	intake	as	a	boolean	
lactating	 Lactating	subjects	(men:	no)	
ldl	 Curators	must	use	mg/l	
leptin	 Curators	must	use	micrograms/l	
location	 Free-form	additional	location	information	
median_read_length	 Median	read	length	-	calculated	from	raw	data	
mgs_richness	 Metagenomic	species	richness	
minimum_read_length	 Minimum	read	length	-	calculated	from	raw	data	
momeducat	 Years	of	education	of	the	mother	of	the	subject	
mumps	 Subject	has	been	through	mumps	in	life	
NCBI_accession	 Semicolon-separated	vector	of	NCBI	accessions	
non_westernized	 Subject	belongs	to	a	non-westernized	community	
number_bases	 Total	number	of	bases	sequenced	in	the	sample	
number_reads	 Number	of	final	reads	-	calculated	from	raw	data	
PMID	 Identifier	of	the	main	publication	in	PubMed	
pregnant	 Pregnancy	of	the	subject	(men:	no)	
protein_intake	 Indication	about	the	protein	intake	in	the	Mongolians	diet	
prothrombin_time	 Prothrombin	time	in	seconds	
sampleID	 Sample	identifier	
sequencing_platform	 This	will	be	modified	as	new	sequencing	platforms	are	added	to	the	

database	
shigatoxin_2_elisa	 Enzyme-linked	immunosorbent	assay	for	Shiga-toxigenic	E.coli	
smoker	 Currently	a	smoker	at	sampling	
stec_count	 Amount	of	STEC	colonies	detected	
stool_texture	 Texture	of	the	stool	at	sampling	time	
study_condition	 The	main	disease	or	condition	under	study;	control	for	controls	
subjectID	 Subject	identifier	
systolic_p	 Measured	in	mm/Hg	
tnm	 TNM	classification	for	colorectal-cancer	
triglycerides	 Curators	must	use	mg/l	
visit_number	 Visit	number	for	studies	with	repeated	visits	
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Supplementary	Table	2:	Study	characteristics	for	the	current	development	version	(1.7.5)	of	the	curatedMetagenomicData	package.	Note	that	
accessing	the	most	recently	added	datasets	requires	installing	the	development	version	of	Bioconductor.	Additional	details	on	the	datasets	are	
available	in	the	Supplementary	Methods.	

	
	

Dataset	
Name	

Body	
Site	

Disease	 #	Total	
Samples	

#	Case	
Samples	

Average	Reads	per	Sample	
(std)	(M)	

Size	
(Tb)	

#	Reads	
(G)	

Reference	

AsnicarF_2017	 Stool,	milk	 None	 26	 -	 21.4	
(19.8)	

0.2	 0.5	 7	

BritoIL_2016	 Stool,	oral	 Other	
condition	

312	 -	 67.4	
(51.8)	

5.6	 21.0	 8	

Castro-NallarE_2015	 Oral	 Schizophrenia	 32	 16	 61.0	
(25.2)	

0.5	 2.0	 9	

ChngKR_2016	 Skin	 Atopic	
dermatitis	

78	 38	 15.8	
(7.5)	

0.3	 1.2	 10	

FengQ_2015	 Stool	 Colorectal	
cancer	

154	 93	 53.8	
(8.5)	

2.3	 8.3	 11	

Heitz-BuschartA_2016	 Stool	 Type	1	
diabetes	

53	 27	 44.5	
(0.9)	

0.5	 2.4	 12	

HMP_2012	 Several	 None	 749	 -	 51.5	
(44.8)	

9.4	 38.6	 4	

KarlssonFH_2013	 Stool	 Type	2	
diabetes	

145	 53	 31.0	
(17.6)	

1.4	 4.5	 13	

LeChatelierE_2013	 Stool	 Obesity	 292	 169	 69.0	
(23.2)	

4.0	 20.1	 14	

LiuW_2016	 Stool	 Other	
condition	

110	 -	 58.3	
(26.8)	

1.8	 6.4	 15	

LomanNJ_2013	 Stool	 Shiga-toxigenic	
E.	coli	

43	 43	 9.2	
(12.1)	

0.1	 0.4	 16	

NielsenHB_2014	 Stool	 Inflammatory	
bowel	diseases	

396	 148	 53.9	
(20.2)	

3.5	 21.4	 17	

Obregon-TitoAJ_2015	 Stool	 Other	
condition	

58	 -	 47.1	
(20.9)	

0.6	 2.7	 18	

OhJ_2014	 Skin	 None	 291	 -	 24.7	
(38.1)	

2.2	 7.2	 19	
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QinJ_2012	 Stool	 Type	2	
diabetes	

363	 170	 40.2	
(11.8)	

4.0	 14.6	 20	

QinN_2014	 Stool	 Liver	
cirrhosis	

237	 123	 51.6	
(30.9)	

3.0	 12.2	 21	

RampelliS_2015	 Stool	 Other	
condition	

38	 -	 22.3	
(19.3)	

0.2	 0.8	 22	

RaymondF_2016	 Stool	 Other	
condition	

72	 -	 135.1	
(50.4)	

2.7	 9.7	 23	

SchirmerM_2016	 Stool	 None	 471	 -	 30.3	
(8.2)	

3.1	 14.3	 24	

TettAJ_2016	 Skin	 Psoriasis	 97	 97	 3.0	
(5.2)	

0.1	 0.3	 25	

VatanenT_2016	 Stool	 Other	
condition	

785	 171	 21.0	
(11.1)	

4.4	 16.4	 26	

VincentC_2016	 Stool	 CDI	 229	 33	 17.4	
(12.7)	

1.6	 4.0	 27	

VogtmannE_2016	 Stool	 Colorectal	
cancer	

110	 52	 66.4	
(15.6)	

1.6	 7.3	 28	

XieH_2016	 Stool	 Other	
condition	

250	 -	 72.9	
(9.1)	

5.2	 18.2	 29	

YuJ_2015	 Stool	 Colorectal	
cancer	

128	 75	 56.3	
(10.0)	

2.1	 7.2	 30	

ZellerG_2014	 Stool	 Colorectal	
cancer	

199	 133	 63.5	
(26.9)	

2.9	 12.6	 31	

TOTAL	 -	 -	 5718	 1441	 44.5	 63.3	 254.3	 -	
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