Description	DCC Biosample	Barcodes	Raw reads for both replicates (M)	Uniquely mapped reads	Reads with valid barcodes	Estimated PCR duplication rate	Mitochondrial reads	Final read count (M)	Reads for each replicate (M)
E115_Rep1	ENCBS745VOM	Set_1; p5 only 7 bp called	683	82%	46%	49%	4%	116	54
E115_Rep2	ENCBS720JOH	Set_2; p5 only 7 bp called							62
E125_Rep1 E125_Rep2	ENCBS974GPH ENCBS617DPG	Set_1 Set_2	491	85%	71%	56%	5%	113	68 46
E135_Rep1 E135_Rep2	ENCBS273RVL ENCBS793ZRY	Set_1 Set_2 for p5, p7 and i7; i5: S502- S511;X528-X535	486	84%	46%	36%	2%	109	57 52
E145_Rep1 E145_Rep2	ENCBS002AAA ENCBS014AAA	Set_1 Set_2	436	87%	58%	39%	4%	118	61 57
E155_Rep1 E155_Rep2	ENCBS811RMD ENCBS841GER	Set_1 Set_2	476	84%	93%	53%	2%	160	72 88
E165_Rep1 E165_Rep2	ENCBS156DHU ENCBS512LKA	Set_1 Set 2	545	88%	34%	39%	4%	86	43 43
P0_Rep1 P0_Rep2	ENCBS038AAA ENCBS554AAA	Set_1 Set_2	361	85%	83%	52%	2%	108	51 57
P56_Rep1 P56_Rep2		Set_1 Set_2	680	89%	65%	73%	4%	90	47 44
hu_GM12878_m u_E155_mix		p5:1-8, p7:1-12 i5: S502-S511; i7: S701- S715	27	87%	89%	38%	2%	13	

Barcode sets (for sequences see Supplementary Table 1)

Set_2				
p5	1-8			
p7	1-12			
i5	X520-X535			
i7	N731-X754			
	0-1.1			
Set_1				
p5	1-8			
p7	1-12			
p5 p7 i5 i7	\$502-\$511,X512-X519			
17	N701-N729,N730			

Supplementary Table 1: Sequencing statistics for single nuclei ATAC-seq

libraries. General overview of sequencing for single nuclei ATAC-seq libraries including PCR duplication rates and fraction of mitochondrial reads. Please note that paired end reads were treated as separate reads. Sequencing libraries for replicate 1 and 2 were sequenced together and single cell datasets were assigned based on replicate specific barcode combinations (Set_1 or Set_2). One exception was E13.5 where replicate 1 and 2 were detected for the p5 barcode. M: million.

Sample	Cells pass QC (#)	Reads per cell (median)	Promoter coverage (median)	Fraction of reads in peaks (median)
E11.5_Rep1	528	16,023	10.6%	17.5%
E11.5_Rep2	685	16,499	11.1%	17.5%
E12.5_Rep1	781	18,397	11.2%	15.7%
E12.5_Rep2	303	17,945	10.3%	14.9%
E13.5_Rep1	651	16,891	11.8%	18.4%
E13.5_Rep2	646	14,669	11.1%	18.7%
E14.5_Rep1	976	14,440	11.3%	19.8%
E14.5_Rep2	905	14,489	11.5%	19.2%
E15.5_Rep1	1,591	16,789	12.2%	20.4%
E15.5_Rep2	2,235	17,840	12.9%	20.5%
E16.5_Rep1	317	12,758	11.0%	23.2%
E16.5_Rep2	738	10,460	11.4%	29.3%
P0_Rep1	1,044	9,275	13.3%	36.0%
P0_Rep2	1,333	8,703	12.6%	37.4%
P56_Rep1	1,569	12,509	11.6%	27.1%
P56_Rep2	1,465	12,689	11.5%	26.4%
Average	985	14,399	11.6%	22.6%
Total	15,767			

Supplementary Table 2: Overview of single nuclei ATAC-seq data after filtering out low quality cells. Overview of nuclei that pass quality control and general properties of data sets including promoter coverage and fraction of reads in peaks.

Parameter	this study	Cusanovich et al. 2015 ¹²	Buenrostro et al. 2015 ¹³	
Single cell strategy	Combinatorial indexing	Combinatorial indexing	Microfluidics	
Sample type	Frozen tissues	Cell lines	Cell lines	
Total cells/nuclei (per experiment)	15,676 (303-2,235)	15,814 (533-1,459)	1886 (n.r.)	
Reads per cell/nucleus (median)	9,375-18,397	1,390-3,094	73,000 (average)	
Fraction of reads in peaks	15.7%-37.4%	41-59 %	> 15%	
Promoter coverage per cell/nucleus	11.60%	n.r.	9.40%	

Supplementary Table 3: Comparison of single nuclei ATAC-seq with previously published initial single cell ATAC-seq studies. Table illustrating several characteristics of single nuclei/cell ATAC-seq libraries. n.r. not reported