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Supplementary Figure 1

Fragment length (bp)

SsnATAC-seq protocol optimization.

Barcoded Tn5

Barcoded Tn5 (2x barcodeed Tn5)

a. Overview of critical steps for the snATAC-seq procedure for nuclei from frozen tissues. b. IGEPAL-CA630 but not Triton-X100 was
sufficient for tagmentation of frozen tissues (n = 1 experiment). c. Tagmentation was facilitated by high salt concentrations in reaction
buffer (n = 1 experiment; Wang, Q. et al. Nature protocols, 2013, doi:10.1038/nprot.2013.118: Sos, B. C. et al. Genome biology, 2016,
doi:10.1186/s13059-016-0882-7). d. Maximum amount of fragments per nucleus could be recovered when quenching Tn5 by EDTA
prior to FANS and denaturation of Tn5 after FANS by SDS. Finally, SDS was quenched by Triton-X100 to allow efficient PCR
amplification. e. Increasing tagmentation time from 30 min to 60 min can result in more DNA fragments per nucleus (n = 1 experiment).
f. Number of sorted nuclei was highly correlated with the final library concentration. Tn5 loaded with barcoded adapters showed less
efficient tagmentation as compared to Tn5 without barcodes. Wells were amplified for 13 cycles, purified and libraries quantified by
gPCR using standards with known molarity (n = 1 experiment). g. Tagmentation with barcoded Tn5 was less efficient and resulted in
larger fragments than Tn5 (550 bp vs. 300 bp). Ratio for barcoded Tn5 was based on concentration of regular Tn5. h. Doubling the
concentration of barcoded Tn5 increased the number of fragments per nucleus by 3 fold. Further increase resulted only in minor
improvements (n = 1 experiment). i. Dot blot illustrating the amount of library from 25 nuclei per well. Each well was amplified for 11
cycles and quantified by gPCR. This output was used to calculate the number of required PCR cycles for snATAC-seq libraries to
prevent overamplification (n = 28 wells). j. Size distribution of a successful snATAC-seq library from a mixture of E15.5 forebrain and
GM12878 cells shows a nucleosomal pattern. SNnATAC-seq was performed including all the optimization steps described above with
barcoded Tn5 in 96 well format (n = 1 experiment; snATAC libraries for forebrain samples showed comparable nucleosomal patterns: n

= 16 experiments).



a b c d e
400 1000 1000 1000
] ] ] sorted single nuclei

_ — = ]

] s = 1 ~ 1

- e 26004 £sc single 98.7 % 28007 Bsc_single 987 % N Sorting 85.7 %

o s | o 5 ‘

@D ) @D

m o o

80 2t 200 1 200
Nuclei 14.0 %
0 L} § 4 v 0 T T T T 0 T T T T 0 ey ver - or e
0.1 120 360 600 0 120 360 600 0 80 240 400 1 100 10* 10°
FSC (Area) FSC (Height) BSC (Height) FSC (Area)

Supplementary Figure 2
Isolation of single nuclei after tagmentation.

a-d Density plots illustrating the gating strategy for single nuclei. First, big particles were identified (a), then duplicates were removed
(b, ¢) and finally, nuclei were sorted based on high DRAQ?7 signal (d), which stains DNA in nuclei. e. Verification of single cell
suspension after FANS was done with Trypan Blue staining under a microscope.
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Supplementary Figure 3
Overview of sSnATAC-seq sequencing data and quality filtering for single nuclei.

a. Distribution of insert sizes between reads pairs derived from sequencing of SnATAC-seq libraries indicates nucleosomal patterning.
b. Individual barcode representation in the final library shows variability between barcodes. ¢c. To assess the probability of two nuclei
sharing the same nuclei barcode, single nuclei ATAC-seq was performed on a 1:1 mixture of human GM12878 cells and mouse E15.5
forebrain nuclei. A collision was indicated by < 90% of all reads mapping to either the mouse genome (mm9) or the human genome
(hg19). We identified 8.2% of these barcode collision events. d. Read coverage per barcode combination after removal of potential
barcodes with less than 1,000 reads. e. Constitutive promoter coverage for each single cell. The red line indicates the constitutive
promoter coverage in corresponding bulk ATAC-seq data sets from the same biological sample. Cells with less coverage than the bulk
ATAC-seq data set were discarded. f. Fraction of reads falling into peaks for each single nucleus. The red line indicates fraction of
reads in peak regions in corresponding bulk ATAC-seq data sets from the same biological sample. Nuclei with lower reads in peak



ratios coverage than the bulk ATAC-seq data set were discarded from downstream analysis. For bulk ATAC-seq data generated by the
ENCODE consortium were processed

(https://www.encodeproject.org/search/?type=Experiment&lab.title=Bing+Ren%2C+UCSD&assay _title=ATAC-seg&organ_slims=brain).
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Supplementary Figure 4
snATAC-seq data sets are robust and reproducible.

Pearson correlation of chromatin accessibility profiles from two independent experiments derived from bulk ATAC-seq (left column) and
from aggregate snATAC-seq after aggregating single nuclei profiles (middle column) is shown in each plot. In the right column the
correlation between bulk ATAC-seq and aggregate snATAC-seq are displayed for the experiment on the first set of forebrain tissues.
Data are displayed from forebrain tissues from following time points: a. E11.5, b. E12.5, c. E13.5, d. E14.5, e. E15.5, f. E16.5, g. PO,
and h. P56. For bulk ATAC-seq data generated by the ENCODE consortium were processed
(https://www.encodeproject.org/search/?type=Experiment&lab.title=Bing+Ren%2C+UCSD&assay_title=ATAC-seg&organ_slims=brain).
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Supplementary Figure 5
Clustering strategies, quality control of clusters and clustering result for individual experiments in adult forebrain.

a, b T-SNE visualization of clustering using a distal elements (regions outside 2 kb of refSeq transcriptional start sites) or b promoter
regions (KL: Kullback-Leibler divergence reported by t-SNE).c Box plot of read coverage for each cluster (sample size for cluster is
EX1: 190, C2: 946, MG: 126, AC: 120, OC: 252, IN2: 320, EX2: 366, EX3: 519, IN1: 195, shuffled: 199; 25% quantile is EX1: 1076, C2:
665, MG: 595, AC: 884.25, OC: 755, IN2: 754, EX2: 106, EX3: 1104, IN1: 881, shuffled: 880; median value is EX1: 1372, C2: 855, MG:
726, AC: 1079, OC: 871, IN2: 899, EX2: 1334, EX3: 1482, IN1: 1102, shuffled: 1178; 75% quantile is EX1: 2045, C2: 1196, MG: 972,
AC: 1489, OC: 1188, IN2: 1134, EX2: 1929, EX3: 2102, IN1: 1496, shuffled: 1652) d Box plot of similarity analysis between any two
given cells in a cluster. Cluster C2 was discarded before downstream analysis due to low its intra-group similarity (median < 10). As a
negative control, randomly shuffled cells were included in the analysis displaying exceptionally low in-group similarity (sample size is
EX1: 190, C2:946, MG:126, AC:120, OC: 252, IN2: 320, EX2: 366, EX3: 519, IN1: 195, shuffled: 199; 25% quantile is EX1: 13.34, C2:
6.84, MG: 15.15, AC: 19.89, OC: 20.60, IN2: 9.88, EX2: 10.53, EX3: 11.81, IN1: 12.58, shuffled: 3.02; median is EX1: 16.34, C2: 9.12,
MG: 19.68, AC: 24.835, OC: 26.23, IN2: 12.77, EX2: 13.00, EX3: 15.23, IN1: 15.50, shuffled: 4.20; 75% quantile is EX1: 20.07, C2:
11.74, MG: 25.58, AC: 30.860, OC: 32.95, IN2: 16.11, EX2: 16.02, EX3: 19.46, IN1: 19.25, shuffled: 5.56) e, f T-SNE visualization of
single cells from e replicate 1 and f replicate 2. The projection and color coding is the same as in Fig. 2d.
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Supplementary Figure 6
Ranking of gene loci (TSS + 10 kb) compared to other clusters in adult forebrain.

Negative binomial test shows enrichment for a excitatory neuron markers b inhibitory neuron markers c astrocyte markers d
oligodendrocyte markers and e microglia markers extending the examples shown in Fig. 2b. Please note for general assignment

accessibility profiles for Ex1-3 and IN1/2 were merged, respectively. For each cell type, data from two experiments (n = 2) were used to
carry out the negative binomial test.
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Supplementary Figure 7

Flow cytometric analysis of adult mouse forebrain and comparison to single-cell RNA-seq data from different brain regions.

a-c Dot blots illustrating nuclei from adult forebrain stained for flow cytometry with Alexa488 conjugated secondary antibodies. a.
Displayed are representative blots for experiments without antigen specific primary antibody and b. with antibodies recognizing the
post-mitotic neuron marker NeuN* (n = 3, average + SEM). c. NeuN negative nuclei were sorted for ATAC-seq experiments and purity
(> 98%) was confirmed by flow cytometry of the sorted population. d. Relative composition of different forebrain regions derived from
single cell RNA-seq shows region specific differences™. e Relative composition derived from snATAC-seq (compare to Fig.2c) of adult
forebrain shows values in between.
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Supplementary Figure 8

Clustering of TF motif enrichments -log, (p-value)

Subclassification of excitatory neurons into hippocampal and cortical neuron types.

a. Hierarchical clustering of aggregate single cell data for excitatory neuron cluster and sorted bulk data sets corresponding to different

anatomical regions (grey shaded). b. Chromatin accessibility at marker gene loci. ¢c. K-means clustering of promoter distal genomic
elements and enrichment analysis for transcription factor motifs. Statistical test for motif enrichment: One-tailed Fisher's Exact test;
displayed p-values are Bonferroni corrected for multiple testing®.
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Supplementary Figure 9
Cell-type-specificity and coverage of the cis elements.

a-c Graphs illustrate cell-type specificity of genomic elements as measured by Shannon entropy based on normalized read counts for
each cell-type and percentage of nuclei in which a genomic element was called accessible as indicated by presence of at least 1 read
overlapping with the element a peak. Analysis was performed for the adult forebrain (P56) against a TSS-proximal genomic elements
(TSS - 2kb), b distal elements and c the subset of genomic elements that separated two cell clusters. d Violin plots illustrate higher cell-
type specificity for distal elements compared to proximal elements indicated by significantly lower Shannon entropy value (p < 2.2e-16).
In addition, all genomic elements that separate two clusters as well as subsets identified from k-means clustering of genomic elements
depending on chromatin accessibility in adult forebrain are displayed (related to Fig. 2e). (all proximal peaks n = 14,262
(minimum/median/maximum; 0/1.96/2.08), all distal peaks n = 140,102 (0/1.38/2.08), all differentially accessible peaks n = 4,980
(0.07/1.4/2.06), K1 n = 529 (0.08/1.49/2.06), K2 n = 586 (0.14/1.13/2.04), K3 n = 737 (0.07/1.18/2.05), K4 n = 270 (0.33/1.55/2.01), K5
n =601 (0.74/1.43/2.05), K6 n = 513 (0.28/1.48/2.05), K7 n = 538 (1.19/1.64/2.02), K8 n = 490 (0.13/1.28/2.05), K9 n = 282
(0.73/1.65/2.02), K10 n = 434 (0.32/1.42/2.04). TSS: transcriptional start site.
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Supplementary Figure 10
Distinct chromatin accessibility profiles of two GABAergic neuron clusters.

IN2 is depleted for chromatin accessibility at the genes Pax6 and DIx1 (a), but enriched for marker genes of medium spiny neurons as
compared to IN1 cluster (b).
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Supplementary Figure 11
Comparison of chromatin accessibility and differentially methylated regions in neuronal subtypes.

Displayed is the fraction of cell-type specific differentially methylated29 that overlapped with genomic elements accessible in excitatory
(EX) and inhibitory neurons (IN). This analysis illustrates that cis regulatory elements specific for inhibitory neurons and excitatory
neurons, respectively, could be identified by both methods. Clusters (K) from this study are the same as in Fig.2e (m: mouse; L: layer;

DL: deep layer).
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Supplementary Figure 12
Dynamics of chromatin accessibility within distinct cell groups.

a Number of reads in peaks per developmental time point for a specific nuclei cluster. b Number of nuclei per time point for a specific
nuclei cluster. For analysis of dynamics only cell clusters with > 3 stages with > 50 nuclei and > 250,000 reads in peaks were
considered. ¢ Overview of dynamic elements identified per cell cluster (see methods) d-g K-means clustering and motif enrichment
analysis for nuclei clusters with > 200 dynamic genomic elements. Statistical test for motif enrichment: hypergeometric test. P-values



were not corrected for multiple testingso. (e: embryonic; RG: Radial glia; EX: Excitatory neuron; IN: Inhibitory neuron; EMP:
Erythromyeloid progenitor cell; AC: Astrocyte).
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Supplementary Figure 13
Distal genomic element clusters are associated with distinct anatomical locations in the developing forebrain.

Displayed is the enrichment of clusters of open chromatin for enhancers that are active in distinct regions of the developing forebrain (n
= 95)4 . As expected elements mainly associated with radial glia and excitatory neuron cell-types (Fig.2e, K1,3,4) were enriched for
pallial subregions, whereas inhibitory neuron associated elements (Fig.2e, K9-11) were enriched in LGE and MGE regions. Clusters
with less than 5 overlapping elements were excluded from the analysis. Binomial testing was used for statistical analysis. The p-values
were not corrected. Anatomically annotated enhancers: n = 146*"; open chromatin regions: K1: n = 880; K3: n = 1838; K4: n = 1015;
K5: n =1276; K9: n = 1042; K10: n = 1238; K11: n = 623.



