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1. REGULARITY CONDITIONS
The regularity conditions are summarized as shown below.

1. The parameters {f,a, B} are in a compact set A that contains {0g,aq,Bo}. The parameter
set B for the baseline hazard function contains all nondecreasing functions A that satisfy

A(0) =0 and A(7) < oo, where 7 is the upper bounds for the support of T.

2. The cumulative hazard function Ay(-) is continuously differentiable. The parametric model

for the truncation time {h(-|@) : @ € A} is identifiable.
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3. The covariate vector Z is bounded, and Fyl||Z||?, E0||e°‘TZ1H and E0||eﬂTZH are bounded for

every a and B in A.

4. The functions A(-|f) and h(-|@) satisfy a Lipschitz condition in @, i.e., there exist functions Fy
and F5 such that
|1(al6y1) — i(alf2)| < ||61 — B2||2Fy(a)  and  [h(aly) — h(alf2)| < |61 — B2||2F>(a)

where Ey {Fl(fl)Q} < oo and Ey {FQ(A)Q} < 0.

5. The matrix Jy; is positive definite, where J1; is the Fisher information matrix for (6, e, Bo)-

2. PROOF OF THEOREM 1

The technical details of the consistency proof are similar to those in the literature for maximum
likelihood estimation under semiparametric models (Murphy, 1995; Parner and others, 1998).
We provide only a sketch of the proof. The first step is to show that En = {ﬁn,an,Bn,KH} is
bounded. As {ﬁn,an,ﬁn} is found in a compact set, we can find a convergence subsequence of
{b\n,amﬁn}. Then we only need to show that Kn is bounded, i.e., mnﬁn < 00. We follow the
idea of using contradiction construction from Parner and others (1998) as follows. Assuming that
Kn diverges, we can construct some sequence {97“64,“ Bn, /_Xn} such that the empirical Kullback-
Leibler distance [, (En) —1,,(£,)) would become negative infinity. This contradicts the fact that En
maximizes the log-likelihood function and I, (En) —1,(€) > 0 for every set of £, in the parameter
set.

o~

We next apply Helly’s selection principle to find a convergent subsequence of £, ~for an
arbitrary subsequence from the sequence indexed by {1,2,...,n}. By the strong law of large
numbers, such a convergent subsequence must converge to &, using the classical Kullback-Leibler

information approach. For any given subsequence {ny}, we can identify a further subsequence

of an that converges to £g. Helly’s selection theorem implies that the entire sequence Zn =
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{ﬁman,ﬁn, Kn(t)} must converge to £y = {0p, ap, Bo, Ao(t)} for each ¢t. By the assumption that
Ao(-) is continuous, the convergence A, () is also uniform at cach t. The convergence is also
almost certain by carrying out the proof for a fixed w in the underlying probability space €2, and

applying the law of large numbers countable many times.

3. PROOF OF THEOREM 2

The score functions of {#,a, B} are calculated by taking the derivative of [,,(§) with respect to

{6,a,8},
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where Q1 (1|Z) = fois(;\Z)h(vIO)dv}’ At|2) = [T S (v]6)dv-+exp(a’ Z) exp{— S ZdA(v)}h(A|0)

and Q2(t|Z2) = exp{ fo B Z N ( )} J/A(t|Z). For the infinite dimensional parameter A(-), we

construct a submodel dA, (-) = {1+ n¢(-)} dA,(-), where ¢(-) is a bounded and integrable func-
tion and 7 is a positive constant. By taking the derivative of I,,(§) with respect to n and evaluating

at n = 0, the score operator for A(-), Us,(t,€), has the following form
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To apply the Z-theorem to the infinite-dimensional estimating equations for the asymptotic nor-
mality, we need to verify three main conditions: the Fréchet derivative, weak convergence of
vnU,(€o) and stochastic approximation of the estimating equations. We first confirm that the

estimating equations, Up(§) = {U10(§), U20(€),Us0(€), Uso(-, &)}, are Fréchet differentiable and

the Fréchet derivative is continuously invertible, where
T h(A) [T :
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The Fréchet differentiability of Uy (€) at & = €y can be verified by the definition, and the derivation
can be calculated by using the Gateaux variation of Uy(€). Specifically, we can take the differen-
tiation of Uy(§,) with respect to n, where &, = (8,), a0y, B, Ayy) = (00, 0, Bo, Ao) +1(0,0,8,A),

and evaluated at 7 = 0. The Gateaux derivative of Uy(§) evaluated at & is

—{511(0) + s12(a) + s13(8) + s14(A) },

where
0
511(0) a U10(9n7a07ﬂ05A0)|7] 0_0’611’
0 T
s12() = an = U10(00, ), Bo, Ao) =0 = @ K12,
0
s19(6) = g 550800087, Ao)ly-0 = BT [ K (w)aa(0),

s1a(A) = *Ulo(eo,ao,ﬂm )n= o—/ / I€13 uw)dudA(v),



6

K11 =

Ri12 =

O]

Kiz(v) =

— E,

+ Ey

+E

o

—E

o

+ Ey

_EO{Y/O { ﬁ:z /Q1 (t12)h(t10)dt + /Q1 (t12) (t|0)dt}}dN( )}

+/0 EO{ (Al§) — A|0/ Q1 (t|2)h(t|8)dt — h A|0/ Q1(t12)(t|6)dt
nao){ [ Q2o }Q2<u|2>e“TZIdN<u>}
“

- E{ [B<Ao> —ial0) [ @i aizyieo)a — 1(a) [ Que2)hceio)i
0 0

Eo| {in(Al6) - h(Al0) / ' Q1<tZ>h<t|o>dt}c23<uZ>eaTzldN<u>]

o [ Q2o |axxize= }

—E,

{h(AO) - h(A|0)/OT Ql(t|z)h(t|0)dt}Q3(X|Z)eaTz1] 7

[a

— E,

{i(418) - n(4l6) / Q1(v|Z)h(v}6)d }{Q2<u|Z>zl+Q4<u|2>}exp<aTzl>dN<u>]

{i10) - niaw) [ @io12) (|9)dv}{Q2(X|Z)Z+Q4(X|Z)}6“TZ1],

_EO

v [[emzz{ [Tz [ [ Ql(tIZ)h(tlo)Ql(ulIZ)h(ullo)duldt}dN(u)]
_ /T{'<A|o> h(Ale) / Qi(t|2)h (to)dt}Qz(UIZ) etz {n @2<u>eaTzlh<Ao>>}dN<u>]

/ / { (Al6) — h(Al6) / Ql(tZ)h(tO)dt}QQ(u|Z)e°‘TZ1+ﬁTZZl{W}duldN(u)]

| / B(AB)Qa (1] Z)P 2 e ZIZI{ / Qu(HZ)h(18)dt — / / Q12 (16)Q1 (u1|Z) 1 <u1|0>du1dt}dzv< >]
{h(A|0) — h(AlB) / Ql(t|Z)h(t|0)dt}Q2(XZ)e"TZ1+’3TZZl {1- QQ(X)e"TZIh(AW))}]

/{ (Al6) — A|0/ Q1 (t|2)i(t]0)d } 2(X|Z)e“TZ1+ﬂTZZI{W}du1]

+ Ey

h<A|0>Q2<XZ>eﬂTZ+“Tzlzl{ / Q1 (t2Z)h(t}9)dt — / ' / ' Ql(tlz)h(tl0)Q1(u1Z)h(u1|9)duldt}] 7



7

Qs(112) = ~Qu(1|2){ EE TN alO1ins 4 a2, 0, 1\ 2)i(418) } and Qu(112) = ~Qu(t1Z)2h(AB)="2 2.

The Gateaux derivative of Uz (€) evaluated at & is
—{521(0) + s22(@) + s23(B) + s24(A) },

where
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The Gateaux derivative of Usg(€) evaluated at &g is

—{531(0) + s32() + s33(B) + s34(A)},
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Similarly, we can derive the Gateaux derivative of Uy (t,€) evaluated at &g, denoted as

—{541(0)(t) + sa2(e)(t) + 543(B)(t) + 54a(A) (D)},
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s11(0)(1) = 5-Uso (1.0, 00, B Ao)l -0 =0 / w0 (0)dAo(w),

0
512(0)(1) = - Uso(t, 80,y B, )]0 = " / w0 (0)do(v),

512(8) (1) = - Usa(t.80. 00,85, Ao)l 0 = B /0 59, (w)do / / K38 (. ) dAo(v)dAo ()

on

844(A)(t):%Uzlo(t,GOvaOaﬂO»An)M:o: / w0 () dA (u) + / / A0 o1, ) () d o (1),

The Fréchet derivative of Uy(€) has the following form

511 812 513 S14 0 511(0) si2(@) s13(B) s1a(A)

o (5) _ $21 S22 S23  S24 « _ 521(9) 822(01) 823(,3) 524(1\)
0 $31 S32 S33 S34 B 531(0) s32(a) s33(B)  s34(A)
S41  S42  S43  S44 A 541(9) 542(01) 543(ﬁ) 544(A)

Denote the finite parameters p = (8, a,8)” and define

K11 K12 {foT "9(1‘13)( )dAo(v) '
Ju = /€12 K929 {f(] H23 dAo( )} ’
Jo 855 W)dAow) 5 K5 (v)dA0(v) f S5 (v)dA0(v) + f fy K53a(u, v)dAo(v)dAo(u)
Ja1(t) = Jia(v ( fo ”13 v)dAo(v) fo ”23 v)dAg(v) fo ”331 u)dAo(u +fo 0 ’ﬁ%)z (u, v)dAo(v)dAo(u) )

The Fréchet derivative of Uy(€) has the following form

we- (g o) (4) - (i),

where

511(0) + s12(@) + s13(B)
on(p) =— ( $21(0) + s22(a) + s23(B) ) = Juip,
531(0) + sz2(a) + s33(B)
o1 () (t) = — ( 521(0)(t) + sa2(@)(t) + s43(B)(t) ) = Jar ()i,

s14(A) T
O’12(A) = ( 824(A) ) :/0 Jlg(v)dA(U), and O’QQ(A) = S44(A).

834(A)

If the inverse of U50 exists, then it must have the following form

Uﬁl(f): Uﬂl—I—aﬁlalgtﬁ_laglaﬁl —aﬂlolgé_l I
& > losi0py! ! A )
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where ® = g9y — Uglailolg. Thus, to show U50 is continuously invertible, we only need to show
that 017 and ® are continuously invertible. Note that o7 is identical to Jy1, which is the Fisher
information for (0y,ao,Bo) when the baseline hazard functions Ay are known. It is reasonable
to assume that the information matrix .J;1 is positive definite and invertible with inverse Jl_ll.
Thus, 0y, is continuously invertible with inverse o7;" () = J;;'p

To show that ® is continuously invertible, it is equivalent to showing that there exists a unique

solution to the operator equation ®(A) = gaz(A) — 02107, 012(A) = A for each bounded function

A.

/0 £ (u) / / 1O (1, v)dA(v)dAo(u / Jor ()51 T (w)dA (u) = A(t).

Taking the derivative with respect to ¢ on both sides, we have

KL (B AA(E) + Ao (t) / Koy (t, v)dA(v) — / " it (0I5 g (w)dA () = dA (D).

We can rewrite the equation as a Fredholm integral equation of the second type

At
/ K(t,u)dA(u d )( )
”331(t)
where
w9 (1) '
Ao(t) %S’ 1 (0)
K(t,u) = ) (t) Jiv Ji2(u) — Kygo(t,v)

K (1
a1 () '%:(331 )+ fo 3)2 (t,v)dAo(v)
The existence and uniqueness of the solution to the linear integral equation for a given value of

A(+) are well known. Under the regularity conditions, we have
A(t)

/o K (1)

By the classical existence and uniqueness theorem for Fredholm integral equations, there exists

2
dt < oo, //|K(t,u)|2dtdu<oo.
o Jo

one and only one solution to the deterministic equation. It follows that the inverse operator & —*
exists and has the form

SR A/ \() " [* R(v,u)
® (A)f/o §0>(u)+/o/o (0)()ddA()

K331 K331 \U
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where R(t,u) is independent of A(-) and satisfies the equation
R(t,u) = K(t,u) + /K(t,v)R(v,t)dv.
As the true parameter values satisfy Up(€p) = 0, we have

VU, (€o) = vVn{U,(&o) — Us(€o0)}
= Vn{Uin (o) — U10(€0), U2n(€0) — U20(€0), Usn(§0) — Uso(§o), Uan(t,§0) — Uso(t,€0)} -

Notice that /n{U1,(€0) — Ui0(€0), Uan(&o) — Us0(€0), Usn(&o) — Uso(&o)} converges in law to
W, from the multivariate central limit theorem, as it can be rewritten as the summation of
independently and identically distributed (i.i.d) random vectors. The process \/n{Us,(t,€0) —
Uso(t,€0)} is a sum of i.i.d. processes of bounded variation. From a lemma for the central limit
theorem for processes of bounded variation (Van Der Vaart and Wellner (1996), Example 2.11.16),
it converges to a tight Gaussian process W, if the second moment is finite. Finally, by the
continuous mapping theorem, the weak convergence of v/nU, (&) follows.

The final step is to show the stochastic approximation of

\/ﬁ{(Un - UO)(gn) - (Un - UO)(fO)}
= \/ﬁ[{Un(>£n) - U0(7€TL)} - {Un(a60) - UO(?&O)H = OP*(l)'

Denote P,, as the empirical measure and

i(t.6,0) = {i1(€.0).12(.0),15(6,0), 11(t.€.0) }.

Then we have

n

l('7£a Oz)

1

SRS

IMOZHKLOF:_
Denote the empirical process by G, f = v/n(Pnf —Pof ),_Where Py denotes the expectation under
the true value €q. Then, \/n(U, —Up) (&) = gni(~,§, 0) is the empirical process index by the class
of functions

V@gm@eAxBJEMﬂ}
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Let the norm ||-||% on H = A x B be defined as ||€||x = 0|+ ||+ |B] + | Al Then the stochastic
condition is

1Gnl(t,€,1, O) = Gull(t,€0, O) |3 = 0p(1).

We can use the lemma from Van Der Vaart and Wellner (1996) to prove the stochastic approxima-
tion. First, it can be shown that {i(t,{, O) —I(t,€0,0) : t € [0,7),|[€ — &ol|n < 5} is Pp-Donsker
using the fact that the functions are the sum, products and continuous transformations of FPy-
Donsker. Furthermore, i(t,€,0) converges to [(t,€o, ©) for each t and t when [|€ — &ol[3 — 0.
The convergence also holds for the square moment by the dominated convergence theorem. We
have

supreo,r) Eolli(t,€, 0) — (t, &, 0|3, — 0.

The stochastic approximation of (U,, — Uo)(gn) — (U, — Uy)(&p) follows by Lemma 3.3.5 of Van

Der Vaart and Wellner (1996) .

4. SENSITIVITY STUDIES ABOUT MODEL MISSPECIFICATION OF THE TRUNCATION TIME

We have conducted some sensitivity studies to evaluate the robustness of the proposed method
with model misspecification of the truncation time. Specifically, we considered three scenarios:
(i) the truncation time A is generated from a truncated Gamma distribution while a truncated
Weibull distribution is assumed when applying the proposed method; (ii) A is generated from
a truncated generalized Gamma distribution while a truncated Weibull distribution is assumed
when applying the proposed method; and (iii) A is generated from a truncated Gamma distribu-
tion while a truncated generalized Gamma distribution is assumed when applying the proposed
method. The other aspects of data generation were the same as described in Section 5. The
density function of a truncated generalized Gamma distribution is h(¢|0) = ¢(t|@)/G(20]8) with
g(t|0) = 91159193’16’('5/02)01/{1"(03)93193}, and G(t|@) is the cumulative density function, where

(61,02,03) > 0. The generalized Gamma distribution degenerates to the Weibull distribution if
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03 = 1, and degenerates to the Gamma distribution if #; = 1. The censoring rates were set to
be 0%, 10% and 30%, respectively. We set n = 600 and used 500 replicates. For comparison, we
also performed a naive analysis by ignoring the unique data structure. Specifically, we fitted a
logistic regression model by excluding subjects with unknown values of Y;, and then employed a
Cox proportional hazards model for the left-truncated data by using subjects with Y; = 1. Tables
S1, S2 and S3 summarize the average estimates, empirical standard errors and average EM-aided
standard errors for scenarios (i), (ii) and (iii), respectively.

As shown in the three tables, although the parametric truncation models under the three
scenarios were misspecified, the estimated regression coefficients had small empirical biases. Under
the setting without right censoring, the empirical biases were smaller than 4%. With increasing
censoring rates, the empirical biases were stable and remained within a reasonable range (< 5%).
The variance estimation was also robust to the model misspecification on the truncation time;
the standard errors estimated by the EM-aided procedure approximated the empirical standard
errors well.

In summary, the proposed estimation method for the parameters of interest has robust per-
formance with violations of the parametric model assumptions on the truncation time. Also,
the simulation studies confirm that the proposed method works well under the rich parametric
assumption. In practice, one can start with a rich family of parameters, e.g., the truncated gener-
alized Gamma distribution, for the truncation time, which includes the Weibull distribution and

the Gamma distribution as special cases.

5. COMPARISON OF THE LENGTH-BIASED METHOD AND THE GENERAL LEFT-TRUNCATED

METHOD

We have compared the small sample performance of the estimation method for the length-biased

data and general left-truncated data when the data satisfy the stationarity assumption. We gen-
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erated the truncation time A from the uniform distribution with a truncation rate of 50%. We
set n = 300, 600 or 1000, with 500 replications. Table S4 summarizes the average estimates, em-
pirical standard errors and average EM-aided standard errors. We further calculated the relative
efficiency (RE) of the two methods, defined as the mean squared error (MSE) from the general
left-truncated data method, divided by that from the length-biased data method.

We made several observations from the simulation results. First, both methods performed well
and had small empirical biases for the regression coefficients under the logistic model and Cox
model. The estimated standard errors by both methods approximated the empirical standard
errors well for estimated regression coefficients. Second, the method for the length-biased data
was more statistically efficient, with the RE ranging from 1.00 to 1.38. Third, the estimated
parameter 6 in the truncated Weibull distribution obtained by the method for the general left-
truncated data was very large, suggesting the estimated distribution of the truncation time was
very close to the Uniform distribution (Figure 1). Also, variance estimation of this parameter
was not stable due to the extreme value of the parameter. Last, the method for the length-biased
data was more computationally efficient. For example, in a 100-run simulation with sample size
600 and 10% censoring rate using a 3.30GHz CPU desktop, the CPU times of the methods
for the length-biased data and general left-truncated method were 2.12 hours and 5.40 hours,
respectively. In practice, we suggested conducting a test for the stationary assumption (Addona
and Wolfson, 2006; Asgharian and others, 2006). If the stationary assumption holds, the method
for the length-biased data is preferred for improving statistical efficiency and computational

simplicity.

6. SIMULATION STUDIES WITH SAMPLE SIZE 1000

Tables S5 and S6 summarize the simulation results with a sample size of 1000. The simulation

results have the same patterns as those with smaller sample sizes.
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7. DETAILS ABOUT DERIVATIONS OF SOME EQUATIONS

Derivation of S,(¢|Z): Given that the population is a mixture of cured and uncured components,

the marginal survival function of the observed time T is

So(t|Z) = P(T > t|Z,Y = 1)P(Y = 1|Z) + P(T > t|Z,Y = 0)P(Y = 0|Z)

S(t12)

:a?;ﬁipwzum+szmm,

where S(t[Z) = exp{—A(t)exp(8'Z)} and 0 < t < 20. Note in above equation, we have
P(T > t|Z,Y = 0) = 1 because for the cured subgroup (Y = 0), the time to the event of

interest is not subject to truncation and the value is always 20.

Derivation of Equation 3.3:

To derive the likelihood of the observed data, we consider three scenarios:
(1) For an uncensored patient belonging to the uncured group (§; = 1,Y; = 1), the corresponding
likelihood component is

P(Y; =1|Z;,a)f(Xi|Z;,8,\)
P(ﬁ > gi|Zia1/))

bl

based on the conditional density function conditional on the sampling constraint 7' > A.

(2) For an uncensored patient belonging to the cured group (6; = 1,Y; = 0), the corresponding
likelihood component is P(Y; = 0|Z;,a) because the actual time to the event of interest is not
subject to truncation and the value of ﬁ is always 20.

(3) For a censored patient (6; = 0), the group indicator is unobserved, and then the corresponding

likelihood component is S,(X;|Z;, ).

Equation 3.3 follows.

Derivation of Equation 3.4: For censored subject ¢, we are not able to observe its SAB status
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(Y;), and its expectation conditional on the observed data (0O;) is calculated as below.

E(Y;|0;,%) = P(Y; = 1|0;,9) = P(ffi = 1|ﬁ > i, Zi, )
B P(Y; =1|Z;,a)P(T; > z;|Y; = 1,Z;, 8, )

P(Y; = 0Z;,0)P(T; > z;|Y; = 0,Z:,8,)) + P(Y: = 1|Z;,0) P(T; > 2;(Y; = 1,2;,8,\)
B P(Y; =1|Z;,a)S(xi|Z, B,\)

P(Y; = 0|Z;,a) + P(Y, = 1|Z;,@)S(x:]2:,8,\)

Note that in the second line of this equation, we have P(T7 > 1:,|}~Q =0,Z;,8,\) = 1 since for
subjects in the cured group (Y; = 0), the actual time to the event of interest is fixed (T} = 20)

and is always greater than x;. Equation 3.4 follows.
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Fig. 1. Truncated Weibull distribution with parameter values § = (1.02, 335752)
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Table S1: Summary of sensitivity analysis for scenario (i). EST: empirical mean; SD: empirical

standard deviation; ESE: average of asymptotic standard error estimates.

Proposed Method

Naive Method

CENSOR PARA TRUE EST SD ESE EST SD
0% oo 1.2 1.16 0.11  0.12 1.03 0.10
o 1 1.03 021 0.18 1.09 0.20

o9 1 094 033 0.38 0.82 0.33

B1 -0.5 -0.50 0.10 0.10 -0.50 0.10

Ba 1 1.01 0.18 0.17 1.01 0.18

10% g 1.2 1.17 013 0.14 1.89 0.16
o 1 1.04 025 0.22 1.00 0.31

o9 1 094 040 0.43 0.99 0.51

B1 -0.5 -0.50 0.13  0.12 -0.40 0.11

Ba 1 1.01 0.22 0.21 0.81 0.20

30% o 1.2 1.20 0.18 0.20 2.31 0.23
o 1 1.06 035 0.29 0.92 0.43

oo 1 0.95 0.50 0.58 1.16 0.67

B1 -0.5 -0.50 0.15 0.15 -0.35 0.12

Ba 1 1.01 026 0.25 0.71 0.21
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Table S2: Summary of sensitivity analysis for scenario (ii). EST: empirical mean; SD: empirical

standard deviation; ESE: average of asymptotic standard error estimates.

Proposed Method Naive Method

CENSOR PARA TRUE EST SD ESE EST SD
0% Qo 1.20 1.17 010 0.13 0.99 0.10
o1 1.00 1.02 020 0.19 1.10 0.20

o9 1.00 098 034 0.40 0.81 0.33

B1 -0.5 -0.50 0.10 0.10 -0.50 0.10

Ba 1.00 1.01 019 0.17 1.00 0.19

10% a7y 1.20 1.18 0.12 0.14 1.70 0.14
o 1 1.04 024 0.22 1.04 0.29

oo 1.00 0.95 037 0.43 0.95 0.46

B1 -0.50  -0.50 0.12  0.12 -0.41 0.11

Ba 1.00 1.01 020 0.20 0.84 0.19

30% o 1.2 1.18 0.14 0.16 1.97 0.17
oy 1 1.04 026 0.24 1.00 0.33

o9 1 0.98 043  0.50 1.04 0.56

B1 -0.5 -0.50 0.14 0.13 -0.38 0.11

Ba 1 099 024 0.22 0.75 0.20

Table S3: Summary of sensitivity analysis for scenario (iii). EST: empirical mean; SD: empirical

standard deviation; ESE: average of asymptotic standard error estimates.

Proposed Method Naive Method

CENSOR PARA TRUE EST SD ASE EST SD
0% %) 1.20 1.17 0.11  0.08 0.97 0.10
oy 1.00 1.02 020 0.20 1.11 0.20

o 1.00 096 033 0.29 0.77 0.33

B1 -0.5 -0.50 0.10 0.10 -0.50 0.10

Ba 1.00 1.01 0.18 0.18 1.00 0.18

10% o 1.20 1.18 0.12  0.10 1.62 0.14
o1 1 1.03 023 0.23 1.03 0.27

oo 1.00 0.96 037 0.33 0.92 0.43

B1 -0.50  -0.50 0.12  0.12 -0.41 0.11

Ba 1.00 1.01 021 0.21 0.83 0.19

30% a7y 1.2 1.20 0.15 0.12 1.99 0.18
oy 1 1.04 029 0.29 0.98 0.36

o9 1 097 045 041 1.07 0.58

B1 -0.5 -0.49 0.14 0.14 -0.36 0.11

Ba 1 1.01 025 0.24 0.74 0.21




REFERENCES

Table S4: Summary of simulations for efficiency comparison: EST: empirical mean; SD:

empirical standard deviation; ESE: average of asymptotic standard error estimates.

General Left- Length-biased
truncated Data Method Data Method
N PARA TRUE EST SD ESE EST SD ESE
300 Qg 1.2 1.08 0.15 0.11 1.13 0.15 0.12
aq 1 1.08 0.24 0.23 1.07 0.24 0.23
Qo 1 0.98 0.47 0.38 1.00 047 0.39
51 -0.5 -0.49 0.15 0.14 -0.49 0.15 0.14
B2 1 1.06 0.25 0.25 1.04 0.24 0.25
01 - 1.06 - - - - -
02 - 146724.35 - - - - -
600 Qg 1.2 1.14 0.11 0.08 1.16 0.10 0.08
o 1 1.04 0.19 0.16 1.03 0.19 0.16
Qs 1 0.94 0.32 0.27 0.94 0.32 0.27
b1 -0.5 -0.50 0.10 0.10 -0.50 0.10 0.10
5o 1 1.01 0.17 0.18 1.00 0.17 0.17
01 - 1.02 - - - - -
0 - 335752.49 - - - - -
1000 Qg 1.2 1.18 0.09 0.06 1.17 0.08 0.06
aq 1 1.02 0.14 0.12 1.02 0.14 0.12
Qo 1 0.97 0.25 0.21 0.97 0.25 0.21
51 -0.5 -0.50 0.08 0.08 -0.50 0.08 0.08
B2 1 1.01 0.13 0.13 1.00 0.13 0.13
01 - 1.02 - - - - -

D) - 213558.81 - - - - -
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Table S5: Summary of simulation studies with length-biased data. EST: empirical mean; SD:

empirical standard deviation; ESE: average of asymptotic standard error estimates.

Proposed Method Naive Method

N CENSOR PARA TRUE EST SD ESE EST SD
1000 0% g 1.2 1.17  0.08 0.06 0.49 0.07
ay 1 1.02 0.14 0.12 1.25 0.14

g 1 097 025 0.21 0.50 0.24

B1 -0.5 -0.50 0.08  0.08 -0.50 0.09

Ba 1 1.00 0.13 0.13 1.00 0.15

10% g 1.2 1.17  0.08 0.07 0.69 0.08

o 1 1.02 0.15 0.13 1.21 0.15

a9 1 097 026 0.22 0.59 0.27

B1 -0.5 -0.50 0.09  0.08 -0.44 0.09

Ba 1 1.00 0.14 0.14 0.89 0.15

30% o) 1.2 1.18 0.09 0.08 0.78 0.10

o 1 1.03 0.17 0.15 1.18 0.18

g 1 097 030 0.25 0.67 0.31

b1 -0.5 -0.50 0.10  0.09 -0.40 0.10

Ba 1 1.01 0.16 0.16 0.83 0.17




Table S6: Summary of simulation studies with general left-truncated data. EST: empirical
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mean; SD: empirical standard deviation; ESE: average of asymptotic standard error estimates.

Proposed Method

Naive Method

N CENSOR PARA TRUE EST SD ESE EST SD
1000 0% g 1.2 1.20 0.08 0.09 1.04 0.08
oy 1 101 0.15 0.14 1.07 0.15

(o5 1 099 025 0.29 0.85 0.26

51 -0.5 -0.50 0.08 0.08 -0.50 0.08

Ba 1 101 0.12 0.13 1.00 0.13

01 1 1.00 0.03 0.03 1.01 0.02

02 28 279 012 0.14 2.47 0.08

10% g 1.2 120 0.09 0.10 1.85 0.11
o 1 1.02 018 0.15 0.99 0.22

g 1 099 029 033 1.00 0.38

B1 -0.5 -0.50 0.09 0.09 -0.41 0.08

Ba 1 100 0.15 0.15 0.82 0.13

01 1 1.00 0.03 0.03 1.01 0.02

02 2.8 279 012 0.14 2.47 0.08

30% g 1.2 121 0.12 0.13 2.38 0.17
oy 1 102 024 0.20 0.92 0.33

s 1 099 039 043 1.19 0.54

B1 -0.5 -049 0.11 0.11 -0.34 0.09

Ba 1 099 019 0.19 0.68 0.15

01 1 1.00 0.03 0.03 1.01 0.02

02 2.8 280 012 0.14 2.47 0.08




