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Appendix A: Functional MRI data, pre-processing and quality control

Table 1. For each dataset, the total number of subjects (N), number of subjects that passed quality
inspection (N+), number of subjects used to perform GICA (NICA), and the number of signal

GICA networks identified (Q+).

Dataset N N+ NICA Q+

California Institute of Technology (Caltech) 38 19 19 8
Carnegie Mellon University (CMU) 27 18 18 5
Kennedy Krieger Institute (KKI) 146 140 50 8
University of Leuven: Sample 1 (Leuven 1) 29 23 23 6
University of Leuven: Sample 2 (Leuven 2) 35 31 31 10
Ludwig Maximilians University Munich (LMU) 57 55 50 10
NYU Langone Medical Center (NYU) 184 108 50 13
Oregon Health and Science University (OHSU) 28 28 28 8
Olin Institute of Living at Hartford Hospital (Olin) 36 29 29 4
University of Pittsburgh School of Medicine (Pitt) 57 54 50 12
Social Brain Lab, Netherlands Institute for Neurosciences (SBL) 30 30 30 9
San Diego State University (SDSU) 36 32 32 14
Stanford University (Stanford) 40 35 35 5
Trinity Centre for Health Sciences (Trinity) 49 47 47 11
University of California, Los Angeles: Sample 1 (UCLA 1) 82 44 44 11
University of California, Los Angeles: Sample 2 (UCLA 2) 27 18 18 6
University of Michigan: Sample 1 (UM 1) 110 89 50 6
University of Michigan: Sample 2 (UM 2) 35 34 34 9
University of Utah School of Medicine (USM) 101 94 50 10
Yale Child Study Center (Yale) 56 46 46 11

Image pre-processing consisted of the following steps. SPM12b’s segmentation tool was first

used to correct for broad intensity variations across the MPRAGE volume; the bias-corrected

MPRAGE was then registered to the first (stabilized) functional volume and normalized to Mon-

treal Neuological Institute (MNI) space. Volumes corresponding to the first 10 seconds of the

rs-fMRI scan were dropped to allow for magnetization stabilization. The remaining volumes were

slice-time adjusted using the slice acquired at the middle of the repetition time (which varied

by site). Rigid body realignment parameters were estimated with respect to the first (stabilized)

functional volume of the rs-fMRI scan and used to calculate mean framewise displacement (FD),

a summary measure of between-volume participant motion (Power and others, 2014). The non-

linear spatial transformation estimated from the co-registered MPRAGE was then applied to

the functional data along with the estimated rigid body realignment parameters and resulted
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in 2-mm isotropic voxels in MNI space. Each resting state scan was temporally detrended on

a voxelwise basis and spatially smoothed using a 5-mm full width at half maximum (FWHM)

Gaussian kernel (Smith and others, 2004).

After pre-processing, each rs-fMRI scan was quality inspected for motion and issues with

registration and normalization using the following procedure. First, scans were flagged for quality

if mean FD across the scan was greater than 2 standard deviations above the sample mean. We

then calculated the Pearson spatial correlation between the first (stabilized) volume of each

subject’s MNI-registered data and SPM’s EPI template (Allen and others, 2011). In total, 229

subjects were found to have major quality problems. Table 1 displays the number of subjects from

each data collecting site that passed quality inspection. All scans were included in our analysis

to assess the effect of outlier removal; however, only those scans that passed quality inspection

were used to create group-level ICA maps.

Appendix B: Estimation of subject-level resting-state networks

Let k = 1, . . . , 20 index datasets collectively forming the ABIDE. For each dataset, define a

group-level brain mask as those voxels shared by at least 10% of subjects in the dataset. To

define group-level brain networks through ICA, we use all subjects that passed quality inspection,

downsampling to 50 subjects for those datasets containing more than 50 such subjects. Let Mk

be the resulting set of subjects for dataset k. For each subject i ∈Mk, let Yi be the Ti×Vk data

matrix after centering each voxel across time, where Ti is the number of length of the rsfMRI scan

of subject i and Vk is the number of voxels in the group-level brain mask. For each subject i ∈Mk,

we perform PCA and retain 50 PCs to obtain Yi = UiDiV
t
i +Ei, resulting in the reduced 50×Vk

subject-level data Ỹi = DiV
t
i . (Note that for ICA we use PCA to reduce dimensionality along the

temporal dimension, whereas for outlier detection we reduce along the spatial dimension.) Next,

we temporally concatenate all subjects to form the 50|Mk| × Vk matrix Yk. We then perform



4 A. F. Mejia and others

PCA again at the group level with Q = 30 components to obtain Yk = UkDkV
t
k +Ek, resulting

in the reduced Q × Vk group-level data Ỹk = DkV
t
k. Finally, we apply the fastICA algorithm

(Marchini and others, 2013) to obtain Ỹk = AkSk, where Sk is a Q× Vk matrix whose rows

contain the group-level spatial ICs and Ak is the Q×Q mixing matrix.

To identify those ICs corresponding to resting-state networks, we first standardize each spatial

IC by its mean and standard deviation. We threshold the result at ±2 to identify approximately

the top 5% of voxels, a standard approach for identification of resting-state networks (Eloyan and

others, 2013). We then visually inspect each spatial IC and label those corresponding to known

resting-state brain networks. This results in 4-14 signal ICs per dataset (Table 1). While the

number of signal ICs identified for some datasets is quite small, this is not surprising given the

widely varying quality and quantity of data in each dataset. We observe a positive association

between sample size and number of signal ICs: based on a simple no-intercept linear model, we

estimate that for every additional subject included in analysis, on average 0.23 (95% CI: [0.20,

0.26]) additional signal ICs are identified through GICA. As more subjects are included in GICA,

more resting-state brain networks can be clearly identified. Let S̃k denote the Qk × Vk matrix

containing the Qk resting-state networks identified for dataset k.

To obtain subject-level ICs, we perform dual regression (Beckmann and others, 2009) as

follows. Note that S̃k has been centered and scaled across voxels and Yi has been robustly

centered and scaled across time, as described in Section 2.1. Let Yi also be centered across

voxels. In the first regression, temporal ICs for subject i ∈ Mk are obtained by regressing Yt
i

against S̃t
k to obtain At

i =
(
S̃kS̃

t
k

)−1

S̃kY
t
i . In the second regression, subject-level spatial ICs

for subject i ∈ Mk are obtained by regressing Yi against Ai to obtain Si = (At
iAi)

−1
At

iYi.

This results in the ICA decomposition Yi ≈ AiSi, where Ai is Ti × Qk and Si is Qk × Vk. We

are interested in Si, whose rows contain the resting-state brain networks for subject i.
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Appendix C: Effect of outlier removal, stratified by quality control results
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(a) Reliability of Brain Networks
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(b) Reliability of Between-Network Connectivity

Fig. 1: Estimates and 95% confidence intervals for the model coefficients after stratifying by
quality inspection results. The coefficients for each outlier removal method (αm) show that while
both groups of subjects benefit from outlier removal, those who failed quality inspection tend to
improve slightly more, as we might expect.
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