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APPENDIX

A. Details of posterior calculation

Here we show the full posterior and corresponding conditionals for implementing a gibbs sampler

when X and Y are either binary or continuous. For simplifying notation we will ignore Cmis

and let the matrix C represent all covariates in the data, while acknowledging that some of these

covariates are missing in a subset of the subjects. First let θy = [θy0 , β, β
S , θy1 , ..., θ

y
p , θ

y
1
S
, ..., θyM

S
]

and θx = [θx0 , θ
x
1 , ..., θ

x
p , θ

x
1
S , ..., θxM

S ]. Then Letting X∗i , Y ∗i , and C∗ij be latent variables for Xi,

Yi, and Cij respectively the posterior can be written as follows:
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P (θy, θx, θM+1, ..., θP , σ2
y, σ

2
x, σ

2
M+1, ..., σ

2
P ,α

x, αy, αM+1, ..., αP , C∗, Y ∗, X∗|X,Y,C)

∝
N∏
i=1

p(Yi|Y ∗i )p(Y ∗i |θy, Xi,Ci, σ
2
y,α

y)

× p(Xi|X∗i )p(X∗i |θx, Ci, σ2
x,α

x)

×
P∏

j=M+1

p(Cij |C∗ij)p(C∗ij |θj , σ2
j ,α

j, C∗
i )

×P (θy)P (θx)P (θj)P (σ2
y)P (σ2

x)P (σ2
j )P (αy, αx)P (αj)

∝
N∏
i=1

p(Yi|Y ∗i )N(Y ∗i ; θy0 + βXi + βSXiSi +

P∑
p=1

αy
pθ

y
pCip +

M∑
p=1

αy
pθ

yS
p CipSi, σ

2
y)

×
N∏
i=1

p(Xi|X∗i )N(X∗i ; θx0 +

P∑
p=1

αx
pθ

x
pCip +

M∑
p=1

αx
pθ

xS
p CipSi, σ

2
x)

×
P∏

j=M+1

p(Cij |C∗ij)N(C∗ij ; θ
j
0 +

j−1∑
k=1

αj
kθ

j
kC
∗
ik, σ

2
j )

×P (θy)P (θx)P (θj)P (σ2
y)P (σ2

x)P (σ2
j )P (αy, αx)P (αj)

Where p(Xi|X∗i ) = δX∗
i
(Xi) for continuous Xi and p(Xi|X∗i ) = Xi1(X∗i > 0) + (1−Xi)1(X∗i <

0) for binary Xi. Analogous definitions hold for p(Yi|Y ∗i ) and p(Cij |C∗ij). For each regression

coefficient in the model we assign independent, non-informative N(0,K) priors, where K is set

to be very large relative to the magnitude of the coefficients. For each variance parameter in the

model we assign an IG(a, b) prior. The prior distribution P (αy, αx) is implemented as described

in the text. Under these priors the full conditionals take the following form:
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P (θx|•) ∼ N

((
W x(αx)

T
W x(αx) +

σ2
xI

k

)−1
W x(αx)

T
X∗,

(
W x(αx)

T
W x(αx)/σ2

x + I/k
)−1)

P (σ2
x|•) ∼ IG

(
N/2 + a, b+

(X −W x(αx)θx)T (X −W x(αx)θx)

2

)

P (θy|•) ∼ N

(W y(αy)
T
W y(αy) +

σ2
yI

k

)−1
W y(αy)

T
Y ∗,

(
W y(αy)

T
W y(αy)/σ2

y + I/k
)−1

P (σ2
y|•) ∼ IG

(
N/2 + a, b+

(Y −W y(αy)θy)T (Y −W y(αy)θy)

2

)
where W y(αy) represents the design matrix for the outcome model defined by αy, and W x(αx)

represents the design matrix for the exposure model defined by αx. This means that the dimension

of θx and θy are changing as we run through our gibbs sampler. In practice to implement this

algorithm we set θyj = 0 when αy
j = 0 for all j, and then update the remaining values of θy in

the manner described above. We also note that if X or Y are binary then σ2
x = 1 or σ2

y = 1

by definition and no updating of those parameters is necessary. The full conditionals for the

parameters of the imputation model for covariate j where j=M+1...P are as follows:

P (θj |•) ∼ N

(W j(αj)
T
W j(αj) +

σ2
j I

k

)−1
W j(αj)

T
C∗
j ,
(
W j(αj)

T
W j(αj)/σ2

j + I/k
)−1

P (σ2
j |•) ∼ IG

(
N/2 + a, b+

(Cj −W j(αj)θj)
T (Cj −W j(αj)θj)

2

)

Where if covariate j is binary then by definition σ2
j = 1 and no updating of the variance parameter

is needed. W j(αj) represents the design matrix defined by αj . Now we need to update from

the full conditional distribution of the missing covariates. If covariate j is missing and continuous

then we will impute missing values for subject i from a Normal distribution:

N(Vijµij , Vij)
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Where

µij = αy
j

Yi(−j)θ
y
j

σ2
y

+ αx
j

Xi(−j)θ
x
j

σ2
x

+
µ̃ij

σ2
j

+

P∑
k=j+1

θkjC
∗
ik(−j)

σ2
k

Vij = αy
j

θyj
2

σ2
y

+ αx
j

θxj
2

σ2
x

+
1

σ2
j

+

P∑
k=j+1

θkj
2

σ2
k

And

Yi(−j) = Y ∗i − θ
y
0 − βXi −

P∑
l 6=j,l=1

Cilθ
y
l

Xi(−j) = X∗i − θx0 −
∑
l 6=j

Cilθ
x
l

µ̃ij = θj0 +

j−1∑
k=1

θjkC
∗
ik

C∗ik(−j) = C∗ik − θk0 −
k−1∑

l 6=j,l=1

C∗ilθ
k
l

Notice that there are no interaction terms involving Si because we are imputing the covariates

for subjects in the main study for whom Si = 0 and the interaction terms disappear. When Cij

is binary we will impute it’s corresponding latent variable, C∗ij . If Cij is observed then we still

update it’s full conditional from

C∗ij ∼ CijTN+(Vijµij , Vij) + (1− Cij)TN−(Vijµij , Vij)

Where TN+ represents a truncated normal distribution that only assigns positive probability to

the positive real line, and TN− the same but only assigning mass to the negative real line.
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µij =
µ̃ij

σ2
j

+

P∑
k=j+1

θkjC
∗
ik(−j)

σ2
k

Vij =
1

σ2
j

+

P∑
k=j+1

θkj
2

σ2
k

Where again

µ̃ij = θj0 +

j−1∑
k=1

θjkC
∗
ik

C∗ik(−j) = C∗ik − θk0 −
k−1∑

l 6=j,l=1

C∗ilθ
k
l

For binary variables that are missing, we again get a mixture of truncated normals, though we

replace the binary indicator with the posterior probability that variable is 1 or 0 as follows:

C∗ij ∼ πijTN+(Vijµij , Vij) + (1− πij)TN−(Vijµij , Vij)

With the probability defined as

πij =
Φ(µij)φ(Yi(−j) − θyj )φ(Xi(−j) − θxj )

Φ(µij)φ(Yi(−j) − θyj )φ(Xi(−j) − θxj ) + (1− Φ(µij))φ(Xi(−j))φ(Yi(−j))

The only parameters left to sample from are the vector of variable inclusion indicators

(αx, αy, αM+1, ..., αP ) and to do this we can follow the ideas of Wang et al. (2015) utilizing

the MC3 technique for searching a model space (Madigan et al. , 1994, 1995). We will illustrate

how to sample from P (αy|αx, D), however, the algorithm for sampling from P (αx|αy, D) is

analagous. We can define a neighborhood of αy to be the set of all outcome models with one

covariate either added or removed from the model defined by αy. If we are at iteration t of our
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current Markov chain, and we are currently at the values (αy(0), α
x
(0)), then we randomly draw a

model αy(1) from the neighborhood of αy(0) and we accept the new model with probability

min

{
1,
P (αy(1)|α

x
(0), D)

P (αy(0)|α
x
(0), D)

=
P (Y |αy(1), X,C)

P (Y |αy(0), X,C)
∗
P (αy(1)|α

x
(0))

P (αy(0)|α
x
(0))

}

Otherwise the chain stays atαy(0). We are easily able to calculate
P (αy

(1)
|αx

(0))

P (αy
(0)
|αx

(0))
using our conditional

prior specification from Section 2.2 of the main manuscript. To calculate the ratio of marginal

likelihoods we can use the BIC approximation to the Bayes factor (Raftery, 1995) defined as

P (Y |αy(1), X,C)

P (Y |αy(0), X,C)
≈ exp

{
1

2
(BIC0 −BIC1)

}
if ω is set to ∞, we can use the following algorithm to sample from the inclusion parameters:

1. at a given iteration of the MCMC we first update αy
p conditional on αx

p . If αx
p = 1 then we

set αy
p = 1 with probability 1. If αx

p = 0 then we assign equal prior weight to both potential

values of αy
p and let the ratio of BICs determine the acceptance probability.

2. Then update αx
p conditional on αy

p. If αy
p = 0 then we set αx

p = 0 with probability 1. If

αy
p = 1 then we assign equal weight a priori to both possible values of αx

p and again let the

ratio of BICs dictate the acceptance probability.

To sample from P (αp|•) for p = M + 1, ..., P we can again exploit the BIC approximation in

the same manner as αx and αy, only now we use a flat prior on the model space instead of the

conditional prior we built for our exposure and outcome models.

B. Extended simulation results

In this section we show the results of additional simulations used to assess the ability of GBAC

to adjust for confounding bias.
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B.1 Null treatment effect

Simulation setup: This simulation is the same as the one included in the original manuscript,

except now the treatment effect is 0 instead of 0.5. More specifically the models used to generate

the data were as follows:

Yi = 1500 + 0Xi + 0.2XiSi + 0.15C2i + 0.15C6i + 0.15C7i + εi (B.1)

Φ−1(P (Xi = 1)) = −1 + 0.6C2i + 0.6C6i + 0.6C7i (B.2)

What we want to assess: To examine our approach when the true causal effect is zero in the

main study

Results: Figure B.1 shows very similar results to those seen in the simulation of the original

manuscript with the MSE of the proposed approach being the lowest, and the biggest gains are

achieved for the smallest validation sample sizes.
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Fig. B.1. Bias, mean squared error, and interval coverage of the various estimators across 1000 simulations
with a null treatment effect. P = 50, M = 5.
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B.2 Correlated data

Simulation setup: This simulation is the same as the one included in the original manuscript,

except now the covariates are correlated with each other. Specifically, the P = 50 covariates are

drawn from a multivariate normal distribution with correlation 0.3 between each covariate.

What we want to assess: We want to test the proposed approach’s ability to adjust for

confounding when the covariates are correlated, since the simulation in the original manuscript

included independent covariates only. Arguably, the covariates being independent is the most

favorable setting for our approach in comparison with those that do not perform variable selec-

tion because it removes the unnecessary variables from the variable imputations. When every

covariate is correlated with every other covariate, then this ability to remove noise variables is

less important as each covariate should be included in the imputation models.

Results: Figure B.2 shows that we see similar results to that seen in the main manuscript as the

proposed approach performs best with respect to MSE and achieves the desired interval coverage.

We see that generally all of the approaches have slightly smaller MSE than in the manuscript,

particularly at small validation sample sizes, because the added correlation gives us more data

to impute the missing quantities with.

B.3 Larger confounding

Simulation setup: This simulation is the same as the one included in the original manuscript,

except now the strength of confounding has been increased. To achieve this, we doubled the re-

gression coefficients of the confounders from the original manuscript. This leads to data generating

models that are as follows:
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Fig. B.2. Bias, mean squared error, and interval coverage of the various estimators across 1000 simulations
with correlated covariates. P = 50, M = 5.

Yi = 1500 + 0Xi + 0.2XiSi + 0.3C2i + 0.3C6i + 0.3C7i + εi (B.3)

Φ−1(P (Xi = 1)) = −1 + 1.2C2i + 1.2C6i + 1.2C7i (B.4)

What we want to assess: The ability of the proposed approach to adjust for confounding bias

when the magnitude of confounding is larger than what was seen in the original manuscript.

Results: Figure B.3 shows that the proposed approach obtains the best MSE and the desired

interval coverages. The disparity between the proposed approaches and the other approaches

examined is larger than in the original manuscript. This is likely because the magnitude of the

bias is larger and the proposed approach, as seen in the original manuscript, is better at adjusting

for this bias.

B.4 Smaller confounding

Simulation setup: This simulation is the same as the one included in the original manuscript,

except now the strength of confounding has been decreased. To achieve this, we halved the regres-

sion coefficients of the confounders from the original manuscript. This leads to data generating

models that are as follows:
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Fig. B.3. Bias, mean squared error, and interval coverage of the various estimators across 1000 simulations
with larger confounding bias. P = 50, M = 5.

Yi = 1500 + 0Xi + 0.2XiSi + 0.075C2i + 0.075C6i + 0.075C7i + εi (B.5)

Φ−1(P (Xi = 1)) = −1 + 0.3C2i + 0.3C6i + 0.3C7i (B.6)

What we want to assess: The ability of the proposed approach to adjust for confounding bias

when the magnitude of confounding is smaller than what was seen in the original manuscript.

Results: Figure B.4 shows that the proposed approach with ω set to infinity still does quite well

in terms of MSE and interval coverage. The main difference in the results seen here and those seen

in the manuscript is that GBAC(1) and the other approaches perform similarly well, particularly

when the validation sample size is greater than 100. GBAC(1) actually performs slightly better

than GBAC(∞) when the validation sample size is 100. This is likely because the confounding

bias is so small that the differences are greatly mitigated in this scenario.

B.5 Large and small confounding

Simulation setup: This simulation is the same as the one included in the original manuscript,

except now the strength of confounding has been changed for each confounder. The data gener-

ating models now are as follows:
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Fig. B.4. Bias, mean squared error, and interval coverage of the various estimators across 1000 simulations
with smaller confounding bias. P = 50, M = 5.

Yi = 1500 + 0Xi + 0.2XiSi + 0.15C2i + 0.2C6i − 0.4C7i + εi (B.7)

Φ−1(P (Xi = 1)) = −1 + 0.6C2i − 0.5C6i − 0.8C7i (B.8)

What we want to assess: The ability of the proposed approach to adjust for confounding bias

when the magnitude of confounding is different than what was seen in the original manuscript.

This is simply a sanity check to make sure the situation in the manuscript is not one that just

so happens to work well for our approach.

Results: Figure B.5 shows that the proposed approach with ω set to infinity still does quite well

in terms of MSE and interval coverage. It outperforms the existing methods in bias and MSE for

all validation sample sizes except N2 = 500 when all of the approaches do quite well.

B.6 Skewed missing data distribution for confounders

Simulation setup: Instead of simulating independent, normal covariates, this simulation looks

at the case where the confounders come from independent Gamma(3,3) distributions. It is impor-

tant to note that only the true confounders come from this skewed distribution, while the other

missing covariates are still truly normal.
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Fig. B.5. Bias, mean squared error, and interval coverage of the various estimators across 1000 simulations
under different confounding bias than the original manuscript. P = 50, M = 5.

What we want to assess: The ability of the proposed approach to adjust for confounding bias

when the distribution of the missing confounders is skewed and not normal, but the missing data

model still assumes normality.

Results: Figure B.6 shows that the proposed approach is not able to eliminate bias for any vali-

dation sample size, which is expected due to the missing data model being incorrect. Importantly

though, the bias is relatively small, and the overall MSE is not drastically worse than when the

covariates are truly normally distributed. Due to the bias in the estimator, however, the interval

coverage does not obtain the desired rate. Figure B.7 shows the inclusion probabilities for the

P = 50 covariates in the study. We see that the inclusion of the important confounders (squares)

is still very high using GBAC(∞) suggesting that misspecifying the distribution did not greatly

affect the inclusion probabilities.

B.7 Skewed missing data distribution for non-confounders

Simulation setup: Instead of simulating independent, normal covariates, this simulation looks

at the case where the missing covariates come from independent Gamma(3,3) distributions. It
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Fig. B.6. Bias, mean squared error, and interval coverage of the various estimators across 1000 simulations
when the confounders come from a gamma(3,3) distribution. P = 50, M = 5.

is important to note that only the covariates which are not confounders come from this skewed

distribution, while the true confounders are still truly normal.

What we want to assess: The ability of the proposed approach to adjust for confounding bias

when the distribution of the missing covariates is skewed and not normal, but the missing data

model still assumes normality. We also wish to assess how well our variable selection procedures

do at removing noise variables from the model, when we’ve misspecified their missing data dis-

tributions.

Results: Figure B.8 shows that the relative performance of the proposed approach is unchanged

when the true confounders are still normally distributed, but the noise variables are misspeci-

fied. This is intuitive when looking at Figure B.9, because we see that the noise variables are

only included in the model a small percentage of the time, even though their distribution is

misspecified.
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Fig. B.7. Inclusion probabilities for GBAC(1) and GBAC(∞) when the confounders come from a
gamma(3,3) distribution.

B.8 Misspecified exposure and outcome model

Simulation setup: This simulation is the same as the one included in the original manuscript,

except now the relationship between the confounders and both the exposure and outcome is non-

linear and we assume them to be linear in our models. The data generating models now take the

following form:
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Fig. B.8. Bias, mean squared error, and interval coverage of the various estimators across 1000 simulations
when the noise variables come from a gamma(3,3) distribution. P = 50, M = 5.

Yi = 1500 + 0.5Xi + 0.2XiSi − 0.5C2 + 0.4C2
6 − 0.4eC7 + εi (B.9)

Φ−1(P (Xi = 1)) = −1 + 0.2C2
2 + 0.2e(0.4C6) + 0.3log(C2

7 ) (B.10)

What we want to assess: This simulation looks to evaluate the impact of grossly misspecifying

the treatment and outcome models on the final causal effect estimates .

Results: Figure B.10 shows that all of the approaches being compared struggle when the true

model is highly nonlinear. This is expected as all of the approaches assume linearity in one or

both of these models. The proposed approach does the best in terms of MSE in this setting,

however the bias and MSE of the proposed approach is far greater than when the true model is

linear. Due to the large amount of bias in this case, interval coverage is compromised.

B.9 Breaking assumption 3.8

Simulation setup: This simulation is the same as the one included in the original manuscript,

except now the data is no longer missing completely at random (MCAR) and the missingness

mechanism leads to two data sets that no longer share the conditional distribution of the missing

data conditional on the observed data. If we let Ii = 1 indicate that subject i was a member of
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Fig. B.9. Inclusion probabilities for GBAC(1) and GBAC(∞) when the noise variables come from a
gamma(3,3) distribution.

the main study and not the validation study then we assigned subjects to the main study via the

following:

log

(
p(Ii = 1)

1− p(Ii = 1)

)
∝ −1 + 0.25Xi + 0.5× 1(Yi > ȳ). (B.11)

This breaks our assumption that the distribution of the missing data conditional on everything

else is the same between the main and validation data for a couple of reasons. For one, because
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Fig. B.10. Bias, mean squared error, and interval coverage of the various estimators across 1000 simula-
tions when the exposure and outcome models are nonlinear. P = 50, M = 5.

the treatment model is probit and this missing data mechanism will lead to different treatment

rates in the two studies, the parameters of the treatment model will be different in the two studies

due to non-collapsibility of probit models. Secondly, the distribution of the outcome conditional

on everything else will be different in the two studies since those in the main study are more likely

to have high outcome values relative to the overall mean. This is used to impute the missing data

as well and will lead to different missing data distributions in the main and validation study.

What we want to assess: The sensitivity of our proposed approach to the assumption that

the missing data distribution is shared between the two studies.

Results: Figure B.11 shows that our approach obtains some bias due to the lack of transporta-

bility between the two studies of the missing data distribution. This bias was not substantial,

however, as the MSE of our approach isn’t much larger than the simulation in the main manuscript

where assumption 3.8 held. As in the main manuscript, our proposed approach greatly outper-

forms the other approaches in terms of bias and MSE.
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Fig. B.11. Bias, mean squared error, and interval coverage of the various estimators across 1000 sim-
ulations when the distribution of the missing data conditional on the observed data differs in the two
studies. P = 50, M = 5.
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