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Dichotomous	Childhood	Trauma	Questionnaire	(CTQ)	score	

The	CTQ	covers	 the	 five	domains	of	 sexual	 abuse	 (SA),	physical	 abuse	 (PA),	emotional	abuse	 (EA),	

emotional	neglect	(EN),	and	physical	neglect	(PN).	Each	domain	is	assessed	by	five	questions	(scored	

1	to	5)	resulting	in	a	domain	score	ranging	from	5	to	25.	Per	domain,	cutoffs	were	applied	to	define	a	

narrow	 definition	 of	 childhood	 trauma	 separating	 no	 or	 mild	 trauma	 from	 moderate	 or	 severe	

trauma,	based	on	cut-offs	 for	moderate/severe	of	>	7	(SA),	>	9	(PA),	>	12	(EA),	>	14	(EN),	>	9	(PN)	

respectively.	These	cut-offs	are	based	on	 the	CTQ	manual.	From	this,	an	overall	dichotomous	CTQ	

indicator	was	constructed	to	separate	trauma	in	any	of	the	five	domains	(1)	from	trauma	in	none	of	

the	domains	(0).	

	

Childhood	trauma	in	DGN	and	QIMR	

In	 the	 Depression	 Gene	 Network	 (DGN)	 cohort,	 sexual	 abuse	 was	 assessed	 with	 two	 questions:	

“Someone	 touched	parts	of	 your	body	 in	a	 sexual	way,	or	had	you	 touch	parts	of	 the	person	 in	a	

sexual	way”;	and	“Someone	had	or	attempted	to	have	oral	sex,	anal	sex,	or	sexual	intercourse	with	

you”.	 Physical	 abuse	 in	 DGN	 was	 also	 assessed	 with	 two	 questions:	 “Someone	 outside	 your	

household	physically	attacked	or	assaulted	you,	threatened	you	with	a	weapon	or	held	you	captive”;	

and	“Your	mother,	 father	or	another	adult	household	member	hurt	you	on	purpose	 (for	example,	

beat,	choked,	kicked,	cut	or	burned	you)”.	The	narrow	definition	was	defined	as	at	least	one	of	four	

questions	 occurring	 frequently	 versus	 sometimes,	 rarely	 or	 never,	 and	 the	 broad	 definition	 as	 at	

least	one	of	four	questions	occurring	frequently	or	sometimes	versus	rarely	or	never.	For	data	from	

the	 Queensland	 Institute	 of	 Medical	 Research	 (QIMR),	 two	 instruments	 were	 used	 to	 assess	

childhood	 trauma	before	 the	age	of	18.	Most	QIMR	 individuals	were	assessed	with	an	 instrument	

covering	 sexual	 abuse:	 touching	 your	 sexual	 parts,	 you	 touching	 their	 sexual	 parts,	 or	 sexual	

intercourse	 (SA	assessed	with	one	question	 for	 family	members	and	one	question	 for	non-family);	

and	 physical	 abuse:	 being	 punished	 by	 hitting	 (one	 question),	 hurting	 from	 punishment	 next	 day	

(one	question),	being	physically	injured	on	purpose	(one	question).	The	other	QIMR	individuals	(on	

the	 QIMR_3	 genotype-batch	 labeled	 as	 M7)	 were	 assessed	 with	 a	 questionnaire	 covering	 sexual	

abuse	as	 the	occurrence	of:	exposure	 to	 sexual	organs,	exposure	 to	masturbation,	being	 touched,	

attempt	to	have	sex,	and	have	sex	(SA	specified	in	16	separate	questions);	and	for	physical	abuse	the	

occurrence	 of:	 being	 hit,	 kicked,	 choked,	 throttled	 or	 locked	 in	 by	 either	 father,	 father-figure,	

mother,	or	mother-figure	(PA	specified	 in	13	separate	questions).	For	QIMR	the	narrow	and	broad	

definitions	 were	 defined	 as	 above,	 except	 for	 physical	 abuse	 from	 the	 second	 questionnaire	

(QIMR_3_M7)	that	didn’t	distinguish	between	occurring	“frequently”	and	“sometimes”	resulting	 in	

converging	of	the	narrow	and	broad	definitions.	For	the	analyses,	we	applied	the	broad	definition.	
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Simulation	study	1:	impact	of	gene-environment	correlation	in	tests	for	GxE-interaction	

Tests	 of	 genotype	 by	 environment	 interaction	 are	 known	 to	 be	 scale	 dependent.	 In	 a	 linear	

regression	model,	where	a	continuous	phenotype	is	regressed	on	a	measured	genetic	variant	(e.g.	a	

candidate	 gene)	 and	 a	measured	 exposure,	 non-normality	 of	 the	 phenotypic	 distribution	 can	 give	

rise	 to	 spurious	 interaction	 effects.	We	 considered	 this	 issue	 given	 logistic	 regression	 of	 a	 binary	

phenotype	by	means	of	a	small	simulation	study.	We	generated	phenotypic	data	based	on	12	binary	

symptoms,	which	were	related	to	an	underlying	normally	distributed	depression	liability	by	a	Rasch	

model	 (1).	 The	 parameters	 of	 the	 Rasch	model	 were	 chosen	 so	 that	 the	 distribution	 of	 the	 sum	

scores	based	on	the	12	symptoms	was	highly	skewed.	We	dichotomized	the	sum	score	of	these	12	

symptoms	 to	 arrive	 at	 the	 binary	 phenotype	 with	 a	 prevalence	 of	 .20.	 The	 underlying	 normally	

distributed	 depression	 liability	 was	 subject	 to	 main	 effects	 of	 genes	 (A;	 explaining	 38.8%	 of	 the	

liability	 variance)	 and	 the	 main	 effects	 of	 a	 given	 exposure	 (explaining	 11.1%).	 There	 was	 no	

interaction	effect	 (AxE).	We	considered	 the	 type	 I	error	 rate	!	of	 the	 interaction	effect,	where	we	
regressed	the	binary	phenotype	on	A,	the	dichotomized	exposure	variable	(E;	prevalence	.10)	and	on	

the	interaction	AxE.	We	set	the	nominal	!	at	 .05.	We	varied	the	correlation	between	the	exposure	

and	the	genetic	variable.	Based	on	10,000	replications,	we	observed	an	inflated	type	I	error	rate	of	

the	 interaction	 effect	 as	 a	 function	 of	 the	 correlation	 between	 the	 genetic	 variable	 and	 the	

exposure.	However,	this	inflation	was	relatively	small.	The	observed	type	I	error	rate	was	.046	(zero	

correlation),	.056	(correlation	.15)	and	.0752	(correlation	.30).	Note	that	.056	and	.0752	both	deviate	

significantly	 from	 the	 nominal	 value	 of	 .5	 (p=.003	 and	 p<.0001,	 respectively).	 So	 in	 this	 scenario,	

which	is	based	on	the	NESDA	and	Radiant-UK	data,	we	note	that	we	expect	some	type	I	error	rate	

inflation.	However,	we	conclude	that	the	type	I	error	rate	inflation	in	test	of	GxE	in	the	present	set-

up	is	small	and	does	not	render	the	test	useless.	Specifically,	in	the	NESDA	and	Radiant-UK	data	the	

correlation	between	the	genetic	variable	(polygenic	risk	score)	and	the	exposure	(childhood	trauma)	

is	likely	to	be	very	low	(Table	S5).	
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Simulation	study	2	

The	aim	of	 this	 simulation	study	 is	 to	aid	 interpretation	of	 interaction	analyses	with	polygenic	 risk	

score	(PRS)	by	simulating	different	underlying	genetic	architectures.	

	

Liability	 threshold	 model	 and	 the	 impact	 of	 childhood	 trauma	 (CT)	 on	 major	 depressive	 disorder	

(MDD)	

Simulation	is	based	on	the	liability-threshold	model,	which	can	be	modeled	as	MDD	underpinned	by	

an	 unobserved	 liability,	 !!"" ,	 where	 individuals	 are	 affected	 when	 liability	 exceeds	 disease	

threshold,	!!"".	The	liability	is	assumed	to	be	normally	distributed	and	scaled	to	a	population	mean	

of	0	and	variance	of	1	(which	defines	!!""	given	the	prevalence	of	MDD	!!""),	and	to	result	from	

independent	 normally	 distributed	 environmental	 (!!"")	 and	 genetic	 effects	 (!!"")	 with	!!"! =
!!"" + !!"",	 where	!"#(!!"")/!"#(!!"") = !"#(!!"") = ℎ!,!""! ,	 the	 heritability	 of	 MDD	 on	

the	 liability	 scale.	 Here,	 we	 subdivide	 the	 environmental	 effects	 as	 !!"" = !"!"#$"!"%& !"#$% +
!!"#$%&'(,!"!.	We	assume	that	!"!"#$%&$' !"#$% 	is	represented	by	a	dichotomous	measure	that	labels	

individuals	as	exposed	 (1)	or	unexposed	 (0)	with	an	odd	 ratio	 for	MDD	of	exposed	of	!"!".	 For	a	
prevalence	 of	 MDD	 of	!!"" = 0.15 ,	 prevalence	 of	 CT	 of	!!" = 0.25 	and	 !"!" = 3.2 ,	 the	
!"!"#$%&$' !"#$% 	can	be	transformed	to	!"!"#$"!"%& !"#$% 	as	–0.16	(unexposed)	and	0.47	(exposed),	and	

explains	 7.4%	 of	 variation	 on	 the	 liability	 scale	 (Appendix	 A).	 Assuming	 a	 heritability	 of	 MDD	 of	

ℎ!,!""! = 0.35,	the	variance	explained	by	the	residual	environmental	effects	!!"#$%&'(,!""	follows	as	
57.6%	 (assuming	 that	!"!"#$"!"%& !"#$%,	!!"#$%&'(,!"",	 and	 	!!""	are	 all	 independent).	 For	Model	 1,	

we	consider	CT	as	part	of	the	environmental	effects	on	MDD,	but	we	note	that	CT	has	been	found	to	

be	heritable	itself	(2);	the	consequences	of	which	will	be	discussed	later.	In	Model	1,	we	will,	further,	

assume	that	 the	genetic	and	 residual	environmental	effects	are	equal	 in	 those	exposed	and	 those	

unexposed	to	CT,	which	can	thus	be	thought	of	as	a	“pure	additive”	model	on	the	 liability	scale	of	

!"!"#$"!"%& !"#$%,	!!"#$%&'(,!!!,	and		!!""	(i.e.	no	GxE-interaction).	After	describing	simulation	of	SNP	

data,	we	will	 discuss	 decreasing	 the	 correlation	 of	 SNP-effects	 between	 those	 exposed	 and	 those	

unexposed	to	CT	(Model	2),	increasing	a	genetic	contribution	to	CT	through	introducing	a	heritability	

for	CT	(Model	3),	increasing	magnitude	of	SNP-effects	on	MDD	in	those	exposed	compared	to	those	

unexposed	to	CT	(Model	4),	and	decreasing	magnitude	of	residual	environmental	effects	on	MDD	in	

those	exposed	compared	to	those	unexposed	to	CT	(Model	5).	

	

Simulation	of	SNP	data	and	genetic	effects	

We	simulated	individuals	in	a	population	one-by-one	until	a	total	of	9,000	cases	and	9,000	controls	

were	obtained,	 from	which	10,000	were	used	as	discovery	and	8,000	as	 target	 set.	 Therefore,	we	
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first	simulated	the	SNPs	following	the	method	of	Golan	et	al	(3),	and	subsequently	modeled	CT	and	

MDD.	Briefly,	the	properties	of	10,000	SNPs	in	full	linkage	equilibrium	were	first	defined	by	drawing	

their	 minor	 allele	 frequencies	 (MAF)	 from	 the	 uniform	 distribution	 from	 0.05	 to	 0.5,	 and	 a	

proportion	 of	 30%	 of	 these	 SNPs	were	 set	 to	 have	 an	 effect	 on	MDD	with	 effects	 drawn	 from	 a	

normal	distribution	with	 variance	ℎ!,!""! /3,000	while	 the	effects	of	 the	other	 SNPs	were	 set	 at	 0.	
With	these	SNP	effects,	an	individual	!	was	simulated	by	first	drawing	its	allele	count	(!!";	0,1	or	2)	
with	 probabilities	 of	(1 −!"#!)!,	2(1 −!"#!)!"#! ,	 and	!"#!! 	respectively	 for	 all	 SNP	!,	 and,	
second,	 defining	 its	 genetic	 effects	 as	!(!)!"" = !""!#$!(!!" − 2!"#!)/(2(1 −!"#!)!"#!)! .	

Childhood	 trauma	status	of	 individual	!	was	assigned	with	probability	!!",	 and	 transformed	 to	 the	

liability	 scale	!"(!)!"#$"!"%& !"#$% 	as	 described	 in	 Appendix	 A.	 The	 residual	 environmental	 effect	

!(!)!"#$%&'(,!"" 	was	 drawn	 from	 a	 normal	 distribution	 with	 variance	

1 − ℎ!,!""! − !"#(!"!"#$"!"%& !"#$%),	so	that	the	liability	of	individual	!	followed	as	! ! = !(!)!"" +
!"(!)!"#$"!"%& !"#$% + !(!)!"#$%&'(,!"" .	 Individual	 ! 	was	 deemed	 affected	 with	 MDD	 when	 ! ! >
!!""	and	 non	 affected	 otherwise,	 where	 disease	 threshold	!!""	was	 defined	 such	 that	!!"" =
! ! > !!""  !~!(0,1)).	 This	 procedure	 was	 repeated	 until	 a	 total	 of	 9,000	 cases	 and	 9,000	
controls	 were	 obtained.	 Subsequently,	 a	 genome-wide	 association	 study	 (GWAS)	 was	 conducted	

with	 PLINK	 on	 5,000	 cases	 and	 5,000	 controls	 (4),	 the	 results	 of	 which	 were	 used	 to	 prepare	

polygenic	 risk	 scores	 in	 the	 target	 set	 of	 the	 other	 4,000	 cases	 and	 4,000	 controls.	 For	 every	

parameterization,	the	simulation	was	repeated	10	times.	

	

Simulation	-	Model	1	

For	the	base	assumption	of	the	genetic	architecture	we	assumed	a	prevalence	of	MDD	of	!!"" =
0.15,	a	heritability	of	MDD	of	ℎ!,!""! = 0.35,	a	prevalence	of	CT	of	!!" = 0.25,	no	impact	of	SNPs	in	

CT	(ℎ!,!"! = 0),	and	odds	ratio	for	MDD	in	those	exposed	to	childhood	trauma	of	!" = 3.2,	and	pure	
additivity	on	the	liability	scale	(identical	genetic	and	residual	environmental	effects	in	those	exposed	

and	those	unexposed	to	childhood	trauma).		

	

Simulation	-	Model	2	

A	clear	case	of	GxE	interaction	would	be	when	the	individual	SNP-effects	on	MDD	in	those	exposed	

would	differ	from	the	effects	in	those	unexposed,	i.e.	when		

!! = !"# !""!#$!"# ! | !"!!, !""!#$!"# ! | !"!! = 0 	for	 the	 3,000	 effective	 SNPs.	 To	 model	 this	

scenario,	 we	 further	 assumed	 that	 the	 effects	 are	 on	 the	 same	 3,000	 SNPs	 and	 the	 variance	

explained	is	constant,	that	is	!"# !""!#$!"# ! | !"!!) = !"#(!""!#$!"# ! | !"!! = 0.35.	
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Simulation	-	Model	3	

For	 the	Models	1,	2,	4	and	5	we	have	assumed	that	CT	 is	purely	environmental,	but	heritability	of	

childhood	trauma	has	been	estimated	at	around	0.5	(2).	Therefore,	an	impact	of	SNPs	effects	on	CT	

is	considered	here.	For	this,	we	assume	that	CT	is	a	“disease	trait”	 itself	with	underlying	liability	as	

described	above	for	MDD	(not	suggesting	that	children	are	to	blame	for	the	trauma	they	experience,	

rather	 we	 hypothesize	 that	 heritability	 arises	 from	 transmitted	 alleles	 that	 affect	 personality	

characteristics	 in	 parents).	 Nevertheless,	 we	 drew	 SNP-effects	 for	 CT	 from	 a	 random	 normal	

distribution	 with	 variance	ℎ!,!"! = 0.5	and	 environmental	 effects	 from	 a	 normal	 distribution	 with	

variance	1 − ℎ!,!"! 	to	 construct	 a	 liability	 of	 CT	!!",	 and	 individuals	 were	 deemed	 exposed	 to	 CT	

when	!!" ! > !!" 	with	the	threshold	defined	such	that	!!" = ! ! > !!"   !~!(0,1)).	The	effects	
were	 assigned	 to	 the	 same	 3,000	 SNPs	 impacting	MDD,	 but	 drawn	 from	 an	 independent	 normal	

distribution.	Given	the	CT	status	thus	simulated,	MDD	was	derived	as	described	above.		

	

Simulation	-	Model	4	

Another	way	 to	 think	 about	GxE	 interaction	 is	 that	 environmental	 stress	might	potentiate	 genetic	

effects.	 This	was	modeled	by	 setting	 a	proportion	of	 genetic	 effects	 on	MDD	 in	 those	exposed	 to	

those	 unexposed	 to	 CT	 as	 !"# !""!#$!"# ! | !"!!)/!"#(!""!#$!"# ! | !"!! = 3 	while	 keeping	
!"# !""!#$!"# ! | !"!!, !""!#$!"# ! | !"!! = 1.	The	variances	of	SNP-effects	where	chosen	 in	such	
way	that	the	variance	of	genetic	effects	in	the	full	population	were	fixed	at	0.35,	while	the	residual	

environmental	 effects	 had	 the	 same	 variance	 in	 those	 exposed	 and	 those	 unexposed	 to	 CT	

(Appendix	B).	

	

Simulation	-	Model	5	

A	hypothetical	 scenario	 could	be	 that	environmental	 risk	 factors	 for	MDD	 (such	as	 socioeconomic	

status	 and	 life-stress	 in	 adulthood)	 cluster	 in	 those	 exposed	 to	 CT;	 the	 link	 between	 these	

environmental	 risk	 factors	would	 be	 captured	 in	 estimates	 of	 the	OR	 of	 CT,	 but	 could	 in	 addition	

result	 in	 less	 residual	 environmental	 variation	 in	 those	 exposed	 compared	 to	 those	 unexposed	 to	

childhood	 trauma.	 We	 modeled	 this	 as	 !"# !!"#$%&'(,!""|!"!!)/!"#(!!"#$%&'(,!""|!"!! = 1/
3 while	 assuming	 constant	 genetic	 effects	 in	 those	 exposed	 and	 those	 unexposed	 to	 CT,	

!""!#$!"# ! | !"!!=!""!#$!"# ! | !"!!	(Appendix	C).	

	

Appendix	A.	Transformation	of	OR	to	liability	scale	

To	transform	the	!"	from	CT	on	MDD	to	the	liability	scale	the	approach	of	Witte	et	al	was	applied	

(5).	Therefore,	the	!"	(set	at	3.2)	was	first	transformed	to	the	!!	(2.6)	and	consequently	to	the	risk	
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on	 MDD	 in	 exposed	 (!" = 1 with	 MDD	 proportion	0.28)	 and	 unexposed	 (!" = 0	with	 MDD	 in	

proportion	0.11)	 assuming	 a	 population	 prevalence	 of	!!"" = 0.15	and	!!" = 0.25.	 The	 liability	
disease	 threshold	 for	 MDD	 in	 the	 full	 population	 was	 found	 as	!!"",!"## !"!#$%&'"( = Φ!! 1 −
!!"" = Φ!! 1 − 0.15 = 1.0364.	 First	 assuming	 a	 liability	 variance	 of	 1	 in	 both	 exposed	 and	

unexposed,	 the	 threshold	 in	 exposed	 was	 found	 as	!!""|!"!! = !!! 1 − 0.28 = 0.589	and	 in	
unexposed	 as	!!""|!"!! = Φ!! 1 − 0.11 = 1.241.	 In	 line	with	Witte	 et	 al,	 the	mean	 liability	 in	

exposed	 was	 found	 at	!!|!"!! = !!"",!"## !"!#$%&'"( − !!""|!"!!and	 in	 unexposed	 at	!!|!"!! =
!!"",!"## !"!#$%&'"( − !!""|!"!!,	 allowing	 to	 merge	 exposed	 and	 unexposed	 while	 ensuring	 the	

disease	 risks	 of	0.28	and	0.11	respectively.	 However,	 because	 the	 variance	 in	 both	 exposed	 and	
unexposed	was	assumed	to	equal	1,	the	merged	sample	had	a	variance	larger	than	1	introduced	by	

the	variance	of	CT	and	a	mean	slightly	different	from	zero.	To	ease	modeling	of	genetic	effects,	we	

rescaled	 to	mean	 of	 zero	 and	 variance	 one,	 also	 correcting	 the	 disease	 threshold	 in	 this	manner.	

With	this,	a	model	was	derived	transposing	CT	status	of	exposed	and	unexposed	to	the	liability	scale,	

while	the	overall	variance	of	liability	was	set	at	1,	and	mean	at	0,	as	usual.		

	

Appendix	B.	Modeling	increased	magnitude	of	SNP-effects	in	CT=1	compared	to	CT=0	

When	 aiming	 to	 model	 increased	 variance	 of	 SNP	 effects	 in	 those	 exposed	 compared	 to	 those	

unexposed	 to	 CT,	 arbitrary	 choices	 have	 to	 be	made	 about	 the	 residual	 environmental	 effects	 in	

exposed	and	unexposed,	and	 the	variance	of	 liability,	genetic	effects	and	environmental	effects	 in	

the	 overall	 population.	We	 choose	 to	 fix	 the	 full	 population	 variance	 of	 liability	 at	 1,	 variance	 of	

genetic	 effects	 at	ℎ!,!""! = 0.35,	 and	 variance	 of	 environmental	 effects	 at	1 − ℎ!,!""! = 0.65	(the	
latter	including	both	the	variance	of	!"!"#$"!"%&	as	well	as	residual	environmental	effects).	To	obtain	

e.g.	a	variance	of	genetic	effects	in	exposed	three	times	the	variance	of	genetic	effects	in	unexposed	

!"# !""!#$!"# ! | !"!!)/!"#(!""!#$!"# ! | !"!! = 3 ,	the	variance	of	genetic	effects	followed	as	

!"# !""!#$!"# ! | !"!! = 0.56 	and	 !"# !""!#$!"# ! | !"!! = 0.28 	thereby	 ensuring	 that	 the	

variance	of	genetic	effect	in	the	full	population	equals	!"# !""!#$!"# ! =	
0.25!!""!#$!"# ! | !"!!

! + 0.75!!""!#$!"# ! | !"!!
! − (0.2!!""!#$!"# ! | !"!! + 0.8!!!!"#$!"# ! | !"!!)! =

0.25 0.56 + 0! + 0.75 0.28 + 0! − 0 = 035.	 We	 choose	 to	 fix	 the	 residual	 variance	 in	 both	

exposed	 and	unexposed	 first	 at	!"#(!!"#$%&'(|!"!!) = !"#(!!"#$%&'(|!"!!) = 0.65,	 and	 the	overall	
variance	of	liability	was	thus	larger	in	exposed	than	in	unexposed.	As	a	result,	the	sums	in	Appendix	

A	were	 slightly	 adjusted	 as	 the	 variance	 and	mean	 of	 the	merged	 sample	 differed	 slightly	 to	 the	

above,	and	therefore	correction	to	obtain	variance	of	1	and	mean	of	zero	in	the	full	population	also	

differed.		
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Appendix	C.	Decreased	environmental	variation	in	individuals	exposed	to	CT	

When	 aiming	 to	 model	 a	 smaller	 variance	 of	 residual	 environmental	 effects	 in	 those	 exposed	

compared	to	those	unexposed	to	CT,	several	model	choices	have	again	to	be	made.	We	chose	to	fix	

the	 full	 population	 variance	 of	 liability	 at	 1,	 variance	 of	 genetic	 effects	 at	ℎ!,!""! = 0.35	equal	 in	
exposed	 and	 unexposed,	 and	 variance	 of	 environmental	 effects	 at	1 − ℎ!,!!!! = 0.35	(the	 latter	
including	both	the	variance	of	!"!"#$"!"%&	as	well	as	residual	environmental	effects).		
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Figure	S1.	Distribution	of	the	5-domain	continuous	childhood	trauma	measure	 	
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Table	S1.	Demographic	information	for	contributing	cohorts	of	major	depressive	disorder	cases	and	
unaffected	controls	

		 		 N	 		
N	with	CT	
information	 		 Demographics	

Cohort	 Country	 Cases	 Controls	 		 Cases	 Controls	 		 Mean	age	 %	female	
COFAMS	 Australia	 120	 126	

	
56	 22	

	
38.2	 0.59	

DGN	 USA	 463	 459	
	

461	 458	
	

	-	 0.70	
NESDA	 Netherlands	 1493	 1603	

	
1133	 271	

	
42.9	 0.67	

QIMR	(3	sub	cohorts)	 Australia	 1902	 1660	
	

613	 237	
	

36.3	 0.64	
RADIANT	UK	 UK	 1859	 1519	

	
262	 264	

	
46.0	 0.66	

SHIP	(2	sub	cohorts)	 Germany	 515	 1529	 		 499	 1490	 		 53.6	 0.50	
CT=childhood	trauma	

	

	

	

Table	S2.	Correlation	of	childhood	trauma	domains	(N=3850)	
		 EA	 PA	 SA	 EN	 PN	 SUM	
Childhood	Trauma	Questionnaire	subscales	(continuous	measures)		
Emotional	Abuse	(EA)	 1	 0.596	 0.387	 0.609	 0.481	 0.803	
Physical	Abuse	(PA)	 0.596	 1	 0.387	 0.413	 0.410	 0.681	
Sexual	Abuse	(SA)	 0.387	 0.387	 1	 0.246	 0.285	 0.539	
Emotional	Neglect	(EN)	 0.609	 0.413	 0.246	 1	 0.632	 0.805	
Physical	Neglect	(PN)	 0.481	 0.410	 0.285	 0.632	 1	 0.728	
Sum	score	(SUM)	 0.803	 0.681	 0.539	 0.805	 0.728	 1	
Dichotomous	indicator	of	sexual	or	physical	abuse		
SA/PA	(dichotomous)	 0.367	 0.542	 0.754	 0.203	 0.201	 0.497	
The	 Pearson	 correlation	 coefficients	 (all	 p-value<2e-16)	 are	 displayed	 between	 the	 five	 domains	 of	 the	

Childhood	Trauma	Questionnaire	 (CTQ)	by	applying	 the	 residuals	of	 linear	 regression	of	 the	domains	on	sex	

and	 cohort	 (COFAMS,	NESDA,	 Radiant-UK,	 SHIP).	 It	 can	 be	 seen	 that	 sexual	 abuse	 is	 slightly	 less	 correlated	

than	the	other	domains,	and	that	there	seems	no	clear	distinction	between	the	abuse	and	neglect	domains.	In	

addition,	 the	 Spearman's	 rho	 correlation	 coefficient	 is	 displayed	of	 the	CTQ	domains	with	 the	dichotomous	

indicator	of	sexual	abuse	and/or	physical	abuse	(SA/PA)	that	was	available	for	two	additional	cohorts.	



Peyrot	et	al.	 	 Supplement	

16 

	

Table	S3.	Number	of	overlapping	SNPs	between	cohorts	for	GRM-based	analyses	
		 COFAMS	 DGN	 NESDA	 QIMR_3	 QIMR_6	 QIMR_C	 RAD.	UK	 SHIP-0	 SHIP-T	
COFAMS	 771,120	 	-	 	-	 	-	 	-	 	-	 	-	 	-	 	-	
DGN	 741,245	 1,051,603	 	-	 	-	 	-	 	-	 	-	 	-	 	-	
NESDA	 675,669	 851,244	 924,741	 	-	 	-	 	-	 	-	 	-	 	-	
QIMR_3	 626,026	 775,291	 702,250	 821,960	 	-	 	-	 	-	 	-	 	-	
QIMR_6	 716,604	 930,576	 822,954	 803,446	 1,000,453	 	-	 	-	 	-	 	-	
QIMR_C	 711,902	 746,328	 683,496	 635,209	 724,195	 772,404	 	-	 	-	 	-	
RAD.	UK	 729,795	 954,007	 840,621	 811,506	 983,793	 736,767	 1,028,612	 	-	 	-	
SHIP-0	 706,975	 905,732	 907,329	 737,015	 871,372	 713,690	 890,930	 992,050	 	-	
SHIP-T	 762,091	 1,037,269	 903,725	 809,699	 981,370	 765,093	 1,008,254	 967,781	 1,131,800	
	

	

Table	S4.	Impact	of	CTQ	subdomain	continuous	measures	on	MDD	
		 Mean	(SD)	 		
Subset	 Cases	 Controls	 OR	(p-value)	
Emotional	Abuse	
Male	&	Female	 9.3	(4.8)	 6.2	(2.3)	 2.40	(1.1e-06)	
Male	 8.5	(4.2)	 6.0	(2.0)	 2.01	(7.1e-05)	
Female	 	9.6	(5.0)	 6.3	(2.5)	 2.46	(2.1e-07)	
Physical	Abuse	
Male	&	Female	 6.3	(2.8)	 5.6	(1.6)	 1.51	(4.6e-05)	
Male	 6.3	(2.6)	 5.7	(1.6)	 1.41	(1.1e-04)	
Female	 6.2	(2.9)	 5.5	(1.5)	 1.51	(8.8e-05)	
Sexual	Abuse	
Male	&	Female	 6.3	(3.4)	 5.2	(1.3)	 1.64	(1.6e-03)	
Male	 5.8	(2.3)	 5.1	(0.9)	 1.25	(3.4e-03)	
Female	 6.5	(3.8)	 5.3	(1.7)	 1.95	(2.9e-03)	
Emotional	Neglect	
Male	&	Female	 12.6	(5.4)	 8.9	(4.0)	 2.08	(8.4e-06)	
Male	 12.6	(5.2)	 9.2	(4.1)	 1.87	(2.8e-04)	
Female	 12.5	(5.4)	 8.6	(3.9)	 2.14	(4.7e-06)	
Physical	Neglect	
Male	&	Female	 7.8	(3.0)	 6.8	(2.4)	 1.75	(8.4e-05)	
Male	 7.9	(2.9)	 7.0	(2.5)	 1.54	(2.9e-04)	
Female	 7.8	(3.1)	 6.6	(2.3)	 1.79	(9.3e-04)	
Overall	CTQ	score	
Male	&	Female	 42.4	(15.1)	 32.7	(8.4)	 2.62	(1.4e-05)	
Male	 41.3	(13.4)	 33.0	(8.2)	 2.18	(1.1e-04)	
Female	 42.8	(15.8)	 32.3	(8.6)	 2.74	(3.6e-05)	
CTQ	=	Childhood	Trauma	Questionnaire;	MDD	=	major	 depressive	disorder;	OR	=	odds	 ratio;	 SD	=	 standard	

deviation	
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Table	S5.	Impact	of	polygenic	risk	score	(based	on	MDD	discovery	p<1)	on	childhood	trauma	(i.e.	gene-environment	correlation)	

		 		 		 		 Impact	of	PRS	on	CT	in	 		

Approximation	of	full	population		
by	100	times	sampling	
case/control=0.15/0.85	

	
N	

	
All	

	
Case	only	

	
Control	only	

	
Beta	of	regression	

	
Correlation	

Cohort	 Case	 Control	
	

Beta	 P	
	

Beta	 P	
	

Beta	 P	 		 Mean	 SE	 		 Mean	 SE	
Continuous	CTQ	measure	covering	five	domains	(linear	regression)	 		 		 		 		 		 		
COFAMS	 56	 22	

	
1.68	 0.507	

	
-0.52	 0.871	

	
2.03	 0.426	

	
	-	 	-	

	
	-	 	-	

NESDA	 1143	 272	
	

1.10	 0.004	
	

1.03	 0.020	
	

-0.19	 0.742	
	

0.21	 0.040	
	

0.02	 0.003	
RADIANT	UK	 269	 267	

	
1.34	 0.041	

	
-0.51	 0.640	

	
0.01	 0.988	

	
0.68	 0.033	

	
0.06	 0.003	

SHIP-0	 340	 993	
	

0.15	 0.580	
	

-0.08	 0.905	
	

-0.08	 0.761	
	

0.07	 0.009	
	

0.01	 0.001	
SHIP-TREND	 149	 448	 		 1.17	 0.004	 		 3.21	 0.007	 		 0.15	 0.682	 		 0.79	 0.018	 		 0.09	 0.002	
Total	 1957	 2002	

	
0.84	 0.004	

	
0.76	 0.186	

	
-0.01	 0.975	

	
0.37	 0.010	

	
0.04	 0.001	

Dichotomous	measure	covering	sexual	and	physical	abuse	(logistic	regression)	
COFAMS	 56	 22	

	
-0.04	 0.859	

	
-0.37	 0.233	

	
0.71	 0.269	

	
	-	 	-	

	
	-	 	-	

DGN	 461	 458	
	

0.11	 0.143	
	

0.11	 0.256	
	

-0.02	 0.866	
	

0.04	 0.005	
	

0.03	 0.002	
NESDA	 1133	 271	

	
0.16	 0.010	

	
0.13	 0.048	

	
0.03	 0.876	

	
0.13	 0.009	

	
0.02	 0.003	

QIMR_3	 186	 55	
	

0.10	 0.462	
	

0.02	 0.876	
	

0.36	 0.266	
	

	-	 	-	
	

	-	 	-	
QIMR_3_M7	 126	 29	

	
0.14	 0.423	

	
0.13	 0.505	

	
0.20	 0.672	

	
	-	 	-	

	
	-	 	-	

QIMR_6	 121	 107	
	

-0.10	 0.547	
	

-0.21	 0.358	
	

0.11	 0.670	
	

0.03	 0.007	
	

-0.04	 0.004	
QIMR_C	 180	 46	

	
-0.06	 0.675	

	
-0.07	 0.656	

	
0.01	 0.972	

	
	-	 	-	

	
	-	 	-	

RADIANT	UK	 262	 263	
	

0.16	 0.119	
	

0.02	 0.912	
	

0.01	 0.963	
	

0.11	 0.007	
	

0.03	 0.003	
SHIP-0	 352	 1042	

	
0.09	 0.240	

	
-0.04	 0.781	

	
0.10	 0.290	

	
0.10	 0.003	

	
0.03	 0.001	

SHIP-TREND	 147	 448	 		 0.22	 0.105	 		 0.26	 0.235	 		 0.12	 0.500	 		 0.19	 0.005	 		 0.02	 0.001	
Total	 3024	 2741	 		 0.11	 5.4e-04	 		 0.07	 0.108	 		 0.07	 0.197	 		 0.10	 0.002	 		 0.02	 0.001	
The	 impact	of	the	polygenic	risk	scores	(PRS)	 (based	on	major	depressive	disorder	[MDD]	discovery	results	p<1)	on	childhood	trauma	(CT)	 is	displayed	 in	all	 individuals,	

MDD	cases	only	and	controls	only	for	the	continuous	Childhood	Trauma	Questionnaire	(CTQ)	measure	covering	five	domains	(applied	in	main	Table	2)	and	the	dichotomous	

measure	covering	sexual	and/or	physical	abuse	(applied	 in	main	Table	3).	However,	the	potential	bias	of	gene-environment	correlation	 in	gene-environment	 interaction	

analyses	 depends	 on	 the	 correlation	 in	 the	 full	 population.	 Therefore,	 cases	 were	 randomly	 sampled	 such	 that	 cases/controls=0.15/0.85	 to	 mimic	 results	 in	 the	 full	

population.	 Sampling	 was	 repeated	 100	 times,	 and	 conducted	 for	 those	 cohorts	 with	 more	 than	 100	 controls	 only.	 The	 Pearson	 correlation	 was	 estimated	 for	 the	

continuous	CTQ	measure,	and	the	Spearman	correlation	for	the	dichotomous	CT	measure,	and	analyses	were	corrected	for	sex	and	three	principal	components.	
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Table	S6.	Interaction-analyses	for	male	and	female	separetely	with	the	PRS	based	on	MDD-PRS	including	all	SNPs	
(discovery	p<1	in	the	sample	of	N=112,268)	
		 		 		 		 Impact	on	MDD	

	
N	

	
PRS	

	
PRSxCT	

Cohort	 Case	 Control	 		 OR	 P	 R2	(SE,	%)	 		 OR	 P	
Male	&	female	(i.e.	results	displayed	in	main	Table	2)	
COFAMS	 56	 22	

	
1.41	(0.82:2.49)	 0.212	 3.13	(4.61)	

	
0.38	(0.08:1.74)	 0.201	

NESDA	 1143	 272	
	

1.24	(1.08:1.42)	 0.002	 1.33	(0.84)	
	

1.08	(0.83:1.39)	 0.556	
Radiant-UK	 269	 267	

	
1.64	(1.35:2.00)	 6.8e-07	 5.90	(2.19)	

	
0.93	(0.66:1.31)	 0.670	

SHIP-0	 340	 993	
	

1.30	(1.14:1.48)	 1.0e-04	 1.81	(0.91)	
	

1.02	(0.89:1.18)	 0.737	
SHIP-T	 149	 448	 		 1.33	(1.09:1.63)	 0.005	 2.10	(1.47)	 		 1.28	(0.96:1.72)	 0.103	
ALL	 1957	 2002	

	
1.34	(1.23:1.47)	 5.1e-11	 1.71	(0.45)	

	
1.05	(0.91:1.20)	 0.519	

Male	only	
COFAMS	 20	 12	

	
1.66	(0.73:4.21)	 0.243	 5.05	(7.95)	

	
0.55	(0.06:4.21)	 0.553	

NESDA	 357	 111	
	

1.23	(0.99:1.54)	 0.061	 1.24	(1.31)	
	

1.13	(0.75:1.70)	 0.565	
Radiant-UK	 73	 109	

	
1.47	(1.06:2.09)	 0.025	 3.58	(3.01)	

	
0.84	(0.47:1.52)	 0.561	

SHIP-0	 112	 562	
	

1.36	(1.10:1.68)	 0.005	 2.59	(1.79)	
	

1.08	(0.90:1.32)	 0.424	
SHIP-T	 44	 246	 		 1.37	(0.98:1.93)	 0.072	 2.57	(2.82)	 		 1.22	(0.83:1.84)	 0.316	
ALL	 606	 1040	

	
1.34	(1.18:1.52)	 8.6e-06	 1.71	(0.72)	

	
1.09	(0.91:1.30)	 0.367	

Female	only	
COFAMS	 36	 10	

	
1.35	(0.65:2.96)	 0.419	 3.02	(6.29)	

	
0.66	(0.05:6.75)	 0.689	

NESDA	 786	 161	
	

1.24	(1.04:1.48)	 0.015	 1.33	(1.08)	
	

1.09	(0.78:1.48)	 0.609	
Radiant-UK	 196	 158	

	
1.72	(1.36:2.20)	 1.0e-05	 7.20	(2.96)	

	
1.01	(0.66:1.56)	 0.970	

SHIP-0	 228	 431	
	

1.26	(1.07:1.50)	 0.006	 1.54	(1.10)	
	

1.01	(0.82:1.26)	 0.912	
SHIP-T	 105	 202	 		 1.35	(1.05:1.74)	 0.020	 2.42	(2.00)	 		 1.36	(0.93:2.21)	 0.161	
ALL	 1351	 962	 		 1.35	(1.21:1.50)	 5.2e-08	 1.93	(0.63)	 		 1.07	(0.90:1.27)	 0.459	
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Table	S7.	Interaction-analyses	for	the	separate	CT	domains	with	the	MDD-PRS	including	all	SNPs	
(discovery	p<1)	
		 		 		 		 Impact	on	MDD	

	
N	

	
PRS	

	
PRSxCT	

CT	domain	 Case	 Control	 		 OR	 P	 R2	(SE,	%)	 		 OR	 P	
COFAMS	
Sum 56 22 

 
1.41 (0.82:2.49) 0.212 3.13 (4.61) 

 
0.38 (0.08:1.74) 0.201 

EA 56 22 
 

1.41 (0.82:2.49) 0.212 3.13 (4.61) 
 

0.36 (0.07:1.73) 0.187 
PA 56 22 

 
1.41 (0.82:2.49) 0.212 3.13 (4.61) 

 
0.01 (0.00:1.05) 0.102 

SA 56 22 
 

1.41 (0.82:2.49) 0.212 3.13 (4.61) 
 

0.36 (0.01:2.07) 0.369 
EN 56 22 

 
1.41 (0.82:2.49) 0.212 3.13 (4.61) 

 
0.88 (0.30:2.98) 0.820 

PN 56 22 
 

1.41 (0.82:2.49) 0.212 3.13 (4.61) 
 

0.27 (0.04:1.35) 0.132 
NESDA	
Sum 1143 272 

 
1.24 (1.08:1.42) 0.002 1.33 (0.84) 

 
1.08 (0.83:1.39) 0.556 

EA 1125 268 
 

1.22 (1.07:1.41) 0.004 1.17 (0.80) 
 

0.92 (0.72:1.19) 0.547 
PA 1134 271 

 
1.24 (1.08:1.42) 0.002 1.33 (0.84) 

 
0.89 (0.68:1.15) 0.388 

SA 1139 272 
 

1.24 (1.08:1.42) 0.002 1.33 (0.84) 
 

0.89 (0.60:1.33) 0.573 
EN 1118 270 

 
1.24 (1.08:1.42) 0.002 1.32 (0.84) 

 
1.25 (1.04:1.51) 0.019 

PN 1125 272 
 

1.25 (1.09:1.43) 0.002 1.38 (0.86) 
 

1.01 (0.83:1.23) 0.909 
RADIANT	UK	
Sum 269 267 

 
1.64 (1.35:2.00) 6.8e-07 5.90 (2.19) 

 
0.93 (0.66:1.31) 0.670 

EA 266 267 
 

1.64 (1.35:2.01) 7.4e-07 5.89 (2.19) 
 

0.87 (0.65:1.18) 0.350 
PA 263 265 

 
1.63 (1.34:1.99) 1.2e-06 5.72 (2.17) 

 
1.05 (0.75:1.50) 0.771 

SA 264 265 
 

1.64 (1.35:2.00) 9.0e-07 5.84 (2.19) 
 

1.02 (0.73:1.49) 0.923 
EN 260 266 

 
1.64 (1.35:2.01) 8.8e-07 5.89 (2.21) 

 
0.95 (0.72:1.26) 0.720 

PN 261 267 
 

1.65 (1.36:2.02) 5.4e-07 6.10 (2.24) 
 

0.99 (0.76:1.29) 0.935 
SHIP-0	
Sum 340 993 

 
1.30 (1.14:1.48) 1.0e-04 1.81 (0.91) 

 
1.02 (0.89:1.18) 0.737 

EA 353 1039 
 

1.31 (1.15:1.49) 5.0e-05 1.91 (0.92) 
 

1.02 (0.89:1.17) 0.795 
PA 353 1048 

 
1.31 (1.16:1.50) 3.4e-05 2.00 (0.94) 

 
1.00 (0.87:1.15) 0.976 

SA 354 1045 
 

1.31 (1.15:1.49) 5.1e-05 1.90 (0.92) 
 

1.07 (0.95:1.24) 0.286 
EN 350 1025 

 
1.31 (1.16:1.50) 3.7e-05 2.00 (0.94) 

 
1.05 (0.92:1.20) 0.497 

PN 351 1030 
 

1.30 (1.15:1.48) 6.0e-05 1.89 (0.92) 
 

1.03 (0.90:1.18) 0.686 
SHIP-TREND	
Sum 149 448 

 
1.33 (1.09:1.63) 0.005 2.10 (1.47) 

 
1.28 (0.96:1.72) 0.103 

EA 148 446 
 

1.33 (1.09:1.63) 0.005 2.06 (1.47) 
 

1.12 (0.87:1.49) 0.426 
PA 146 448 

 
1.34 (1.09:1.64) 0.005 2.12 (1.49) 

 
1.09 (0.89:1.42) 0.463 

SA 149 448 
 

1.33 (1.09:1.63) 0.005 2.10 (1.47) 
 

1.70 (0.77:3.79) 0.166 
EN 149 441 

 
1.34 (1.10:1.64) 0.005 2.14 (1.49) 

 
1.18 (0.94:1.49) 0.166 

PN 147 443 
 

1.33 (1.09:1.63) 0.006 2.06 (1.47) 
 

1.30 (1.02:1.70) 0.044 
ALL	
Sum 1957 2002 

 
1.34 (1.23:1.47) 5.1e-11 1.71 (0.45) 

 
1.05 (0.91:1.20) 0.519 

EA 1948 2042 
 

1.34 (1.22:1.47) 2.5e-10 1.69 (0.44) 
 

0.96 (0.85:1.09) 0.545 
PA 1952 2054 

 
1.34 (1.24:1.46) 1.4e-12 1.74 (0.45) 

 
1.00 (0.89:1.12) 0.947 

SA 1962 2052 
 

1.34 (1.23:1.46) 9.2e-12 1.72 (0.45) 
 

1.05 (0.90:1.21) 0.551 
EN 1933 2024 

 
1.35 (1.24:1.47) 5.2e-12 1.76 (0.46) 

 
1.11 (1.00:1.22) 0.043 

PN 1940 2034   1.35 (1.23:1.47) 3.3e-11 1.76 (0.45)   1.05 (0.93:1.19) 0.441 
Sum	=	sumscore	of	all	five	CT	domains;	EA	=	Emotional	abuse;	PA	=	Physical	Abuse	;	SA	=	Sexual	Abuse	;	EN	=	

Emotional	Neglect	;	PN	=	Physical	Neglect	



Peyrot	et	al.	 	 Supplement	

20 

	
Table	S8.	Comparing	different	discovery	samples	for	MDD	
		 Effective	N	

discovery	
N	target	 		 Effect	of	PRS	 		 Effect	of	CT	 		 Effect	of	PRSxCT	

Cohort	 Case	 Control	 		 OR	 P	 R2	 		 OR	 P	 		 OR	 P	
MDD	discovery	results	from	PGC,	Decode,	Genscot,	Gera,	iPsych	and	UKB	 		 		 		
COFAMS	 112,268	 56	 22	

	
1.41	(0.82:2.49)	 0.212	 3.13	(4.61)	

	
6.25	 8.0e-04	

	
0.38	(0.08:1.74)	 0.201	

NESDA	 112,268	 1143	 272	
	
1.24	(1.08:1.42)	 0.002	 1.33	(0.84)	

	
3.29	 3.7e-21	

	
1.08	(0.83:1.39)	 0.556	

RADIANT	UK	 112,268	 269	 267	
	
1.64	(1.35:2.00)	 6.8e-07	 5.90	(2.19)	

	
4.03	 3.0e-20	

	
0.93	(0.66:1.31)	 0.670	

SHIP-0	 112,268	 340	 993	
	
1.30	(1.14:1.48)	 1.0e-04	 1.81	(0.91)	

	
1.52	 7.0e-11	

	
1.02	(0.89:1.18)	 0.737	

SHIP-TREND	 112,268	 149	 448	 		 1.33	(1.09:1.63)	 0.005	 2.10	(1.47)	 		 1.71	 3.7e-07	 		 1.28	(0.96:1.72)	 0.103	
Total	 112,268	 1957	 2002	

	
1.34	(1.23:1.47)	 5.1e-11	 1.71	(0.45)	

	
2.53	 1.3e-09	

	
1.05	(0.91:1.20)	 0.519	

MDD	discovery	results	from	PGC	MDD	wave	2	leaving	the	target	cohort	out	 		 		 		
COFAMS	 40,373	 56	 22	

	
1.02	(0.60:1.76)	 0.928	 0.02	(0.36)	

	
6.25	 8.0e-04	

	
0.76	(0.17:3.80)	 0.732	

NESDA	 37,435	 1143	 272	
	
1.23	(1.08:1.41)	 0.002	 1.26	(0.82)	

	
3.29	 3.7e-21	

	
1.38	(1.07:1.76)	 0.011	

RADIANT	UK	 36,909	 269	 267	
	
1.32	(1.10:1.58)	 0.003	 2.07	(1.33)	

	
4.03	 3.0e-20	

	
0.67	(0.51:0.90)	 0.006	

SHIP-0	 39,406	 340	 993	
	
1.08	(0.95:1.22)	 0.246	 0.16	(0.28)	

	
1.52	 7.0e-11	

	
1.03	(0.91:1.17)	 0.628	

SHIP-TREND	 40,084	 149	 448	 		 1.32	(1.08:1.62)	 0.006	 1.98	(1.43)	 		 1.71	 3.7e-07	 		 1.00	(0.79:1.27)	 0.987	
Total	 	-	 1957	 2002	 		 1.20	(1.10:1.31)	 2.8e-05	 0.66	(0.28)	 		 2.53	 1.3e-09	 		 1.00	(0.79:1.26)	 0.972	
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Table	S9.	Polygenic	risk	scores	analyses	with	simulated	data	
		 Mean	polygenic	risk	scores	(SE)	 		 Case-control		

PRS	
difference	

		 PRSxCT		
Interaction-

effect		
	

Cases	
	

Controls	
	 	Cohort	 CT=0	 CT=1	 		 CT=0	 CT=1	 		 CT=0	 CT=1	 		 OR	 P	

Model	1	("additive")	 0.32	(0.007)	 0.17	(0.008)	
	

-0.24	(0.003)	 -0.30	(0.008)	
	

0.57	 0.47	
	
0.91	 0.157	

Model	2	("interaction")	 0.24	(0.006)	 0.03	(0.004)	
	

-0.14	(0.003)	 -0.16	(0.011)	
	

0.38	 0.19	
	
0.83	 0.013	

Model	3	(h2l_CT=0.5)	 0.26	(0.004)	 0.27	(0.005)	
	

-0.29	(0.003)	 -0.18	(0.014)	
	

0.55	 0.45	
	
0.90	 0.185	

Model	4	(increased	G	in	CT=1)	 0.24	(0.007)	 0.24	(0.007)	
	

-0.22	(0.004)	 -0.32	(0.010)	
	

0.46	 0.56	
	
1.15	 0.099	

Model	5	(decreased	E	in	CT=1)	 0.30	(0.005)	 0.27	(0.006)	 		 -0.26	(0.004)	 -0.38	(0.010)	 		 0.55	 0.65	 		 1.16	 0.047	
Simulated	data	of	10,000	SNPs	were	based	on	five	models,	all	assuming	heritability	of	MDD	of	0.35,	prevalence	of	MDD	of	0.15,	prevalence	of	CT	of	0.25	and	an	odds	ratio	

(OR)	of	CT	on	MDD	of	3.2	(see	Supplemental	Methods).	Model	1:	SNP-effects	are	the	same	in	exposed	and	unexposed;	Model	2:	correlation	of	0	between	SNP-effects	in	

exposed	and	unexposed;	Model	3:	SNP-effects	on	MDD	are	the	same	in	exposed	and	unexposed,	heritability	of	CT	of	0.5	(for	Models	1,2,4,	and	5,	heritability	of	CT	was	set	

at	0);	Models	4:	same	direction	of	SNP-effects	in	exposed	and	unexposed	(correlation	of	1),	but	3	times	larger	variance	of	effects	in	exposed	than	unexposed;	Model	5:	SNP-

effects	 the	 same	 in	 exposed	 and	unexposed,	 but	 three	 times	 smaller	 environmental	 variance	 in	 exposed.	 Simulation	was	 repeated	 ten	 times,	 the	means	 of	which	 are	

displayed	with	the	standard	error	(SE)	between	brackets.	
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